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Abstract

Background: Gray Leaf Spot (GLS causal agents Cercospora zeae-maydis and Cercospora zeina) is one of the most
important foliar diseases of maize in all areas where the crop is being cultivated. Although in the USA the situation
with GLS severity is not as critical as in sub-Saharan Africa or Brazil, the evidence of climate change, increasing corn
monoculture as well as the narrow genetic base of North American resistant germplasm can turn the disease into a
serious threat to US corn production. The development of GLS resistant cultivars is one way to control the disease.
In this study we combined the high QTL detection power of genetic linkage mapping with the high resolution power of
genome-wide association study (GWAS) to precisely dissect QTL controlling GLS resistance and identify closely linked
molecular markers for robust marker-assisted selection and trait introgression.

Results: Using genetic linkage analysis with a small bi-parental mapping population, we identified four GLS resistance
QTL on chromosomes 1, 6, 7, and 8, which were validated by GWAS. GWAS enabled us to dramatically increase the
resolution within the confidence intervals of the above-mentioned QTL. Particularly, GWAS revealed that QTLGLSchr8,
detected by genetic linkage mapping as a locus with major effect, was likely represented by two QTL with
smaller effects. Conducted in parallel, GWAS of days-to-silking demonstrated the co-localization of flowering
time QTL with GLS resistance QTL on chromosome 7 indicating that either QTLGLSchr7 is a flowering time QTL
or it is a GLS resistance QTL that co-segregates with the latter. As a result, this genetic linkage — GWAS hybrid
mapping system enabled us to identify one novel GLS resistance QTL (QTLGLSchr8a) and confirm with more
refined positions four more previously mapped QTL (QTLGLSchr1, QTLGLSchr6, QTLGLSchr7, and QTLGLSchr8b).
Through the novel Single Donor vs. Elite Panel method we were able to identify within QTL confidence intervals SNP
markers that would be suitable for marker-assisted selection of gray leaf spot resistant genotypes containing the
above-mentioned GLS resistance QTL.

Conclusion: The application of a genetic linkage — GWAS hybrid mapping system enabled us to dramatically increase
the resolution within the confidence interval of GLS resistance QTL by-passing labor- and time-intensive fine mapping.
This method appears to have a great potential to accelerate the pace of QTL mapping projects. It is universal and can
be used in the QTL mapping projects in any crops.
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Background

Gray leaf spot (GLS) is one of the most important foliar
diseases of maize in all areas where the crop is being culti-
vated. Severity of GLS depends on climate conditions suit-
able for fungus development. Disease is prevalent in the
areas where dewy mornings are followed by a hot humid
afternoon and relatively cool nights. In the USA, damages
caused by GLS had been mild up to the 1970s. However,
the introduction of reduced tillage practice as a measure
to fight soil erosion created favorable conditions for the
pathogen to overwinter in the cornfield and re-infect
plants in the summer [1]. As it was predicted in the early
80s, during the last 20 years the importance of GLS in the
USA has increased [2]. Although in the USA the situation
with GLS severity is not as critical as in sub-Saharan
Africa or Brazil, the evidence of climate change, increasing
corn monoculture as well as narrow North American
resistant germplasm can turn the disease into a serious
threat to US corn production. Two species of Cercospora,
namely C. zeae-maydis (3] and C. zeina [4], cause GLS. In
the Unites States C. zeae-maydis occurs everywhere where
corn is being cultivated, whereas C. zeina is mainly found
on the East coast [4]. However, despite the presence of
two species of Cercospora, the specificity of GLS resistance
to either species have not been observed implying that GLS
resistance is effective against both C. zeae-maydis and C.
zeina [5].

The development of GLS-resistant cultivars through
conventional or molecular breeding is one way to control
the disease and ensure the security of corn production in
the USA. Conventional breeding of GLS resistant cultivars
has been difficult due to the complexity of the trait.
Although GLS resistance is a highly heritable trait [6-8], it
is controlled by many minor quantitative trait loci (QTL)
[9, 10]. In fact, within the last 20 years using various
sources of resistance, types of mapping populations,
molecular markers and environments, over 57 GLS resist-
ance QTL were detected in all 10 chromosomes of maize
[11-13], out of which 31 were bioinformatically claimed
to be false-positive [14]. Molecular breeding is a promising
tool to breed GLS resistant corn cultivars. However, its
success heavily relies on the availability of molecular
markers that are physically close to QTL controlling the
resistance to the disease.

Despite the substantial number of GLS resistance QTL
mapping efforts using bi-parental mapping populations,
majority of studies have mostly reported molecular
markers flanking QTL confidence intervals which repre-
sented large segments of chromosomes. In many cases
these markers are very far from the causative mutations,
easily lost during meiotic recombination, and conse-
quently not useful in molecular breeding. One of the
major reasons is the use of small bi-parental mapping
populations with low genome resolution power. In
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recent GLS QTL mapping studies the sizes of bi-parental
mapping populations ranged between 100-300 individuals
[12, 15-17]. Although a bi-parental genetic mapping
approach offers high QTL detection power, its resolution
remains low due to inaccurate recombination information
[18], which leads to a strong statistical association of QTL
with the block of markers that physically span large
chromosomal segments. To capture all possible recombin-
ation events, one can increase the size of the mapping
populations, which is a very time- and cost- intensive pro-
cedure, especially when dealing with immortal populations
such as recombinant inbred lines (RILs) or double hap-
loids (DH). However, even fine mapping in many cases
will not help to delimit a QTL interval to a significantly
smaller segment of DNA because of a limited number
of meiotic recombination events [19]. Another way to
increase the resolution within a QTL confidence inter-
val and discover additional recombination events was
proposed to be the application of high-density marker
technologies [20].

In contrast to the bi-parental approach, the linkage
disequilibrium-based genome-wide association study
(GWAS) overcomes the problems related to the lack of
recombination events due to the structure of the associ-
ation mapping population which is composed of genetic-
ally un-related individuals with unknown pedigrees and
accumulates a larger number of historical recombination
events that occurred in the past [21]. However, unlike
the bi-parental approach of QTL mapping, the detection
power of GWAS is fairly low and the method is prone
to discover false-positive QTL [22].

In this study we combined the high QTL detection power
of the bi-parental approach with the high resolution power
of GWAS by applying a genetic linkage - GWAS hybrid
mapping system to dissect QTL controlling GLS resistance
and identify closely linked molecular markers for robust
marker-assisted selection and trait introgression. Briefly,
one small bi-parental mapping population and an
Association Panel of 300 maize inbred lines, which also
included the parents of the bi-parental population,
were simultaneously tested in four environments (two
years x two locations) for their reaction to Cercospora .
Using the bi-parental mapping population, confidence
intervals supporting GLS resistance QTL were identi-
fied. In parallel, GLS resistance QTL were also discov-
ered by GWAS. Then the locations of GWAS-detected
QTL were superimposed with QTL intervals identified
by the bi-parental mapping approach. Single nucleo-
tide polymorphism (SNP) markers residing within the
confidence interval as defined through the bi-parental
approach and associated with GLS resistance QTL as
discovered by GWAS were further validated for their
potential usefulness in marker-assisted selection
(MAS).
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Methods

Genetic Materials

Two mapping populations were used in this study. The
DH population was developed from a cross between two
Dow AgroSciences (DAS) proprietary maize inbred lines.
One of the parents, DAS-001 (GLS resistant), is a tem-
perate maize line of South American origin. The second
parent, DAS-002 (GLS susceptible) is a temperate maize
line of U.S. Corn Belt origin. The DH population was
represented by 72 lines, which were assessed for the dis-
ease. This bi-parental population was used to conduct
genetic linkage mapping of QTL controlling GLS
resistance.

The second population, Association Panel, was developed
to conduct GWAS. The Association Panel was comprised
of 300 maize inbreds, including 215 DAS proprietary lines
of North and South American origin, 27 ex-PVP lines, 37
CYMMIT lines, and 21 lines from the National Plant
Germplasm system (Additional file 1). All lines in the
Association Panel were chosen based on their previ-
ously known reaction to GLS and represented four
major categories: GLS susceptible, moderately GLS suscep-
tible, moderately GLS resistant, and GLS resistant. Software
STRUCTURE [Version 2.3.4 (Jul 2012)] [23, 24] was used
to infer the population structure of the Association Panel.
Based on prior knowledge of this Association Panel, the
range of the subpopulations tested in STRUCTURE was set
from 1 to 5. The analysis was repeated five times with
100,000 Markov Chain Monte Carlo (MCMC) replicates
and 100,000 burn-ins. The optimal number of clusters
representing population substructure was determined by
the Delta K [25], which was calculated based on the
second-order rate of change in estimated log likelihood
[LnP(D)] between successive values for K.

Field trials

Both the bi-parental mapping population and Association
Panel were planted in four environments: 2011 and 2012
in Davenport, IA (hereafter referred to as DAV-2011 and
DAV-2012, respectively), and 2011 and 2012 in Mount
Vernon, IN (hereafter referred to as MTV-2011 and
MTV-2012). Fifteen kernels per line were planted per row
within a 10 ft plot in each environment. Each block con-
tained five replicates of each parents used as checks. All
experimental plants and checks were artificially inocu-
lated. Checks were used to insure the uniformity of artifi-
cial inoculation. GLS inoculum for the field studies was
prepared as described in [26] with some modifications.
Briefly, Cercospora spores, collected from heavily infested
field grown corn plants, were grown in V8° juice liquid
shake culture with a ten grams per liter base of carboxyl
methyl cellulose (CMC, 90,000 MW). After seven to
twelve days of growth, the liquid culture was diluted with
water at a 1:1 ratio and blended to free spores from the
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balls of stroma, followed by addition of CMC at a ratio of
five grams per liter of the suspension. The solution was fil-
tered and resulted in a final dilution of inoculum diluted
at a ratio of 1:3 with a final concentration of five grams
per liter of CMC. CMC was used to stabilize the suspen-
sion and increase its adhesiveness to the leaf surface in a
non-phytotoxic manner. Liquid inoculum was sprayed
twice onto the whole plant with backpack sprayers. The
first spray was at V8-9 stage, followed with 7-12 day
interval around V11-12 stage. Both applications were
sprayed in the evenings. To ensure successful epidemic,
the first six plants of each plot were left unsprayed to con-
trast with the sprayed plants within the same plot. To
ensure uniform coverage of the whole plant canopy,
60° cone sprayer tip was position roughly a 45° angle
and 18-20 in. above the whorl leaf and each plot was
sprayed by walking up and down at a constant speed
from both sides of the plots. Cercospora inoculum
was not characterized at molecular level to reveal the
content of the fungal population.

Independent field trial was conducted in Sidney (IL) in
2012, where flowering time data were collected from
254 representatives of the Association Panel. Flowering
time data were represented by days to silking (DTS) and
measured as days from planting to silk emergence in
50 % of plants in row (Additional file 2).

Disease rating
Entries in each environment were rated two to three
times: immediately after 50 % of the plants in a row
reached mid silk (female flowering) and three weeks
after entire row reached mid silk. On average, pheno-
typic data were collected 39 and 60 days after the last
inoculation. Depending on the type of GLS resistance,
maize responds differently to the pathogen: rectangular
necrotic lesions are characteristic of susceptible lines,
flecks are indicative of resistance, while chlorotic lesions
with orange or yellow borders/halo are characteristic of
intermediate resistance [1]. Biological weight indices
were assigned to each type of lesion: necrotic lesions —
0.75, chlorotic lesions — 0.20, and flecks — 0.05 so that
the sum of those indices would be equal to 1. These
indices were empirically deduced and developed from
multiple previous field tests (data not shown). The sec-
ond parameter taken into consideration was the percent-
age of infected area of a leaf covered by a predominant
lesion type, rated on a 1 (3-9 % of infected leaf area) to 9
(>89 % of infected leaf area) scale. Lesion type and infec-
tion spread were measured on three leaves per plant: the
leaf directly below the ear, the ear leaf and the leaf dir-
ectly above the ear. To calculate the overall GLS severity
of one plant per rating, the formula below was used:
GLS = [(LTIBE*PLSBE) + (LTIEL*PLSEL) + (LTTAE*PL-
SAE)]/3, where LTI is lesion type index, PLS -
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predominant lesion spread, BE, EL and AE — below ear
leaf, ear level leaf and above ear leaf, respectively. Three
plants per line were evaluated, and phenotypic data were
averaged. The Area Under Disease Progress Curve
(AUDPC) [27] was calculated. AUDPC was calculated
across all environments and used as a trait for QTL
mapping. The lower value of AUDPC corresponds with
the more resistant phenotype.

Statistical analyses
Pairwise Pearson correlation coefficients were calculated
between mean AUDPC values at four environments:
DAV-2011, DAV-2012, MTV-2011, and MTV-2012
using JMP software (version 10; SAS Institute, Gary
NC). Mixed models were run using PROC MIXED in
SAS (version 9.3; SAS Institute, Gary NC) with line,
environment, and environment x line interaction as ran-
dom effects. The significance levels of random effects
were estimated with a type 3 F-test. Using the formula
below, broad sense heritability was calculated based on a
method described by Holland and Nyquist [28].
G
H= 0'123 B O-ZG + ‘Tzﬁ + %
e re

Where 0%, 03, o0& are the variances of genetic lines,
phenotype, genetic by environment, respectively, oz is
residual variance, r is the number of replicates in each
environment, and e is number of environments.

Molecular markers and linkage map construction

DNA was extracted from eight leaf punches using the
MagAttract 96 well DNA kit (QIAGEN, Hilden,
Germany). Both mapping populations were genotyped
by a custom iSelect [Infinium assay, Illumina (San Diego,
CA)], which consisted of 33 K attempted bead types.
The iSelect was composed of SNPs representing 27,494
maize genes (based on B73 RefGen_v2) in a ratio of one
SNP per maize gene. As a result of genotyping, the
DAS-001 x DAS-002 DH population revealed ~7200
polymorphic SNPs. Due to the small size of the mapping
population and physical proximity of many SNPs, big
clusters of co-segregating markers with the same genetic
information were expected. To reduce the number of
markers for genetic linkage analysis, several steps were
undertaken after genetic linkage mapping was carried
out. Polymorphic markers between the parental genomes
were first clustered and initially ordered based on phys-
ical locations on the B73 reference genome (B73
RefGen_v2). Then the segregation patterns of all
markers were explored. Based on the latest order,
markers demonstrating the same segregating pattern as
a neighboring marker were removed from further ana-
lysis. The initial genetic map for each chromosome was
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constructed using the greedy algorithm followed by a rip-
ple function with a window size of six markers. Genetic
distances were determined using the Haldane map func-
tion using functions available in “R\qtl” [29], a package in
the “R” statistical analysis software [30]. The genetic map
was further evaluated for small blocks of markers that had
recombination patterns different than the flanking
markers indicating that the markers were misplaced by
the software. Blocks of three or less markers that had
recombination fractions of 0.15 or greater than markers
flanking the block were identified and removed. This itera-
tive process was considered complete when no additional
markers were removed based on duplicated marker pat-
terns or unusual segregation patterns. Lastly, markers that
were less than 0.2 centimorgan (cM) apart, were also
removed from the genetic map. The final map of 1985
SNP markers, evenly distributed across ten maize chro-
mosomes, was leveraged for QTL mapping.

QTL mapping

Bi-parental approach

In this study, an extended composite interval mapping
(ECIM) model [31] was used for QTL mapping. ECIM is
similar to the composite interval mapping (CIM) model,
which is the basis of the MapQTL software [32], as it
expands the interval mapping (IM) model by including
additional marker covariates. However, in contrast to
CIM, the ECIM model increases the power of QTL
detection through the inclusion of fixed experimental
effects, such as location and year, into the analysis
model. Particularly, in this study, the ECIM model
allowed to incorporate data from all four environments
into one analysis, which would be impossible to do using
the traditional CIM model.

Due to the inclusion of marker and other fixed covariates
within the ECIM model, the likelihood statistics utilized to
obtain the LOD score fails to follow a predictable theoret-
ical distribution. Therefore, the implementation of an
empirical threshold to determine significance was not the-
oretically valid [33, 34]. As a solution, a novel bootstrap
threshold algorithm was utilized, which provided accurate
re-sampling to establish LOD score significance thresholds
for the ECIM ([31]. The bootstrap significance threshold
algorithm is similar to the empirical threshold algorithm
described by Churchill and Doerge [34] as both determine
the maximum LOD score from a genome scan of the re-
sampled data. However, the bootstrap threshold algorithm
differs from the empirical permutation threshold algorithm
as the former generates a new data set based on a boot-
strap re-sampling of the centered residual effects. Residuals
are generated by subtracting the parameter estimates for
the additive, dominance, and covariate effects from the
phenotype. The residuals are then centered at zero by sub-
tracting their mean and these effects are resampled using a
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bootstrap algorithm. The bootstrap resampled pheno-
types are obtained by summing covariate effect esti-
mates to the resampled residuals to generate a null
distribution of the phenotype. In the same process as
the Empirical Threshold, LOD scores are calculated for
each resampled data set for each marker. The maximum
LOD score across the genome for each resampled data set
is collected. From the realized distribution of maximum
LOD scores the value of the maximum LOD score at the
established percentile is utilized as the global LOD thresh-
old [31]. In this study, the global LOD threshold was
established at 3.23.

Genome-wide association study

GWAS was conducted by internally developed SBayes
method. Details of the method are described in Additional
file 3. Briefly, GWAS implemented with this SBayes
method consists of two steps as the statistical model
underlying this method combines noise reduction and
shrinkage of SNP effect components. To decrease noise in
the marker data, supervised principal component analysis
[35] was applied. The second step oversaw the actual
GWAS performed using the Bayes-Crt method [36] which
fitted all markers simultaneously. In SBayes, the signifi-
cance of SNP effects was measured by narrow sense herit-
ability (h?), which was calculated by the formula below:

_ ij (l—p]-> b]g

2 _
h® = 2
p

)

’*cqw | aqm

where phenotypic variance 0120 was estimated by the sam-
ple variance; additive variance was the function of SNP
effect and allele frequency of jth SNP. Heritability as a
measure of significance of a SNP effect in SBayes
method is an equivalent of a p-value in traditional Q/K
model. In order to calculate the significance of a SNP
effect, the heritability values of individual chromosomes
were computed first. Then heritability of every SNP
within a chromosome was identified. The SNPs whose
heritability values were higher than the threshold were
considered as significant. In this study, the significance
threshold was set to 0.3, indicating that only SNPs with
at least 30 % of the maximum heritability of each
chromosome would be picked as significant. In this
study, the length of the support interval (window size)
for each QTL position was set to be 7.5 cM from both
sides of the SNP associated with the QTL, meaning that
within this confidence interval (15 cM) the level of false
positive rate is expected to be low. The SNP effect is the
additive effect of the detected SNP. For any bi-allelic
SNP [A/B], a positive effect suggests that the allele con-
tributing to GLS severity comes from allele A and a
negative effect suggests that the allele contributing to
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GLS severity comes from allele B. GWAS was conducted
using ~25,000 SNP markers with minor allele frequencies
(MAE) > 0.1.

Delimiting QTL intervals based on GWAS

After the completion of genetic linkage mapping and
GWAS, the physical positions of GWAS-detected markers
were superimposed with the location of QTL confidence
intervals identified by genetic linkage mapping. If GWAS
detected marker was physically located under the QTL
confidence interval, it was used as an anchor to delimit the
physical span of QTL interval identified by genetic linkage
analysis. A support interval for each QTL position defined
by GWAS was 7.5 ¢cM from both sides of the SNP markers
associated with the GLS resistance QTL. In GWAS, sup-
port interval assumes that all markers located within that
interval (in this study 15 ¢cM) are significantly associated
with QTL. Subsequently, the physical length of the support
interval was calculated. Based on physical coordinates,
GWAS-detected SNPs were first assigned to chromosomal
bins at the public high resolution IBM2 2008 Neighbors
map at Maize GDB (http://www.maizegdb.org/data_center/
map). Using coordinates of public markers flanking a bin,
physical (in base pair) and genetic (in cM) lengths of a bin
were determined. Subsequently, the physical length of 1 cM
of a bin was calculated. Left and right physical borders
flanking GWAS detected SNP markers were calculated by
the formula [physical position of a SNP +/- (7.5 cM * phys-
ical length of 1 cM of a chromosomal bin)].

Single Donor vs. Elite Panel (SDVEP) method to discover
markers suitable for marker-assisted selection (MAS) of
GLS resistant maize lines

The main concept of the SDVEP method was described
in [37]. Briefly, molecular markers, identified by genetic
linkage mapping or GWAS as closely linked to a trait of
interest are not always informative and accurate in
MAS. Particularly, putative target alleles discriminated
by those markers are not necessarily well conserved in
genotypes carrying those traits, they can be also found
in genotypes that do not possess the target trait. This
might lead to selection of false positives during MAS.
Using the SDVEP method one can mine for alleles within
QTL support interval identified by genetic and/or asso-
ciation mapping which distinguish a donor of a trait of
interest from a large number of lines that do not have
that trait. One of the prerequisites of SDVEP is QTL
mapping and the identification of the physical boundar-
ies of the QTL support interval. The second step is the
development of a panel of lines (hereafter referred to as
Elite Panel) that do not have a target trait. To implement
SDVEP, a single donor of a trait and entire Elite Panel
should be genotyped. Genotyping can be done either
using molecular markers or by sequencing. Whole
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genome sequencing would be ideal for SDVEP but it will
be prohibitively expensive. Genotyping will be followed
by mining alleles within QTL support intervals. The tar-
get alleles are those which discriminate the single donor
of a trait from the members of the Elite Panel. In other
words, SDVEP targets alleles that are conserved in the
donor line only. Molecular markers developed based on
those alleles can be claimed as suitable for MAS of a
target trait.

In this study, the Elite Panel was represented by 109
maize inbred lines, which showed susceptibility to GLS
across all environments. The representatives of the Elite
panel were chosen based on the availability of necrotic
lesions on the above the ear leaves, which indicated the
lack of any resistance to the pathogen. Lines that were
showing chlorotic lesions on the above the ear leaves
were not included into the Elite Panel as they might
contain certain level of resistance to GLS that allowed
them to impede the disease spread. These lines were
part of the Association Panel and also included the GLS
susceptible parent of the DH population (DAS-002). The
single donor of GLS resistance was represented by the
DAS-001 line, one of the parents of the DH population.
Furthermore, genotypic data of SNP markers located
within the GLS resistance QTL support interval were
compared between the single donor (DAS-001) and the
Elite Panel. Several criteria were taken into consideration
while evaluating markers for their usefulness in MAS:
(1) a marker should be located within the QTL support
interval identified by GWAS; (2) a marker should be
polymorphic between the parents of the DH mapping
population (DAS-001 and DAS-002) to enable MAS for
GLS resistance coming from the DAS-001 background;
(3) a GLS resistance allele discriminated by a marker
should be conserved in the DAS-001 genetic back-
ground (as well as other GLS resistant maize lines) and
absent in all GLS susceptible maize lines representing the
Elite Panel. The latter criterion has a potential to reduce
the risk of detecting false positive lines during MAS of
GLS resistant lines. GLS resistant lines which showed no
necrotic lesions on the leaves during the course of experi-
ments were chosen to see whether putative GLS resistance
alleles were also conserved in their genome. Twenty-three
GLS resistant lines were randomly chosen for this panel.

Results

Phenotypic analysis

DH lines representing a bi-parental mapping population
and an entire Association Panel were evaluated for their
reaction to Cercospora in four environments. As expected,
the GLS resistant line DAS-001 showed a high level of
resistance to the disease in all four environments (Fig. 1).
The DAS-002 line was highly susceptible in DAV-2011
and DAV-2012 environments, while in MTV-2011 and
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MTV-2012 it showed moderate susceptibility to the dis-
ease due to hot and dry summers of 2011 and 2012 in
Indiana, which did not favor the development of the infec-
tion (Fig. 1). Nevertheless, the pairwise Pearson correlation
of the GLS Area Under Disease Progress Curve (AUDPC)
in all four environments was highly significant (P < 0.0001)
with correlation coefficients ranging between of 0.45-0.72
(Table 1) indicating that artificial inoculation was efficient
to develop a biologically meaningful phenotype. In all four
environments, the response of the DH population to
disease pressure was continuously distributed, which
suggested that GLS resistance is quantitatively inherited.
Although disease severity distribution was continuous, it
was L-shaped and skewed towards the resistant parent
(Fig. 1). Resistance to GLS in both the DH population and
the Association Panel was indicated to be controlled by
genetic factors as broad sense heritability was 0.792 + 0.044
and 0.804 + 0.020, respectively. The variance components
for all random-effect factors (environment, line, and
environment-line interaction) for GLS severity were signifi-
cantly different from zero (Table 2A, B). This analysis dem-
onstrates that the genetics underlying GLS resistance
substantially contributed to the overall phenotype as the
variation assigned to the environment x line interaction
was much smaller than the variation ascribed to lines.

Detection of GLS resistance QTL using a bi-parental
approach

QTL mapping using a bi-parental approach resulted in
the identification of four chromosomal landmarks asso-
ciated with GLS resistance (Table 3). Three minor and
one major QTL were detected on chromosomes 1, 6, 7,
and 8, respectively. The QTL on chromosome 8
(QTLGLSchr8) explained ~26.5 % of the variation, while
the QTL on chromosomes 1 (QTLGLSchrl), chromosome
6 (QTLGLSchr6), and chromosome 7 (QTLGLSchr7) were
responsible for 4.55 %, 6.85 %, and 523 % of GLS
resistance, respectively. In total, all four identified QTL
explained 43.13 % of GLS resistance in the DAS-001
inbred line (Table 3).

To identify the physical span of the GLS resistance
QTL, sequences of the SNP markers flanking the QTL
confidence intervals were aligned against the maize B73
reference genome (version 2). Due to low resolution of
the DH mapping population, all QTL intervals spanned
large chromosomal regions. For example, QTLGLSchrl
encompassed about a 50 Mb region on chromosome 1,
while QTLGLSchr7 harbored the longest region span-
ning almost 113 Mb (Table 3).

Increasing the resolution within QTL intervals using a
genome wide association study approach

Analysis of the structure of the Association Panel used
in this study shows a sharp increase in the LnP(D) value
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for K = 3, indicating the presence of three possible clusters
(Additional file 4). A similar pattern of clustering into
three major subpopulations was supported by modified
Rogers's distance phylogenetic tree (Additional file 5). The
modified Roger’s distance estimates [38] were calculated
from ~25000 SNP loci across genome. In the phylogenetic
tree, three major sub-populations represented by stiff
stalk, non-stiff stalk, and tropical maize inbred lines were
observed (Additional file 5).

As the Association Panel included many GLS resistant
lines with different genetic backgrounds (Additional file 1),
it was expected that GWAS would identify many putative
GLS resistance QTL. However, the focus of this study was
those loci that fell within the confidence interval of GLS re-
sistance QTL identified through the bi-parental approach.
QTL located on chromosomes different from 1, 6, 7, and 8
as well as QTL which were detected on chromosomes
1, 6, 7, and 8 but were located outside of the confidence
interval defined by genetic linkage analysis were not

Table 1 Pearson correlation coefficients between AUDPCs for
GLS among four environments

Environment  DAV-2011 DAV-2012 MTV-201 MTV-2012
DAV-2011 1.00 r=0.59 r=068 r=065
(P<0.0001) (P<0.0001) (P<0.0001)
DAV-2012 - 1.00 r=045 r=072
(P<0.0001)  (P<0.0001)
MTV-2011 - - 1.00 r=0.60
(P <0.0001)
MTV-2012 - - - 1.00

further considered. Those QTL were considered to be
originated from a genetic background different from
DAS-001.

On chromosomes 1, 6, 7, and 8, GWAS detected 13
GLS resistance QTL; 17 SNPs were associated with
those QTL (Table 4). On chromosome 1, GWAS identi-
fied two SNP markers associated with a GLS resistance
QTL, which were located in the 1.02 (QTL1.1) and 1.08
(QTL1.2) bins (Table 4). The position of QTLI1.1 was
outside of the confidence interval of QTLGLSchrl
identified in the DH population (Table 3) and, therefore,
was not a focus of this study. Meanwhile, the physical
position of SNP marker PZE-101188909 associated with

Table 2 Analysis of variance component estimates (Var),
standard errors (Std error), and P values of random effects in
mixed models for GLS resistance across all environments for the
DAS-001 x DAS-002 DH population (A) and Association Panel (B)

A

Random Effect Var Std Error P value
Environment 57.23 59.09 <0.0001
Line 28323 62.57 <0.0001
Line x Environment 154.84 26.01 <0.0001
Residual 186.74 10.77

B.

Random Effect Var Std Error P value
Environment 33135 24724 <0.0001
Line 87947 84.71 <0.0001
Line x Environment 379.72 3359 <0.0001
Residual 48161 1424
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Table 3 Gray leaf spot resistance quantitative trait loci detected by bi-parental approach using double haploid population

Name Chr Bins® QTL confidence interval, bp LODP R’ Additive
Left border Right border Effect”
QTLGLSchr1 1 1.07-1.09 211,331,752 263,220,725 4724933 0.045507 0.045507
QTLGLSchré 6 6.01-6.04 26,909,746 120,538,443 6.9741 0.06859 3211692
QTLGLSchr7 7 7.01-7.02 11,570,701 124,949,426 5.2492 0.052803 2417346
QTLGLSchr8 8 8.02-8.04 14,069,105 118971618 22.83246 0.265049 105.1474

@Chromosomal bins were determined by the comparison of physical positions of markers flanking QTL confidence intervals and markers flanking bins in the high-resolution
public map IBM2 2008 Neighbors at Maize GDB (http://www.maizegdb.org/data_center/map)

bSignificant LOD threshold was set at 3.23
“Alleles contributed by the Susceptible (—) and Resistant (+) parent

QTL1.2 fell within the QTLGLSchrl confidence interval
(Tables 3 and 4) suggesting that QTL1.2 and QTLGLSchrI
might represent the same GLS-resistance locus. Conse-
quently, PZE-101188909 (Table 4) was used as an anchor
marker to delimit the physical location of QTLGLSchrl.
PZE-101188909 was located in bin 1.08 where the physical
length of 1 cM was calculated to be 239,215 bp (Additional
file 6). It was identified that the interval supporting QTL1.2
was about 1,794,113 bp (7.5 ¢cM * 239,215 bp) from both
side of the SNP marker. Consequently, the physical bound-
aries of QTLGLSchrl were delimited to a ~3.58 Mbp
(232,515,087-236,103,313 bp) region within the 1.08 bin on
maize chromosome 1 (Additional file 6), which was signifi-
cantly reduced compared to the 52 Mb QTLGLSchrl inter-
val identified by the bi-parental approach (Table 3). Seven
flowering time (DTS) QTL were detected on chromosome
1. However, none of them were located within the confi-
dence interval of QTLGLSchrl (Table 4).

On chromosome 6, GWAS detected four GLS resist-
ance QTL. Two of them were located in bin 6.04 (QTL6.1
and QTL6.2), while the other pair was located in bin 6.06
(QTL6.3 and QTL6.4) (Table 4). However, only QTL6.1
actually resided within the confidence interval of
QTLGLSchré6 identified in the DH mapping population,
suggesting that both QTL6.1 and QTLGLSchr6 represent
the same GLS resistance locus. QTL6.1 was tagged by
SNP marker PZE-106058730 (Tables 3 and 4). In bin 6.04,
the physical length of 1 c¢cM was estimated to be
244,961 bp (Additional file 6). Thus, the interval support-
ing the bin 6.04 QTL was about 1,837,208 bp (7.5 cM *
244,961 bp) from both side of the SNP marker. Conse-
quently, the physical boundaries of QTLGLSchr6 were
delimited to a ~ 3.66 Mb (105,638,746-109,323,162) region
within the 6.04 bin on maize chromosome 6 compared to
the 83 Mb interval identified in the DH mapping popula-
tion. Two DTS QTL were discovered on chromosome 6,
and none of them were located within the confidence
interval of QTLGLSchr6 (Table 4).

On the chromosome 7, GWAS discovered two QTL
that resided in bins 7.00 and 7.02 and were designated
as QTL7.1 and QTL7.2, respectively (Table 4). Out of

two loci, QTL7.2 fell under the QTLGLSchr7 interval
identified in the DH mapping population (Tables 3 and 4).
SNP marker PZE-107020739 associated with QTL7.2
served as an anchor landmark to delimit the confidence
interval for QTLGLSchr7. In bin 7.02, a physical length of
1 cM was calculated to be 692,214 bp (Additional file 6).
Subsequently, the QTL7.2 support interval was estimated
to be 5,191,605 bp from both sides of the marker. Thus,
physical boundaries of QTLGLSchr7 were delimited to a
~10.3 Mb (14,308,967-24,692,177 bp) region within bin
7.02 on maize chromosome 7 and significantly reduced as
compared to the ~113 Mb QTLGLSchr7 interval identified
in the DH mapping population. However, while mapping
DTS QTL, the same marker, PZE-107020739 was associ-
ated with flowering time QTL, DTS_7.2 (Table 4). This
finding indicates that QTLGLSchr7 might be either flower-
ing time QTL or this locus contains co-segregating GLS
and DTS QTL.

In chromosome 8, GWAS revealed five GLS resistance
QTL designated as QTL8.1, QTL8.2, QTL8.3, QTL8.4,
and QTLS8.5 (Table 4). QTLS8.2 and QTL8.3 were located
in bins 8.02 and 8.03, respectively, and within the
QTLGLSchr8 confidence interval. This finding suggests
that QTLGLSchr8, which was thought to be a one major
QTL based on genetic linkage analysis, most likely was
represented by two QTL with lesser effects, further des-
ignated as QTLGLSchr8a (QTL8.2) and QTLGLSchr8b
(QTLS8.3) (Table 4). Two SNP markers, PZE-108020413
and PZE-108022710, are associated with QTLGLSchr8a
(Table 4). Taking into account their physical positions as
well as physical length of 1 c¢cM in bin 8.02, the
QTLGLSchr8a was estimated to span about a 6 Mb
region (18,198,319-23,105,913) (Additional file 6).
QTLGLSchr8b was calculated to span an approximately
19 Mb region within the 8.03 bin (73,871,364-
92,953,180 bp) (Additional file 6). Thus, on chromosome
8 GWAS increased the resolution within the 104 Mb
confidence interval of QTLGLSchr8, and allowed to
dissect two loci with 6 and 19 Mb in length. No DTS
QTL were identified within the QTLGLSchr8a and
QTLGLSchr8b confidence intervals (Table 4).
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Table 4 SNP markers associated with GLS resistance and days to silking (DTS) QTL identified by genome-wide association study

Chr GWAS  Bi-parental ~ Bins Marker associated Source of  Minor allele  Physical SNP effects  Heritability =~ Maximum heritability
QTL counterpart VQV‘IFF GLS resistance variation®  frequency  coordinate of a SNPP of a chromosome
1 DTS_1.1 1.01- GLS-SNP-5365 [T/G] 0.30 12,255,366 0.07989852 0.001049039 0.003070336
1.02
1T GLS1.I 1.02  GLS-SNP-1590 (1/q 043 15,354,490 —0.01960145 0.003070336 0.003070336
1 DTS_1.2 1.02  GLS-SNP-0156 [1/q 042 22,510,157 0.04407421 0.003070336 0.003070336
1 DTS_13 1.03  GLS-SNP-0538 [A/G] 023 35460539  0.04052954 0.003070336 0.003070336
1 DIS_14 1.03  PZE-101061225 (G/T] 0.12 45,115,245 004252824 0.003070336 0.003070336
1 DTS_1.5 1.03  GLS-SNP-2651 [A/G] 0.32 48,092,652 041783421 0.003070336 0.003070336
1 DIS_16 1.05 GLS-SNP-2138 [/ 046 101,832,139 043211445 0.003070336 0.003070336
1 DTS_17 1.07  GLS-SNP-5094 [A/C] 049 203,245,095 —0.69856342 0.003070336 0.003070336
1 GLS 1.2 QTLGLSchr1  1.08 PZE-101188909 (A/G] 0.23 234,309,200 —0.01785890 0.001971469 0.003070336
6 GLS61 QTLGLSchr6 604 PZE-106058730 [A/G] 034 107,475,955 —0.00632726 0.000293801 0.00093559
6 GLS62 6.04 PZE-106066216 (1/q 042 118304229 0.01101481 0.000935590 0.00093559
6 DTS_6.1 6.05 Mo17-10397 [1/q 041 151,787,329  0.04365824 0.000243429 0.00093559
6 GLS63 6.05 PZE-106100504 (1/cl 032 153,414,853 0.00639998 0.000282006 0.00093559
6 DTS_6.2 6.06 GLS-SNP-4138 [A/C] 045 155,634,139  0.06046048 0.000701479 0.00093559
6 GLS64 6.06 MAGI_11553-2 (1/G] 0.37 156,981,627  0.00610662 0.000281211 0.00093559
7 DTS_7.1 700 PZE-107000932 [1/q 0.50 1,121,016 —0.00193525 0.000617793 0.000660398
7 GLS71 7.00 PZE-107004786 (1/d 040 3,074,900 0.00916059 0.000660398 0.000660398
7 GLS72 QILGLSchr7  7.02 PZE-107020739 (G/A] 0.37 19,500,572 —0.00603602 0.000265353 0.000660398
7  DIS_72 7.02  PZE-107020739 [G/A] 037 19,500,572 0.00248297 0.000107170 0.000660398
7 DIS_73 702 PZE-107083430 (/1] 023 125,687,825  0.00226143 0.000585325 0.000660398
7 DTS_74 703 PZE-107094672 [A/G] 04 144,404,803 —0.00229674 0.000599634 0.000660398
7 DIS_75 7.03  PZE-107099659 [/ 032 154,472,118  0.00345513 0.002230712 0.000660398
8 @GLS8i 801 GLS-SNP-7688 (A/G] 0.26 6,253,558  —0.00608691 0.000242320 0.000585845
8 GLS82 QTLGLSchr8a 8.02 PZE-108020413 1/ 048 19,550,800 0.00468907 0.000177343 0.000585845
8 802 PZE-108022710 [1/G] 043 21,753432  0.00584096 0.000269140 0.000585845
8 GLS83 QTLGLSchr8b 8.03 PZE-108047250 1/a 046 79,142,282  —0.00521772 0.000218764 0.000585845
8 803 PZE-108050268 [(A/T] 0.10 87,682,262 0.00806870 0.000204892 0.000585845
8 GLS84 8.05- GLS-SNP-1344 [A/G] 030 154,247,344 —0.00922446 0.000585845 0.000585845
8.06
8 8.05- PZE-108098666 (1/a 023 155,016,277 —0.00709668 0.000296117 0.000585845
8.06
8 8.05- PZE-108098682 (A/G] 0.22 155,029,958 —0.00890310 0.000450864 0.000585845
8.06
8 GLS85 8.05- PZE-108101351 A/ 0.13 157,169,975 —0.01000713 0.000374213 0.000585845
8.06
8 DTS_7.1 8.05- GLS-SNP-8600 [1/@] 0.25 145,906,568 —0.00301422 0.000131115 0.000585845
8.06
8 DTS_72 806 PZE-108109056 [(A/C] 0.31 162,535,081  0.00382457 0.000270955 0.000585845
8 DTS_7.3 806 GLS-SNP-6472 /A 0.38 162,586,473 000290281 0.000154292 0.000585845
8 DTS_74 806 GLS-SNP-8795 [T/G] 045 163,616,966 —0.00209331 0.000435068 0.000585845

2Underlined allele is associated with GLS resistance
BIn this study the significance threshold was set to 0.3, indicating that only SNPs with at least 30 % of the maximum heritability of each chromosome would be
picked as significant
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Discovery of SNP markers suitable for marker-assisted
selection (MAS) of GLS resistance resulting from DAS-001
background

As GWAS was implemented with a limited number of
SNPs (~25,000), not all polymorphisms existing between
the members of the Association Panel were expected to
be captured. Therefore, in this study, SNP markers that
were associated with GLS resistance QTL were not con-
sidered in the context of putative causative mutations.
However, as GWAS dramatically increased the reso-
lution within GLS resistance QTL confidence intervals,
further research was done to evaluate the usefulness of
GWAS-detected SNP markers in MAS for GLS resist-
ance resulting from a genetic background of DAS-001
and lines representing a similar source of resistance.
Criteria to evaluate markers for their usefulness in MAS
were described in the Methods section. SNP markers,
which were associated with GLS resistance QTL based on
GWAS were evaluated first. If GWAS-detected SNPs did
not meet the criteria described in the Methods section,
other SNPs within the support interval of QTLGLSchrl,
QTLGLSchr6, QTLGLSchr8a, and QTLGLSchr8b were
evaluated for their ability to track these QTL. No further
actions were undertaken in this regards related to
QTLGLSchr7 as it was not clear whether this was a flower-
ing time QTL or co-segregating with the former GLS
resistance QTL. Any molecular marker linked to this
locus would track both QTL and obscure the results of
MAS.

The PZE-101188909 marker was revealed by GWAS
to be associated with the QTLGLSchr1 region. This SNP
was also polymorphic between the parents of the DH
mapping population. SDVEP analysis showed that the
putative GLS resistance allele that was discriminated by
the PZE-101188909 marker was well conserved in the
DAS-001 genetic background and absent in the genetics
of the 109 GLS susceptible lines (Additional file 7A). An
interval of 3.59 Mb supporting QTLGLSchrl harbored
16 more markers that were polymorphic between the
parents of the DH population. However, PZE-101188909
was the only SNP that fully met all criteria of a marker
to track QTLGLSchrl region. Allele mining demon-
strated that a putative GLS resistance allele discrimi-
nated by PZE-101188909 was present in 13 more GLS
resistant maize lines representing the Association Panel
(Additional file 7B).

The PZE-106058730 SNP was identified by GWAS as
a marker associated with QTLGLSchr6. However, this
marker was monomorphic among the parents of the DH
population. The interval supporting QTLGLSchr6 was
further evaluated for the presence of informative
markers. A DNA segment of~3.67 Mb supporting
QTLGLSchr6 was landmarked by 59 SNP markers. How-
ever, only nine markers were polymorphic between
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DAS-001 and DAS-002. Unfortunately, none of the poly-
morphic markers clearly discriminated DAS-001 from
the panel of GLS susceptible lines. The putative resistant
alleles coming from DAS-001 genetics were also detected
in many GLS susceptible lines. Thus, no informative
marker was identified for QTLGLSchré.

In the previous section, it was shown that two SNP
markers, PZE-108020413 and PZE-108022710, were
associated with QTLGLSchr8a. PZE-108020413 was
monomorphic between the parents of the DH popula-
tion, while PZE-108022710 was polymorphic between
DAS-001 and DAS-002 but it did not meet SDVEP cri-
terion. The segment of chromosome 8 that possessed
QTLGLSchr8a (~4.9 Mb region) was landmarked by 80
markers, out of which 30 were polymorphic between DAS-
001 and DAS-002. SDVEP revealed that only one SNP out
of 30 polymorphic markers, PZE-108022834, clearly differ-
entiated DAS-001 from the panel of susceptible lines
(Additional file 7C). The PZE-108022834 marker was
located only ~60 kb away from the GWAS-detected PZE-
108022710 SNP. Thus, the PZE-108022834 marker was
declared as a marker useful for tracking QTLGLSchr8a.
This marker was also informative for 11 more GLS resist-
ant maize inbred lines (Additional file 7D).

Two markers, PZE-108047250 and PZE-108050268,
were identified to be associated with GLS resistance locus
QTLGLSchr8b. However, only PZE-108050268 was poly-
morphic between DAS-001 and DAS-002. Moreover, the
GLS resistant allele discriminated by this marker was
conserved within DAS-001 genetic background and not
revealed among GLS susceptible lines (Additional file 7E).
Thus, PZE-108050268 was considered as a marker
suitable for MAS of lines with QTLGLSchr8b. PZE-
108050268 was also informative for nine more GLS
resistant maize inbred lines (Additional file 7F). Infor-
mation about MAS-suitable markers associated with
GLS resistance is summarized in the Table 5.

Discussion

Phenotypic data

The two years of phenotypic data for the GLS resistance
QTL mapping study (2011 and 2012) from Mount Vernon,
IN and Davenport, IA had similar patterns: the humid and
relatively hot summer of 2011 was followed by the
extremely dry and hot summer of 2012. Based on the reac-
tion of the GLS susceptible line, DAS-002, to Cercospora
in 2011 and 2012, Davenport was a more favorable envir-
onment for disease development than Mount Vernon
(Fig. 1). This can be explained by the geographical location
of the lot where the DH mapping population and Associ-
ation Panel were tested. In Davenport, the field is located
within a valley, which accumulates a large amount of
morning dew and creates favorable conditions for the
development of the fungus. In 2012, due to severe drought
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Table 5 List of SNP markers associated with GLS resistance and informative in marker-assisted selection

QTL Name  SNP marker name  Sequence with the source of variation® MAF®  Physical
position

QTLGLSchr1  PZE-101188909 TTCAGGGTGCTGATTTA CCGGGCAGTAATCTCGAACATGGAAAAGIA/ 023 234,309,200
GITTTATTTGAGCAGGAATCCTACAGCCAAAACCATTCTGGAGCTTGTACGA

QTLGLSchr6 none

QTLGLSchr8a PZE-108022834 CGCCGATGGATGGATAGACAGCAAATTCCGGTGAGCACATCGATCCGTTTT/ 026  21,810604
CIATTCCATGCGCCGATCGATGCATATAGGTGCATGAAAACTTAATTACTCA

QTLGLSchr8b  PZE-108050268 AAAGCCAGCATACCAGTAGCACTAGTGAGTTAACCCCCCTGAAATTCTGCIA/ 009 87,682,262

TIGCAGCAGCAGTCTGGATCGCAGTCACCATGTCACCAGCCACCAGGGCATC

@Context sequence from which Infinium assay was designed. Single nucleotide polymorphism is shown in square brackets with putative GLS resistance allele
underlined and bolded. Oligos for Infinium assay design were not included as they would always be de novo designed for any new order

PMinor allele frequency

and heat in Indiana, the development of Cercospora in
Mount Vernon was suppressed (Fig. 1). However, despite
the differences in weather conditions of 2011 and 2012, in
all four environments the distribution of GLS resistance
was continuous, L-shaped, and skewed towards the resist-
ant parent (Fig. 1). The observed continuous distribution
of GLS resistance indicates a quantitative nature of inherit-
ance. However, the L-shaped, or gamma, distribution of
GLS resistance in our experiments did not exactly align
well with previously reported observations, where a normal
distribution of this trait prevailed [7, 16, 39—-41]. A gamma
distribution of a trait controlled by QTL was previously
reported in Drosophila [42] and cattle [43]. It is believed
that gamma distributions are a characteristic of a trait that
has many small effects QTL but few loci causing most of
the genetic variation. On the other hand, a gamma distri-
bution of GLS resistance in our experiment could be
caused by the small size of the population [44] and rela-
tively low disease pressure. In our study, heritability of
GLS-resistance was calculated to be 0.792 + 0.044, which
was in correspondence with previous reports [16, 40].
While collecting phenotypic data, we observed the
differences in disease manifestation among genotypes
in terms of the predominant type of lesions affecting
the leaves and the rate at which disease progressed ver-
tically within a plant. To reflect those differences and
conduct accurate phenotyping we developed a data
collection methodology which would carry as much
biological meaning as possible. Most GLS severity scoring
methods take into consideration the area of a leaf affected
by disease and assign scores from 1 (symptomless) to 9
(dead) [16, 40]. However, this disease rating does not take
into consideration the type of predominant lesions that
covers a leaf. For instance, if leaves of genotypes A and B
are 50 % affected by elongated rectangular necrotic and
chlorotic lesions, respectively, then the conventional
disease rating method will assign “seven” to both geno-
types. However, there is obvious biological difference
between plants A and B as a rectangular necrotic lesion is
an indicator of complete susceptibility as it produces a
large amount of conidia, while a chlorotic lesion produces

few conidia [45], which is an indicator of moderate resist-
ance to GLS. To reflect this difference in our phenotyping
methodology, we assigned weighted indices to each type
of lesion (see Methods section). The rate at which GLS is
spreading vertically across the plant was also taken into
consideration. Even if two plants are affected by the same
type of lesion, the rate at which those lesions spread
towards the leaf above the ear indicates the difference in
GLS resistance among those two plants. To address this
component of the reaction of maize to GLS, we evaluated
three leaves within a plant, namely, leaf below ear, ear leaf
and leaf above ear, which gave us a very good picture of
disease spread dynamics. Ear leaf and leaf above ear were
also evaluated for GLS severity at Zwonitzer et al. [15].

QTL mapping using combined bi-parental and GWAS
approaches

With genetic linkage mapping we discovered four GLS re-
sistance QTL, three QTL with minor effects (QTLGLSchrl,
QTLGLSchr6, and QTLGLSchr7) and one major QTL
(QTLGLSchr8). In our experiments, the confidence inter-
vals of GLS resistance QTL discovered by genetic linkage
analysis were large, which was expected taking into account
the small size of the bi-parental mapping population. To
increase the resolution within the confidence intervals, we
implemented GWAS simultaneously with bi-parental QTL
mapping. GWAS is known to have high resolution power
due to historical recombination events accumulated within
an association panel [46]. In this study, we took advantages
of both QTL discovery methods, namely high detection
power of the bi-parental approach and high resolution
power of GWAS to robustly identify GLS resistance QTL.
Remarkably, GWAS drastically increased the resolution
within the confidence intervals of GLS resistance QTL. In
case of QTLGLSchrl, QTLGLSchr6, and QTLGLSchr7 the
resolution was increased ~14, ~23 and ~10 fold, respect-
ively. In addition, GWAS revealed that QTLGLSchr8, which
was claimed as a locus with major effect based on genetic
linkage mapping, was likely to consist of two QTL. Major
QTL fractionation was also previously reported in maize
and tomato [13, 47, 48]. Thus, the combination of bi-
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parental and GWAS approaches helped us to further
refine the GLS resistance loci to an extent that it
became possible to separate the effects of two co-
segregating QTL (on chromosome 8), which normally
is recommended to be carried out through the painfully
long and expensive process of developing near isogenic
lines (QTL-NILs) [13, 49]. However, we also have to state
that this methodology is not designed to identify causative
mutations underlying GLS resistance. Although GWAS is
a great tool to identify molecular markers linked to QTL,
the analysis is primarily based on molecular markers with
higher minor allele frequencies as the removal of rare
alleles is a choice to reduce the number of false-positive
QTL [50]. However, studies showed that most phenotypic
variations are due to rare alleles, suggesting the import-
ance of these rare alleles in tagging biologically meaningful
associations [51]. In order to further mine GLS resistance
QTL intervals identified and refined in this study and dis-
cover causative mutations, fine mapping and gene cloning
coupled with functional genomics studies are needed.

Novel GLS resistance QTL

To confirm whether we identified novel GLS resistance
QTL, comparative analysis of the physical positions of
previously reported QTL with loci identified in this study
was conducted. As GLS symptoms rapidly manifest during
flowering time [16], we also carried out GWAS analysis of
DTS to see whether any GLS QTL coincides with DTS
QTL. Surprisingly, on chromosome 7 GLS resistance QTL
(QTLGLSchr7) co-localizes with DTS QTL (Table 4).
Based on this research it is still premature to claim that
chromosome 7 does not contain GLS resistance QTL and
instead it harbors flowering time QTL as both QTL might
co-segregate. Several studies also mapped GLS resistance
QTL to this region and did not find any co-localized flower-
ing time QTL [13, 16], although they collected days-to-
anthesis as a flowering time data while we used days to silk-
ing. Further fine mapping of the region is needed to confirm
whether locus contains both GLS and DTS QTL or the lat-
ter only. Remaining four GLS resistance QTL, QTLGLSchrl1,
QTLGLSchr6, QTLGLSchr8a, and QTLGLSchr8b did not
show any co-localization with DTS QTL.

Chromosome 1 appears to be one of the hubs of GLS
resistance QTL as ten out of 13 bins on the chromosome
have a QTL mapped by various researchers (Table 6). In
our study, QTLGLSchrl is located in bin 1.08. The only
QTL that has been mapped so far onto bin 1.08 was
described by Zwonitzer et al. [15] (Table 6). Comparison of
physical boundaries of the above-mentioned QTL and
QTLGLSchrl1 confirmed that they did not overlap but were
very close to each other (Table 6). In fact, the confidence
interval of GLS resistance QTL discovered by Zwonitzer
et al. [15] goes towards bin 1.09, while QTLGLSchrI
resides at the distal portion of bin 1.08. Based on the
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unique physical position of QTLGLSchrl only, one can
argue that this GLS resistance QTL is novel. However, tak-
ing into account that Zwonitzer et al. [15] mapped GLS re-
sistance QTL using a small RIL population and have never
done fine mapping, the position of their bin 1.08 QTL
might not be as accurate as the location of QTLGLSchrI.
Consequently, there is a probability that QTLGLSchrl is
basically the same QTL that Zwonitzer et al. [15] discov-
ered but with a more refined position.

QTLGLSchr6, mapped to the chromosome 6 bin 6.04,
does not appear to be novel GLS resistance QTL as its
position overlaps with previously reported QTL on chro-
mosomes 6 [13, 39] (Table 6). However, compared to
GLS resistance QTL described by Clements et al. [39]
and Benson et al. [13], QTLGLSchr6 was delimited to
much smaller segments of the chromosome 6 .

Chromosome 8 is another harbor for GLS resistance
QTL as they were previously mapped to five out of eight
bins (Table 6). The majority of studies mapped GLS
resistance QTL to chromosomal bins 8.05 and 8.06,
which span a 130-175 Mbp region on chromosome 8
[10, 12, 15, 16, 39, 41] (Table 6). Recently, a research
group from the National Maize Improvement Center of
China discovered major GLS resistance QTL on chromo-
some 8. Their initial mapping efforts using a small popula-
tion resulted in the discovery of GLS resistance QTL in
bins 8.01-8.03 (three environments) and 8.02-8.05 (one
environment) [40]. However, Zhang et al. [40] declared
that the location of GLS resistance QTL in 8.02-8.05 was
possibly wrong due to inaccurate phenotyping. They went
further and implemented fine mapping. As a result, they
narrowed down the location of GLS resistance QTL on
chromosome 8 to a 1.4 Mb interval, which spanned a re-
gion spanning 8,616,802-10,074,106 bp (bin 8.01). Inter-
estingly, with the bi-parental mapping approach, we also
mapped QTLGLSchr8 (Table 3) to the bins 8.02-8.04,
which was consistent with Zhang et al. [40]. However, our
combined genetic linkage and GWAS efforts suggested
the presence of two rather than one major QTL,
QTLGLSchr8a and QTLGLSchr8b, in the region encom-
passing bins 8.02-8.04. Based on GWAS, QTLGLSchr8a
and QTLGLSchr8b were mapped to bins 8.02 and 8.03, re-
spectively. Recently Benson et al. [13] reported new GLS
resistance QTL mapped to 8.03 bin too (Table 6). No GLS
resistance QTL has been previously reported to be mapped
to the bin 8.02, which suggests that QTLGLSchr8a might
be a novel locus controlling GLS resistance.

SDVEP a novel method to discover molecular markers
effective in MAS

In GWAS experiments, molecular markers significantly
associated with QTL are suggested to be closely linked
to causative mutations or gene candidates [52—54]. Also,
they were claimed as excellent tools for MAS [52—54].
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Table 6 Comparison of locations of GLS resistance QTL identified in this and previous studies
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Chr  Bin Flanking markers Physical distance between flanking markers Mapping method Reference
(bi-parental approach)/
a marker (GWAS)
1 1.01 SYN20881 11,914,709 GWAS [52]
1.02 PZB01957.1 22,892,866-28,421,841 NAM (joint linkage mapping)  [13]
1.04 PHM5098.25 56,747,253-83,780,725 NAM (joint linkage mapping)  [13]
1.04-1.06  asg30°-bnl5.59° (60,090,292 - 60,678,227) - (183,804,477-183,817,286) Bi-parental [17]
1.05 asg3®-umc1515° (77,240,735-83,433,335) — (97,880,433-103,311,831) Bi-parental [16]
1.05 PZE-101097594 90,945,315 GWAS [52]
1.05 PZE-101101408 97,337,186 GWAS [52]
1.05 bmc1811° 82,574,898- 175,642,920 Bi-parental [41]
1.05-1.06  PZA01041.1bnlg1057° 129,815,592 - (189,086,513 - 191,089,356) Bi-parental [15]
1.06 CSuU3* -Csu61® (82,574,898- 82,577,349) Bi-parental [39]
(180,716,274- 181,194,957)
1.06 CSU92% -bnl5.59° (183,804,477 - 183,817,286) — (183,804,477 - 183,817,286)  Bi-parental [10]
1.06 PHM1968.22 161,027,952-208,733,347 NAM (joint linkage mapping)  [13]
1.07 bmc1025° 199,107,718-228,644,352 Bi-parental [41]
1.08 TIDP5276¢ — Bz2-2¢ 232,515,087 - 236,103,313 Bi-parental/GWAS This study
108-1.09  Bz2.29-PHM14475.7 241,373,004 - 257,186,738 Bi-parental [15]
1.10 umc147b 280,774,747-282,021,034 Bi-parental [12]
1.09-1.11  bnlg17207 -umc15007 (274,709,266-283,188,769) - (283,188,067-287,148,444) Bi-parental [40]
6 6.00 PZE-106000325 702,334 GWAS [52]
6.02-6.04 PZA00214.1 86,257,528-113,885,960 NAM (joint linkage mapping)  [13]
6.02-605 Npi1373°-umc46° (71,014,931 - 97,108,931) - (143,466,865-144,383,248) Bi-parental [39]
6.04-6.05 PZA02673.1 118,087,791-147,224,252 NAM (joint linkage mapping)  [13]
6.04 Idp4869 d — umc1857¢ 105,638,745 - 109,323,163 Bi-parental/GWAS This study
6.05 PZE-106073523 129,373,812 GWAS [52]
SYN26162 146,548,071
6.06-6.07 Umc1423 153,804,114 — 169,184,492 Bi-parental [12]
Umc36°
7 7.02 asg34® — umc116° (14,027,268-14,618,739)-(127,094,683-130,251,052) Bi-parental [39]
7.02 Umc1393 118,052,274 — 120,761,437 Bi-parental [12]
7.02 TIDP5499° - crt2* 14,308,967 - 24,692,177 Bi-parental/GWAS This study
7.02 bnlg3987 -bnlg657° (21,547,438-23,542,864)-(129,109,884-129,237,926) Bi-parental [16]
7.02 PZE-107040293 67,970,430 GWAS [52]
PZE-107040370 68,121,109
7.02 phm4818.15° — pza00132.17¢  31,773,571-79,009,472 Bi-parental [15]
7.02-703 PZA00986.1 13,174,365-142,783,202 NAM (joint linkage mapping)  [13]
7.02-7.03  bnlg1808 129,908,091 Bi-parental [12]
bnl15.21 132,550,575
703 PZE-107086511 136,155,325 GWAS [52]
SYN38495 141,187,793
7.03 SYN34849 152,695,327 GWAS [52]
703-7.04 umc111(psy3)® -asg32° (143,407,361-147,088,644)-(157,471,090-158,238,561) Bi-parental [39]
703 bmc1305° 129,865,901 - 156,132,738 Bi-parental [41]
8 8.01 SYN10053 1,816,317 GWAS [52]
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Table 6 Comparison of locations of GLS resistance QTL identified in this and previous studies (Continued)

8.01 GZ204°-IDP5¢ 8,616,802 - 10,074,106 Bi-parental [40]
8.02 Umc19749 -TIDP8777¢ 18,198,319 - 23,105,913 Bi-parental/GWAS This study
8.03 PZA01470.1 23,769,876-101,178,933 NAM (joint linkage mapping)  [13]
8.03 PZE-108028005 28,557,135 GWAS [52]
8.03 IDP8925¢ -TIDP2787¢ 73,871,364 - 92,953,180 Bi-parental/GWAS This study
8.05 PZE-108075552 129,767,067 GWAS [52]
8.05 ufg80® -bnlge66? (130,740,118-131,241,328)-(133,561,516-133,936,736) Bi-parental [16]
8.05 umc89? -csu31® (135,953,318-136,041,040)-(142,142,542-160,300,237) Bi-parental [39]
8.06 PZA03651.1 135,091,499-156,907,035 NAM (joint linkage mapping) [13]
8.06 PZE-108108866 160,936,029 GWAS [52]
8.06 umc117? -umc216(ald2)® (162,531,179-162,630,591)-(163,307,256-163,309,969) Bi-parental [10]
808 Dupssr14¢ ~phm14046.9° (171,763,860-171,763,964)-175,362,738 Bi-parental [15]

Precise physical position of a marker was not provided at IBM2 2008 Neighbors genetic map. Instead, MaizeGDB suggests chromosomal interval where this

marker could be located (http://www.maizegdb.org/data_center/map)

PPhysical position of the marker was impossible to identify as the sequence information of the marker used in the study was not provided by authors. Instead, the

physical borders of a bin where marker was reported to be located were provided

“Physical position of the marker was precisely identified based on sequence information of the context sequence leveraged from

http://www.panzea.org/#!data/cyci

dPhysical boundaries of QTL identified in this study were shown by public markers whose positions were very close to proprietary markers used to map GLS

resistance QTL in this study

€Physical position of the markers were determined by the aligning sequences of PCR primers of flanking markers provided in the paper
fPhysical position of the marker was determined by the aligning its sequences of PCR primers provided at Maize GDB

In this study we observed that molecular markers signifi-
cantly associated with GLS resistance QTL not always
discriminated alleles that were well conserved in GLS
resistant lines and absent in susceptible germplasm. In
fact, putative GLS resistant alleles discriminated by SNP
markers, associated with QTLGLSchr6 and QTLGLSchr8b,
were observed in susceptible genotypes too. This could be
partially attributed to the fact that we carried out GWAS
with a panel of several thousand generic SNPs that did
not represent all polymorphisms available among the lines
of Association Panel. A second reason could be that we
discarded rare SNPs with minor allele frequencies <0.1 to
enable GWAS. In human genetics the rare variants were
proven to play an important role in controlling complex
traits [55]. Although the purpose of this paper was not to
discover the causative mutations controlling GLS resist-
ance, we applied a novel method, SDVEP, to identify struc-
tural mutations, particularly SNPs, within GLS resistance
QTL support interval that were well conserved in the
donor of the trait (DAS-001 line) and absent in a large
number of samples that do not have that trait. SNP
markers discriminating those structural mutations would
be considered suitable for MAS of GLS resistant lines.
Using SDVEP we tested all SNP markers, including those
with <0.1 MAF, located within a QTL confidence inter-
val. SDVEP demonstrated that out of six markers
linked to QTLGLSchril, QTLGLSchr6, QTLGLSchr8a,
and QTLGLSchr8b (Table 4) only two (PZE-101188909
linked to QTLGLSchrl and PZE-108050268 linked to
QTLGLSchr8a) were proven to be suitable for MAS.

The remaining four did not pass SDVEP as the putative
resistant alleles discriminated by these markers were
also present in the genetic background of other GLS
susceptible lines. However, the SDVEP method helped
us to find a target marker within the intervals support-
ing QTLGLSchr8a (Table 5). Interestingly, this SNP
had <0.1 MAF (Table 5). Finally, no markers suitable
for MAS of QTLGLSchr6 were found. In this study, we
did not further search for a MAS-suitable marker for
QTLGLSchr6. However, this can be done by deep
sequencing of the QTLGLSchr6 support interval in
DAS-001 GLS resistant line and the panel of 109 GLS
susceptible lines followed by allele mining. In general,
SDVEP coupled with deep sequencing can be a very
powerful tool in finding MAS-suitable markers for the
traits which are controlled by a single gene or by major
QTL and several minor QTL.

Conclusions

The application of a genetic linkage — GWAS hybrid map-
ping system enabled us to dramatically increase the reso-
lution within the confidence interval of GLS resistance
QTL, by-passing labor- and time-intensive fine mapping.
This method appears to have great potential to accelerate
the pace of QTL mapping projects. It is universal and can
be applied for the dissection of any quantitatively inherited
trait. Despite a large number of previously reported GLS
resistance QTL, with the genetic linkage — GWAS hybrid
mapping system we managed to identify one novel QTL
controlling resistance to the disease, which most likely
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happened due to increased resolution within the QTL
confidence interval offered by the method. Allele mining
demonstrated that not all markers linked to the trait of
interest can be implemented in MAS as putative GLS
resistance alleles discriminated by those markers were also
observed in GLS susceptible lines. In this study, we ap-
plied the novel SDVEP method for discovery of molecular
markers within QTL support intervals that would be
informative in MAS. This was done with the assumption
that all polymorphisms within a QTL support interval
were linked and provided the same genetic information.
MAS-suitable markers were not considered as landmarks
discriminating causative mutations as limited number of
SNPs (~25,000) did not capture all polymorphisms avail-
able among the members of the Association Panel. How-
ever, the fact that putative resistance alleles discriminated
by MAS-suitable markers were well conserved among
GLS resistant maize inbred lines of diverse origin and
were absent in susceptible genetic backgrounds could be
an indicator that these markers were very close to causa-
tive mutations underlying GLS resistance.

Availability of supporting data
The data sets supporting the results of this article are

included within this article and its additional files.

Additional files

Additional file 1: Maize inbred lines representing Association
Panel used for genome wide association study with their reaction
to Cercospora represented by the average value of the Area
Under Disease Progress Curve (AUDPC) in all four environments.
(XLSX 23 kb)

Additional file 2: Days to silking data collected from the
representatives of the Association panel planted in Sidney (IL) in
2012. Independent field trial was conducted in Sidney (IL) in 2012, where
flowering time data were collected from 254 representatives of the
Association Panel. Flowering time data were represented by days to silking
(DTS) and measured as days from planting to silk emergence in 50 % of
plants in row. (XLSX 14 kb)

Additional file 3: Description of the development of SBayes
method to carry out Genome-wide Association Study. (DOCX 153 kb)

Additional file 4: Analysis of the population structure within the
set of 300 maize inbred lines used for the GWAS study. Estimated
LnP(D) and Delta K averaged over five repeats of STRUCTURE analysis.
(DOCX 67 kb)

Additional file 5: Phylogenetic tree of maize accessions in Association
Panel. Neighbor-joining tree of 300 maize accessions representing Association
Panel. Three subgroups (stiff stalk, non-stiff stalk, and tropical germplasm)
identified from the tree were color-coded. (PPTX 108 kb)

Additional file 6: Physical boundaries of intervals supporting
GWAS-detected gray leaf spot resistance QTL. Using sequence
information of GWAS-detected SNP markers associated with GLS resistance
QTL and the public IBM2 2008 Neighbors map (http//www.maizegdb.org/
data_center/map), corresponding chromosomal bins were identified. Physical
and genetic lengths of a chromosomal bin were calculated by subtracting the
physical (bp) and genetic (cM) coordinates of public markers flanking a bin
where GLS resistance QTL resided. As not every flanking marker had a physical
position in the public map, the closest marker with known physical positions
was designated as the flanking marker. Support intervals for GWAS
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detected QTL were identified to be 7.5 cM from each side of a marker.
Physical length of a QTL support interval = (physical length of a bin)
/(genetic length of a bin)*7.5 cM. Physical boundaries of a QTL support
interval = physical position of a SNP marker associated with GWAS
detected QTL + physical length of a QTL support interval. (DOCX 22 kb)

Additional file 7: Marker-assisted selection-suitable markers identified
by SDVEP method. The file contains several tabs. Each tab is dedicated to
one of the MAS-suitable markers. Each tab contains two images. The image
on the left shows how a putative GLS resistance allele discriminated by a
MAS-suitable marker is well-conserved in DAS-001 (GLS resistant parent of
DH population) and absent in 109 GLS susceptible lines. The image on the
right shows that a putative GLS resistance allele conserved in DAS-001 was
also found in several other GLS resistance lines with a genetic background
different from DAS-001. (XLSX 114 kb)
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