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Abstract

Background: Dagginess (faecal soiling of the perineum region) and host nematode parasite resistance are important
animal welfare traits in New Zealand sheep. Genomic prediction (GP) estimates the genetic merit, as a molecular
breeding value (mBV), for each trait based on many SNPs. The additional information the mBV provides (as determined
by its accuracy) has led to its incorporation into breeding schemes. Some GP methods give SNP effects, which provide
additional information to identify genome-wide associations (GWAS) for a trait of interest. Here we report results from a
GP and GWAS study for dagginess and host nematode parasite resistance in a New Zealand sheep industry resource.

Results: Genomic prediction analysis was performed using 50K SNP chip data and parent average-removed, de-regressed
BVs for five traits, from a resource of 8705 pedigree recorded animals. The five traits were dag score at three and eight
months (DAG3, DAG8) and nematode faecal egg count in summer (FEC1), autumn (FEC2) and as an adult (AFEC). The
resource consisted of Romney, Coopworth, Perendale, Texel and various breed crosses (designated: CompRCP,
CompRCPT and CompCRP). The pure breeds, apart from Texel, plus CompRCP were used to develop the GP. The
resulting SNP effects were used to identify genetic regions associated with dagginess and parasite resistance.
Accuracies of the weighted correlation between mBV and true BV ranged between −0.07 (Texel) and 0.56
(Coopworth) for DAG3 and DAG8. For FEC1, FEC2 and AFEC accuracies ranged between −0.22 (CompRCPT) and
0.69 (Coopworth). The weighted average individual accuracy (calculated from theory) ranges were 0.13 (Texel) to
0.52 (Coopworth) and 0.11 (Texel) to 0.55 (Coopworth) respectively, for dagginess and parasite traits. There was
one SNP for DAG8 that reached Bonferroni significance threshold (P < 1 × 10−6) on OAR15, the same two SNPs for
each of the parasite traits (OAR26) and none for DAG3. A notable peak was also observed on OAR7 for all the
parasite traits, however, it did not reach the Bonferroni significance threshold.

Conclusions: This study presents the first results of a GWAS on dagginess and faecal egg count traits in New
Zealand sheep. The results suggest that there are quantitative trait loci on OAR 15 for dagginess and on OAR26
and seven for faecal egg count.
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Background
Dagginess (faecal soiling of the perineum region) and in-
ternal nematode parasites, are major animal health traits
with ethical and welfare implications of interest to the New
Zealand sheep industry. Firstly, dagginess has a known as-
sociation with flystrike (genetic correlations range between
0.34 ± 0.13 and 0.81 ± 0.15) [1, 2], with the majority of
flystrike occurring in the breech. Secondly, internal par-
asites are increasingly becoming resistant to anthelmintic
drenches; there is known resistance to all major classes of
anthelmintics [3]. Finally, there is a perception that in-
ternal parasite load is associated with level of dagginess.
Breeding to reduce level of dagginess and internal parasite
load as measured by faecal egg counts is a strategy that
can provide cumulative and permanent progress.
Dagginess and parasite resistance, as measured by faecal

egg counts of Strongyle (FEC) and Nematodirus egg count
(NEM), have been shown to be moderately heritable traits
[4], with estimates in New Zealand sheep of 0.37 and 0.34
for dag score at three and eight months (DAG3, DAG8)
and between 0.18 and 0.21 for FEC/NEM traits [5]. Daggi-
ness and FEC/NEM are often thought to be genetically as-
sociated in sheep. However, recent estimates showed that
genetic and phenotypic correlations between FEC/NEM
and dagginess traits (DAG3 and DAG8) were low to
zero in New Zealand sheep [5]. A subsequent study also
showed that dagginess was not correlated with wool
length, bulk or type [6]. This does not rule out the im-
mune response to worm burden irrespective to FEC/NEM
as a cause of dagginess, but does suggest that the cause is
internal and may involve processes within the intestinal
tract.
Traditional genome-wide linkage studies which find quan-

titative trait loci (QTL) associated with a trait of interest has
been used successfully in animal production [7, 8]. The se-
quencing of many domesticated species: e.g. cattle, chicken
and sheep, have allowed the introduction of high-density
SNP genotyping platforms. These involve thousands and for
some species hundreds of thousands of SNPs approximately
equally spaced across the genome, to capture the greatest
amount of linkage disequilibrium with causative QTL. This
has produced rapid progress in genome-wide association
studies (GWAS) which have already identified regions asso-
ciated with production [9], fertility [10], disease [11–14] and
polledness [15] traits in cattle and sheep.
The same platforms have given rise to marker assisted

selection on a genome-wide scale, called genomic predic-
tion or selection [16]. The sum of the effect each SNP has
on a trait is used to predict the animals’ molecular breed-
ing values (mBVs) [17]. Thus potentially all the genetic
variation for a trait could be picked up by the SNP
panel due to the extent of LD between the SNPs on the
panel and causative QTL. The dairy industry has already
adopted GP to increase genetic gain [18], and it has

been recently implemented in the New Zealand sheep
industry [19].
A resource consisting of greater than 3.5M pedigree

recorded animals, born between 1990 and 2010 from
233 industry recorded flocks, with estimated breeding
values (eBVs) for a number of production traits, includ-
ing DAG3, DAG8 and FEC in summer (FEC1), autumn
(FEC2) and as adult (AFEC), was available for use. Of
these, 8705 have been genotyped on the Illumina Ovine
SNP50BeadChip (50K). The aim of this study was to es-
timate the accuracy of mBVs for these traits, using gen-
omic BLUP, which assumes all SNPs have a small effect
and are normally distributed. A second aim was to use
the SNP effects generated from the genomic prediction
analysis to identify regions associated with these traits,
in a GWAS.

Results and discussion
Quality control
A step by step quality control pipeline was performed
[20]. From the initial set of 54,977 useable SNPs, 4869
were not retained by the Ovine HapMap [21] and a further
1781 SNPs were discarded due to one or more of the
following; non-autosomal (including pseudoautosomal),
minor allele frequency (MAF) = 0, call frequency <0.97
and Illumina quality score (GC10) value <0.422. The final
dataset included 8705 animals and 48,327 SNPs.

Summary of dependent variables
Of the 3.5M animals used for eBV estimation there were
95,544 and 75,979 raw measurements for DAG3 and
DAG8, respectively. The traits FEC1 (scored in summer)
and FEC2 (scored in autumn) are repeatable traits with
two samples (a and b) potentially collected at each time
point, several days apart (Table 1). For AFEC, this trait is
not recorded and the eBVs are generated using estimated
genetic and phenotypic correlations with other traits in-
cluding FEC1 and FEC2. Table 1 summarizes the raw
measurements used by Sheep Improvement Limited (SIL),
the New Zealand sheep genetic evaluation database, to
generate the eBVs and the resulting dependent variables
(y) used for molecular breeding value (mBV) calcula-
tion; i.e. are parent averaged de-regressed, have reliabil-
ities greater or equal to 0.8 times the heritability and
were for animals genotyped on the 50K SNP chip. There
were between 1957 and 4164 animals for each trait with y
values; corresponding reliabilities were between 0.34 and
0.51.
The dependent variables were split into a training and

validation datasets, based on birth year, for the genomic
prediction and to estimate accuracy of the prediction equa-
tions. This was performed for each breed (Romney, Coop-
worth, Perendale, Texel and three breed crosses designated:
CompRCP, CompRCPTand CompCRP) and trait (Table 2).
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Training set cut offs were chosen to ensure adequate
numbers were in the training and validation datasets, see
methods for a complete description.

Principal component analysis
Using the G1 matrix, described by VanRaden [22], the
first six principal components (PC) using the animals in
the training set were calculated. The six PCs accounted
for between 0.60 and 0.73 of the genetic variation con-
tained in the genomic relationship matrix for each trait
(Table 3). In Fig. 1, the first (PC1) and second (PC2) lar-
gest axes of variation are plotted using the animals with
FEC1 y values. The distinction of the four main breed
groups (Romney, Coopworth, Perendale and Texel), with
the three composites breeds (shown as ‘other’) clustered
in-between, are shown clearly and is typical of the New
Zealand sheep industry.

Accuracy of genomic prediction
The accuracies of the five traits calculated as the adjusted
weighted correlation between mBV and y (rA) and as the
weighted average individual accuracy (rI) are shown in
Table 4. These were calculated using the animals in the
validation set. For the dagginess traits the rA ranged be-
tween 0.11 and 0.56 for those breeds in the training set
and rI ranged between 0.31 and 0.52. The Perendales had
the lowest rA and rI reflecting the low number of animals

from this breed in the training set; n = 52 and 50 for
DAG3 and DAG8, respectively (see methods). For the
three breeds present in the validation set only (Texel,
CompRCPT and CompCRP) rA and rI were poor for the
Texel who are the furthest removed from the validation
set. The two composites have more than 30 % of their
genetic background from Romney, Coopworth or Peren-
dale breeds and had accuracies close to values seen by the
breeds represented in the training set.
For the FEC traits, the rA ranged between 0.18 and 0.71

for those breeds represented in the training set and be-
tween 0.28 and 0.55 for rI. The Perendales again had the
lowest accuracies; the number of animals of this breed in
the training set were low (n = 164, 175 and 123, for FEC1,
FEC2 and AFEC, respectively). The composite (CompRCP)
also had a low number of animals in the training set for
FEC2 and AFEC, 101 and 10, respectively. The slightly
higher accuracies seen for CompRCP compared to the Per-
endales may be due to the CompRCP animals consisting of
at least 50 % Romney, Coopworth and/or Perendale. Again,
of the breeds represented only in the validation sets, the
Texel had the lowest rA and rI except for AFEC, where
CompRCPT had a rA of −0.22. Adult FEC had lower accur-
acies for most breeds compared to FEC1 and FEC2. This is
probably a reflection of the lower numbers of animals
available with y values for this trait, which in turn is due to
this trait being indirectly predicted from correlated traits.

Table 1 Summary of raw phenotypes, de-regressed dependent variables with parent average removed and reliabilities

Phenotypes y rel

Trait n Mean sd h2 n Mean sd Mean sd

DAG3 95544 0.93 1.26 0.33 2640 −0.03 1.03 0.47 0.33

DAG8 75979 1.23 1.45 0.31 1957 −0.13 1.08 0.51 0.31

FEC1a 124948 1020.32 1418.94 0.16 4164 −0.17 0.64 0.42 0.21

FEC1b 37976 999.20 1180.52

FEC2a 105215 1194.57 1548.24 0.20 3269 −0.16 0.75 0.34 0.20

FEC2b 49289 1177.50 1409.65

AFEC 0 0.25 2204 −0.20 0.84 0.35 0.25

n number, sd standard deviation, h2 heritability, y de-regressed dependent variables with parent average removed (y), rel reliabilities of y, DAG3, DAG8 dag score at three
and eight months, respectively, FEC1, FEC2, AFEC nematode faecal egg count in summer, autumn and as an adult, respectively (a and b = repeat measures)

Table 2 The year of birth of the first animals placed in the validation set and number (n) of animals in training and validation sets
for each breed

First validation year n Training n Validation

Trait R C P RCP R C P RCP R C P RCP T RCPT CRP

DAG3 2008 2009 2004 2009 624 622 52 188 221 234 56 276 86 158 123

DAG8 2008 2005 2004 2009 715 209 50 72 278 245 53 83 86 85 81

FEC1 2008 2009 2005 2008 1414 1033 164 222 264 239 185 204 124 160 155

FEC2 2008 2009 2005 2007 1168 917 175 101 165 95 193 137 98 97 123

AFEC 2006 2005 2004 2005 771 381 123 10 252 237 170 66 76 54 64

Rom Romney, Coop Coopworth, Peren Perendale, RCP CompRCP, RCPT CompRCPT, CRP CompCRP, PC principal components, DAG3, DAG8 dag score at three and
eight months, respectively, FEC1, FEC2, AFEC nematode faecal egg count in summer, autumn and as an adult, respectively
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The accuracies were compared to the theoretical ac-
curacies using equation 8 from Goddard [23], following
the assumptions of an effective population size (Ne) of
405 (New Zealand Romney, Table S4 [21]), number of
records available per trait and genome length of 30M.
The theoretical accuracies were 0.18 and 0.20 for DAG3
and DAG8 respectively and 0.32, 0.31 and 0.23 for FEC1,
FEC2 and AFEC, respectively. The accuracy estimates ob-
tained in this study are higher than those calculated theor-
etically. The reason for the higher accuracies is that the
theoretical values are for ‘unrelated’ animals i.e. ~10 gen-
erations or more distant. In practice, most of the valid-
ation animals have an ancestor 1–3 generations distant in
the training data set and as such will have higher esti-
mated accuracies than expected from theory.
Simulations showed that when there are limited numbers

of animals from one population set, then the most accurate
genomic predictions are generated when information from
all populations are combined in the training set rather than

predicting separately by population [24]. However, the
more genetically diverse the populations are, the less accur-
ate are the genomic predictions for across breed analysis.
This corroborates the low accuracy for the Texels in this
analysis, as they are the most divergent breed in the valid-
ation set compared to those present in the training set.
The Texels originated from Texel an island offshore from
the Netherlands, while the Romneys were from England,
their estimated divergence is 160 to 240 generations ago
[21]. To increase accuracies for Texels, more animals are
required so that some may be combined in the training set.
This may in part be achieved by increasing the number of
composites with at least 50 % Texel, if pure-breds are hard
to collect.
The accuracies for the CompRCPT and CompCRP are

higher than expected for a breed not present in the training
set, however, they are at least 50 % and at least 30–50 %,
respectively, of the breeds represented in the training set.
The strength of the genetic relationships between indi-
viduals and breeds was shown in the principal compo-
nent analysis, e.g. for FEC1 (Fig. 1).
Implementation in industry in New Zealand for these

traits currently uses the mBVs as described here with minor
modifications [25]. These are then blended with eBVs
calculated on all available animals (see Dodds [26] for a
brief description).

GWAS
The quantile-quantile (Q-Q) plots (Fig. 2) showed that the
deviation of the majority of observed -log10(P) values from
the expected values was insignificant (lambda ranged be-
tween 1.001 and 1.021). The SNPs seen to be deviating
from the expected values were interpreted as SNPs associ-
ated with the trait of interest, as the SNPs are departing
from the null hypothesis of no genetic association and no
LD between SNPs. There were 32 regions associated with
DAG3, DAG8, FEC1, FEC2 and/or AFEC with a P value <
0.0001 (Additional file 1).
Figure 3 (a and b) show the Manhattan plots of the

resulting -log10(P) values for DAG8 and FEC1, respectively.
The Manhattan plot for DAG3 was similar to DAG8, and
plots for FEC2 and AFEC were similar to FEC1 (Additional
file 2). A summary of genes underlying the top SNPs with
a P value < 0.0001 for each trait is in Additional file 1.
For DAG3 and DAG8 there was one peak common to
both traits detected on OAR15 (Fig. 4b), comprising of
a single SNP (s22390; P value 5.04 × 10−6 and 2.72 × 10−10,
respectively). Annotation on Ovine genome v3.1 (http://
www.ensembl.org/Ovis_aries) showed there are no known
genes or proteins within 100kbp window of this SNP.
Two predicted genes were observed (Ensembl transcript:
GENSCAN00000038546 and GENSCAN00000038543),
however RNA-seq data at Ensembl does not provide sup-
porting evidence for these genes being real. The 100kbp

Fig. 1 The first two principal components (PC) calculated for all animals
for faecal egg count in summer. Romney (blue), Coopworth (green),
Texel (yellow), Perendale (purple) and others/composites (grey)

Table 3 The genetic variance explained by the first 6 principal
components for each trait

Trait PC1 PC2 PC3 PC4 PC5 PC6 Total

DAG3 0.57 0.06 0.03 0.02 0.02 0.01 0.71

DAG8 0.44 0.06 0.03 0.03 0.02 0.02 0.60

FEC1 0.59 0.04 0.04 0.02 0.02 0.02 0.73

FEC2 0.57 0.05 0.03 0.03 0.02 0.02 0.71

AFEC 0.44 0.06 0.04 0.04 0.02 0.01 0.60

PC principal components, DAG3, DAG8 dag score at three and eight months,
respectively, FEC1, FEC2, AFEC nematode faecal egg count in summer, autumn
and as an adult, respectively
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sequence was scanned for open reading frames in all 6
frames, these were matched against a collection of pro-
tein signature databases using InterProScan 5 [27]. This
identified three matching domains; integrin beta subunit,
insulin-like growth factor binding protein and Agouti
(Additional file 3).
For the FEC traits there were two distinguishable

similarities on OAR 7 and 26 (Fig. 4a and c). On OAR
7 there was a notable peak consisting of 17 SNPs in
total for all three traits, spanning a 3.36 Mbp region

(45,194,749bp to 48,549,329bp), with the top SNP within this
region passing the P < 10−4 threshold for FEC1 (s65809). On
OAR 26 there was one significant peak (OAR26_25273391),
with a P value ranging between 8.38 × 10−8 and 2.18 × 10−11

for FEC1, FEC2 and AFEC.
The gene positioned under the peak on OAR 7 is the

vacuolar protein sorting 13 homolog C (VPS13C; OMIM:
608879). This family of proteins are involved in the traf-
ficking of membrane proteins between the trans-Golgi net-
work and the prevacuolar compartment (Saccharomyces

Fig. 2 Quantile-quantile plot for dag score at three (a) and eight months (b), faecal egg count in summer (c), autumn (d) and as adult (e). The 0–1 line
(solid) and the slope (dash) are also plotted

Table 4 Accuracies as the weighted correlation between mBV and dependent variable (rA) and the weighted average individual
accuracy (rI) calculated for the five traits in the seven validation breeds

Rom Coop Peren RCP Texel RCPT CRP

Trait rA rI rA rI rA rI rA rI rA rI rA rI rA rI

DAG3 0.34 0.46 0.56 0.52 0.26 0.35 0.41 0.44 −0.07 0.16 0.35 0.42 0.39 0.40

DAG8 0.40 0.47 0.41 0.43 0.11 0.31 0.31 0.35 0.15 0.13 0.40 0.33 0.16 0.30

FEC1 0.40 0.51 0.71 0.55 0.22 0.41 0.65 0.49 0.03 0.21 0.39 0.51 0.50 0.46

FEC2 0.49 0.51 0.69 0.49 0.18 0.39 0.68 0.46 0.09 0.18 0.26 0.41 0.66 0.34

AFEC 0.27 0.35 0.24 0.35 0.24 0.28 0.29 0.33 0.10 0.11 −0.22 0.28 0.33 0.23

Rom Romney, Coop Coopworth, Peren Perendale, RCP CompRCP, RCPT CompRCPT, CRP CompCRP, rA weighted correlation between mBV and dependent variable, rI
weighted average individual accuracy, PC principal components, DAG3, DAG8 dag score at three and eight months, respectively, FEC1, FEC2, AFEC nematode faecal
egg count in summer, autumn and as an adult, respectively
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cerevisiae) corresponding to the multivesicular body/late
endosome in mammals [28]. Four splice variants of this
gene have been observed, along with three repeat re-
gions. Homolog C arose from duplication of homolog
A, also known as chorein, which is involved in chorea-
acanthocytosis (ChAc), an autosomal recessive disease.
However, homolog C cannot compensate for defunct
homolog A in ChAc patients [28]. The VSP13 family of
proteins are expressed in most tissues including the
small intestine and colon [28].
The gene positioned under the peak on OAR 26 is the

zeta-sarcoglycan (SGCZ; OMIM: 608113) gene. This gene
is involved in the formation of the sarcoglycan (SG) com-
plex with SGCE, SGCB and SGCD in smooth muscle,
retina and Schwann cells [29, 30]. The SG complex is
part of the dystrophin-glycoprotein complex that interacts
between the actin cytoskeleton and the extracellular
matrix, essential for membrane stability. Mutations in
the sarcoglycans cause limb-girdle muscular dystrophy,
with malfunctions of digestive smooth muscle leading
to dysphagia, vomiting, chronic constipation and acute
digestive dilatations. This region also overlaps with a copy
number variant (CNV) region associated with obesity in
mice [31].
Numerous studies have been carried out to investigate

the genetic control of resistance to internal parasites. The
majority of these studies involved microsatellite-based
linkage studies [32–38]. There are only a few more recent
studies involving SNP chip data [11, 12, 39, 40], one pub-
lished study using both microsatellites and SNPs [41] and
one using candidate gene approach [42]. Numerous traits
representing parasite resistance have been used in these
previous studies, for example, immunoglobulin A activity,
packed cell volume and eosinophil counts, as well as the

standard FEC and NEM traits. Given this, of the 32 identi-
fied SNPs with a P < 0.0001, there were 16 regions which
overlapped previous QTL/GWAS studies on gastro-
intestinal parasites (Additional file 4). Notably the re-
gion on OAR 7 (~45.3cM) overlapped with four other
studies [12, 36, 40, 41]. A region on OAR 2 (~129.9cM)
also overlapped or is near regions identified in five other
studies [11, 32, 33, 36, 39]. Four regions associated with
DAG3 and/or DAG8 in this study were also identified in
previous studies on gastrointestinal parasites (OAR 1 ~
154.6cM [11, 35]; OAR 3 ~ 138.4cM; [33]; OAR 8 ~
71.1cM [39]; and OAR 15 ~ 40.2; [11, 38, 41]). It has been
reported in a comprehensive dataset that FEC and dag
score traits are not strongly genetically or phenotypically
correlated, however, it was suggested that parasite worm
burden could still play a role in faeces accumulation [5].
Even though no similarities between significant regions
were found between the two trait sets in this study, there
may be similarities in the genes involved in the whole
physiological response. It could be that the part of the
response involved in reducing FEC/pasture contamin-
ation is a different gene set from those involved in what
leads to faecal accumulation. Therefore, similarities be-
tween regions associated with dag score in this study
and FEC from previous studies could arise, relating to
the physiological response to the parasitic infection.

Conclusions
These results indicate that genomic prediction can be
implemented for most breeds in the New Zealand sheep
industry for dagginess and FEC traits. In addition, three
regions have been identified, one on OAR15 shows asso-
ciation with faecal accumulation and two regions (OAR7
and OAR26) show an association with the FEC traits.

Fig. 3 Manhatten plot of -log10(P) values of SNPs for dag score at eight months (a) and faecal egg count in summer (b). Ordered on the ovine
genome v3 map, P < 0.0001 (solid line), P < 0.001 (dash line)
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This study adds additional information in the quest for
understanding the genes potentially involved in the host
response to internal parasites and faecal accumulation.

Methods
This study was carried out in strict accordance of the
guidelines of the 1999 New Zealand Animal Welfare Act
and was approved by the AgResearch’s Invermay Animal
Ethics committee.

Estimated breeding values and dependent variables
Estimated breeding values (eBVs) were available for DAG3,
DAG8, FEC1, FEC2 and AFEC from analyses performed
by Sheep improvement Limited (SIL), the New Zealand
sheep genetic evaluation system [43]. The eBVs were
generated from approximately 3.5M pedigree recorded
animals from 230 industry recorded flocks. To ensure
SNP associations were not due to pedigree information,
dependent variables (y) were calculated taking into ac-
count the individuals own and descendants’ information.

Fig. 4 Distribution of -log10(P) values for dag score at three (blue) and eight months (orange) and faecal egg count in summer (green), autumn
(purple) and as adult (red) for candidate regions on OAR 7 (a), 15 (b) and 26 (c)
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Parent average effects are removed [44], assuming all gen-
etic variation is explained by the markers (c = 0). The
resulting values were de-regressed using the reliability of
the eBV with parent-average removed.
The eBVs were available directly from SIL, however,

for completeness the following is a description of the
measurement criteria of the traits for input into the SIL
database. Dagginess is a subjectively, visually-assessed
trait scored at approximately three and eight months of
age (DAG3; DAG8) using a 6-point scale: zero (no daggi-
ness) to five (complete coverage of the breech and down
the legs by faecal material) [6]. Measurements on FEC
traits for input into SIL for BV estimation are done
through the WormFEC™ programme [45]. Faecal egg count
is a repeatable trait with BVs estimated from two samples
(taken several days apart) taken in summer (FEC1) and au-
tumn (FEC2). Egg counts are made of Strongyle (primarly
Ostertagia spp,Trichostrongylus spp, Cooperia curticei, and
in a proportion of farms Haemonchus contortus [46]).
Breeding values for AFEC are estimated from genetic and
phenotypic correlations with FEC1 and FEC2.

Genotypes and quality assurance
Of the 3.5M pedigree recorded animals, 8705 had been
genotyped, and passed quality control, with the Illumina®
Ovine 50K SNP chip, according to the manufacturer’s
protocol. These were mainly sires, only 22 % were fe-
male, and were predominately Romney, Coopworth, Per-
endale or Texel, plus other breeds and various crosses and
composites. Genotyping results were put through a quality
control pipeline before analysis [20]. In summary, SNPs
are discarded if they have a call rate <97 %, appear non-
autosomal (including pseudoautosomal), minor allele
frequency (MAF) ≤0.01, Illumina quality score (GC10)
value <0.422 and departed from Hardy Weinberg dis-
equilibrium (1 × 10−6). The SNPs that were not retained
as part of the Ovine HapMap study [21] were also
discarded.

Genomic prediction analysis
Breed designation and reliability threshold
Data were filtered on breed and reliability before analysis.
Breed was designated by the following conditions: Romney,
Coopworth and Perendale were reported if their breed
composition was greater or equal to 75 %. There were also
three composite breeds considered, based on the breed
composition of the New Zealand sheep industry. Firstly,
CompRCPT were those that were greater than 50 % of
combined Romney, Coopworth, Perendale breeds and at
least 25 % Texel. Secondly, CompRCP were those that
were greater than 50 % of combined Romney, Coop-
worth, Perendale breeds and less than 25 % Texel. Finally
CompCRP were those that had greater than 30 % and less

than or equal to 50 % of combined Romney, Coopworth and
Perendale breeds.
The reliability cut off was 80% of the heritability estimate

used for eBV estimation. Animals had to have dependent
variable reliabilities equal to or above this cut off to be con-
sidered for analysis as typically they have either not been
measured or alternatively progeny tested for the trait. The
number of animals in the final analysis (i.e. with both geno-
types and eBVs above cut off) were 2640 for DAG3 (44 %
female), 1957 for DAG8 (31 % female), 4165 for FEC1 (33 %
female), 3269 for FEC2 (27 % female) and 2204 for AFEC
(16 % female).

Training and validation assignment
After the above filtering, genotypes were scored on the
number of copies of the ‘A’ allele (based on Illumina AB
calling format). Missing genotypes were filled in using
the breed mean, estimated using a least squares regression
on breed proportions as Romney, Coopworth, Perendale,
Texel and other, to generate allele frequencies for each
SNP within breed. The missing values are then replaced
weighted by the individuals breed proportion of Romney,
Coopworth, Perendale, Texel or other.
Training and validation sets were formed to a) derive a

prediction equation using the training set and b) to esti-
mate the accuracy of the prediction equation in the valid-
ation set. For estimating the SNP effects for the GWAS all
animals were used in the training set. The animals were
split into validation and training sets based on birth year
(Table 2). The Texel, CompRCPT and CompCRP animals
were only used in the validation set, to see how well the
predictions work for these groups when not directly in the
training set, as well as for groups represented in training.
Training set cut off years were chosen for each breed,
using a number of criteria. First, at least 200 animals per
breed are used for validation. Secondly, if there are less
than 400 animals roughly half are required in each set.
Finally, if there were between 75 and 100 animals then
a small portion (~10) were left in the training set, and
the rest in validation.
The dataset comprised mainly of males used as sires,

for each trait the percentage of females in the training
and validation sets were: 39 and 50 % for DAG3, 20 and
43 % for DAG8, 30 and 38 % for FEC1, 26 and 32 % for
FEC2 and 9 and 27 % for AFEC, respectively.

GBLUP
For full description of methods see [23], in summary the
following methods were applied. Two genomic relationship
matrices were used. The first G matrix (G1), as described
by VanRaden [22] was used to calculate the coefficients
(i.e., a linear prediction equation), while the second G
matrix (G2, calculated using breed-specific allele frequen-
cies [47]) was used to calculate the individual accuracies as
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described below. In a multi-breed population the G2
matrix is more similar to the pedigree-derived relationship
matrix than G1, [47] and [23] recommend using G2 in
preference to G1 for calculating individual accuracies.
The mBVs were calculated using genomic BLUP method

of VanRaden [22]. A mixed model was fitted to the
dependent variable, y, for each trait as follows: y =Xβ +
Zu + e where X is a matrix of the first six principal
components of the G1 [22] matrix (to account for
population stratification), β is a vector of fixed effects
of the PC, Z is an incidence matrix and u is the animal
effects (breeding values) distributed as N(0, G1 σ2u),
where σ2u is the additive genetic variance and e are the
residual effects distributed as N(0,R) where R is a diag-
onal matrix with diagonal elements (1-r2)/r2 where r2 is
the reliability of y.
The mBVs are the predicted animal effects from the

above model. The mBVs were obtained by multiplying
the SNP effects by the SNP genotypes and summing.

Calculating the accuracy
The accuracies of the mBVs for each breed were derived
from the validation animals using two different methods.
The first method used the mBVs from GBLUP fitting the

G1 matrix; rA ¼ cor y;MBVð Þ
hg

, and was weighted by 1/(1-r2).

The mBV were calculated as above, only using the training
set. The effective heritability (h2g) is equal to the average
reliability (r2) of y. The second method uses the prediction
error variance (PEV) [48] from a genomic BLUP analysis

fitting the G2 matrix, giving; rIi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− PEV i

σ2u

q
for animal i,

where σ2u is the genetic variance and the PEVi are obtained
by inverting the left hand side of the mixed model equa-
tion [47]. These were calculated for all validation animals
and averaged (weighted by 1/(1-r2)) to give an accuracy, rI,
for each breed.

GWAS
To identify genetic regions associated with the five traits,
SNP effects (bi) were obtained from the above genomic
BLUP using the G1 matrix and all animals in one data-
set. Probability (P) values were calculated for the ith SNP
assuming the bi follow a normal distribution with mean

zero and variance: var ¼ 2pi 1−pið Þnbσ2bX
2pi 1−pið Þð Þ, where pi is the

frequency of the A allele of the ith SNP in the popula-
tion, σ2b is equal to the empirical variance of bi and nb is
the number of SNPs with effects. The -log10(P) values
corresponding to the estimates of the bi were graphed in
a Manhattan plot on Ovine genome v3.1 [49] (available
at Ensembl http://www.ensembl.org/Ovis_aries), and
thresholds set at an initial level calculated using the 5 %
Bonferroni correction [50] 0.05/nb ≈ 10−6 (−log10(P) ~6).

The quantiles were calculated to check whether the dis-
tribution of the observed -log10(P) values deviated from
the expected distribution (exponential) under the null hy-
pothesis of no genetic association and no LD between
SNPs. To do so, the nb -log10(P) values were sorted and
plotted against the -log10(1-u) where u = [1 / (nb + 1), 2 /
(nb + 1), …, nb / (nb + 1)] as a quantile - quantile (QQ)
plot.

Exploration of significant SNPs
For peaks that reached the Bonferroni threshold, the gen-
omic region was explored by inspecting a 100kbp win-
dow surrounding the location of the significant SNP
using ovine genome v 3.1 (available at Ensembl http://
www.ensembl.org/Ovis_aries). A further literature search
and Online Mendelian Inheritance in Man (OMIM)
were used to identify candidate genes.

Supporting material
The data sets supporting the results of this article are
included within the article and its additional files.
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Additional file 1: List of genes within 100kbp region surrounding
the best SNPs with -log10(P) > 4 for each trait, listed by OAR (chr)
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Additional file 2: Manhatten plot of -log10(P) values of SNPs for dag
score at three months (A) and faecal egg count in autumn (B) and
as adult (C). Ordered on the ovine genome v3 map, P < 0.0001 (solid
line), P < 0.001 (dash line). (PNG 916 kb)

Additional file 3: Output of protein domain matches from InterProScan
5 search of the 100kbp window around SNP s22390 located at OAR15:
40210579 on OARv3.1. (CSV 110 kb)

Additional file 4: Summary of quantitative trait loci for resistance
to internal parasite traits from published papers, related to regions
identified within the current study. Positioned on ovine genome map
v3, including chromosome (chr) position (Coordinate, cM), test statistic and
significance and quantitative trait loci (SNP or MicroSatellite). (XLSX 13 kb)
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