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Abstract

Background: Quality control (QC) analysis is an important component in maize breeding and seed systems.
Genotyping by next-generation sequencing (GBS) is an emerging method of SNP genotyping, which is being
increasingly adopted for discovery applications, but its suitability for QC analysis has not been explored. The
objectives of our study were 1) to evaluate the level of genetic purity and identity among two to nine seed
sources of 16 inbred lines using 191 Kompetitive Allele Specific PCR (KASP) and 257,268 GBS markers, and 2)
compare the correlation between the KASP-based low and the GBS-based high marker density on QC analysis.

Results: Genetic purity within each seed source varied from 49 to 100 % for KASP and from 74 to 100 % for GBS.
All except one of the inbred lines obtained from CIMMYT showed 98 to 100 % homogeneity irrespective of the
marker type. On the contrary, only 16 and 21 % of the samples obtained from EIAR and partners showed ≥95 %
purity for KASP and GBS, respectively. The genetic distance among multiple sources of the same line designation
varied from 0.000 to 0.295 for KASP and from 0.004 to 0.230 for GBS. Five lines from CIMMYT showed ≤ 0.05
distance among multiple sources of the same line designation; the remaining eleven inbred lines, including two
from CIMMYT and nine from Ethiopia showed higher than expected genetic distances for two or more seed
sources. The correlation between the 191 KASP and 257,268 GBS markers was 0.88 for purity and 0.93 for identity.
A reduction in the number of GBS markers to 1,343 decreased the correlation coefficient only by 0.03.

Conclusions: Our results clearly showed high discrepancy both in genetic purity and identity by the origin of the
seed sources (institutions) irrespective of the type of genotyping platform and number of markers used for analyses.
Although there were some numerical differences between KASP and GBS, the overall conclusions reached from
both methods was basically similar, which clearly suggests that smaller subset of preselected and high quality
markers are sufficient for QC analysis that can easily be done using low marker density genotyping platforms, such
as KASP. Results from this study would be highly relevant for plant breeders and seed system specialists.
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Background
In sub Saharan Africa (SSA), maize (Zea mays L.) is a
staple food for more than 300 million people and is com-
monly grown by small-scale and resource-poor farmers in
rural areas [1]. In Ethiopia, maize is the largest and most
productive crop. In the 14 years period between 2000 and
2013, total annual production ranged from 2.7 to 6.7 mil-
lion tons (http://faostat3.fao.org). During the same period,
(i) maize yield in the country doubled from 1.6 t ha−1 in
2000 to 3.2 t ha−1 in 2013; and (ii) after eight years of er-
ratic production, grain yield showed a rapid increase since
2007 [2]. However, productivity still remains far below the
potential due to several factors, including periodic
drought, high incidence of biotic stresses (diseases, insect-
pests and parasitic weeds), poor soil fertility, scarcity of ir-
rigation water, and inadequate farmer access to affordable
quality seeds and fertilizers.
The formal state maize breeding program of Ethiopia

was established in the early 1950’s and was instrumental
in the development, evaluation and recommendation of
adapted open pollinated varieties (OPVs). After nearly
four decades, the breeding program released its first top
cross hybrid, BH140, in 1988 [3] Subsequently, several
high yielding and stress tolerant OPVs and hybrids
adapted to different agro-ecologies have been released.
These hybrid varieties, in conjunction with recent hy-
brids from private seed companies have significantly
contributed to the current sharp increase in maize pro-
duction in the country.
Initial adoption of hybrids by resource poor farmers

was very slow for a number of reasons, including (i) high
cost of hybrid seed relative to OPVs (especially as seed
of OPVs can be recycled) (ii) limited or no access to im-
proved hybrid seed in some regions; (iii) inadequate
knowledge on agronomic management; (iv) insufficient
seed companies and seed regulations in the country; (v)
inadequate seed production infrastructure; and (vi) high
cost of fertilizers [4]. The demand for hybrid seed grad-
ually increased in Ethiopia as a result of changes in gov-
ernment policy including, but not limited to, the
establishment of several local seed companies and the
launching of a national extension program by govern-
ment and non-governmental organizations (NGOs),
such as Sasakawa Global 2000. The extension programs
have made significant contribution in awareness creation
of hybrid seed through field demonstration and provid-
ing technical support on hybrid maize grain production.
Such rapid growth in hybrid adoption, however, brought
a major concern on the quality of hybrid seed sold to re-
source poor farmers. Farmers reported high level of mix-
ture of plants in their fields, and low yield in a given
area. Despite the increased number of actors in the seed
production and marketing venture, a vibrant national
seed regulatory body to undertake effective seed quality

assurance, including seed inspection and certification has
been missing. Routine inspection of the initial parental
seed (breeder, pre-basic and basic seed) produced by dif-
ferent actors in the seed value chain is critical and often
done by inspecting production fields at vegetative and
flowering stages. However, inspection of seed production
fields based on a limited number of morphological and
agronomic traits is time consuming, laborious, expensive,
and at times can lead to inaccurate conclusions. Verifica-
tion of seed lots and seed production fields can be effect-
ively improved through the use of quality control (QC)
genotyping using molecular markers.
Inbred lines are assumed to be genetically pure and

possess all the genetic qualities that a breeder has se-
lected for. Small changes in allele frequencies may occur
during seed regeneration and maintenance breeding, and
possible contamination with seeds or pollen of other
samples [5, 6] Significant changes in the genetic makeup
of a line may affect performance, and in the worst sce-
nario result in distribution of wrong hybrids. Mainten-
ance of inbred line genetic purity (homogeneity) and
confirmation of the genetic identity of the same inbred
line maintained at different locations are therefore im-
portant QC functions in maize breeding programs [7].
Several authors [5, 8–16] have reported the presence of
a wide range of genetic differences among different seed
sources of the same line designation. A high degree of dif-
ferences among different seed sources of the same inbred
line was also reported for some CIMMYT lines [7]. Thus
breeding programs and seed distribution organizations
must monitor the quality of seed increase and line main-
tenance processes using reliable tools to maintain the gen-
etic homogeneity and identity of their key germplasm.
Single nucleotide polymorphic (SNP) markers have

emerged as powerful tools for many genetic applications,
including germplasm characterization (genetic diversity,
genetic relationship, and population structure), QC ana-
lysis (genetic identity, genetic purity, and parentage veri-
fication), quantitative trait loci (QTL) mapping, allele
mining, marker-assisted backcrossing, marker-assisted
recurrent selection, and genomic selection. SNP data
can be obtained using one of the numerous uniplex or
multiplex SNP genotyping platforms that combine a var-
iety of chemistries, detection methods, and reaction for-
mats. Kompetitive Allele Specific PCR (KASP) is a
uniplex SNP genotyping platform, and has developed
into a global benchmark technology. CIMMYT uses a
subset of 100 to 200 SNPs for routine QC genotyping
using the KASP platform at LGC Genomics in the UK.
The subset of SNPs for QC genotyping were selected
out of the 1536 Illumina GoldenGate random chip using
the following criteria: (1) ease of scoring with unambigu-
ous separation of the two homozygous and heterozygous
genotypes; (2) a minor allele frequency (MAF) and
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polymorphism information content (PIC) of at least 0.20
and 0.25, respectively; (3) good distribution across chro-
mosomes based on physical position, and (4) good poly-
morphism across a wide range of mapping populations.
The genotyping cost for KASP depends on the number
of data points (1 data point = 1 sample genotyped by 1
SNP) and data turnaround, which is 4 to 6 weeks for
normal turnaround and 2 to 3 weeks for rapid turn-
around. The current KASP genotyping cost for normal
and rapid data turnaround ranges from US$0.064 to
US$0.242 and from US$0.100 to US$0.360, respectively
[7]. Genotyping by sequencing (GBS) [17] is an alterna-
tive method that could be used in generating high dens-
ity genotype data at a genotyping and allele calling cost
ranging from $18 to $38 per sample, depending on the
level of multiplex (http://www.biotech.cornell.edu/brc/
genomic-diversity-facility/services/gbs-project-design-
and-optimization). To our knowledge, however, the cor-
relation between GBS and KASP markers for QC ana-
lyses is not known. The objectives of our study were to
1) evaluate the level of genetic purity within each inbred
line and understand genetic identity among different
seed sources of the same line designation; and 2) com-
pare the correlation between the KASP-based low dens-
ity and the GBS-based high density information for QC
analysis.

Methods
Sample preparation and genotyping
A total of 80 samples from 16 inbred lines, which are
parental lines of eight popular Ethiopian hybrids
(BH140, BH540, BHQP542, BH543, BHQPY545, BH660,
BH670, and BH661), were used in this study (Table 1).
Each inbred line was represented by from two to nine
seed sources collected from the maize breeding program
of the Ethiopia Institute of Agricultural Research (EIAR),
seed companies in Ethiopia, the Ethiopian Institute of Bio-
diversity Conservation (IBC) (the national gene bank), and
the International Maize and Wheat Improvement Center
(CIMMYT) (Table 1). The seed samples from IBC were
used as reference for older EIAR inbred lines, while the
seeds obtained from CIMMYT were used to compare with
the corresponding line designation maintained by EIAR
and partners in Ethiopia. Seedlings were raised on plastic
trays at the Biosciences eastern and central Africa (BecA)
hub screen-house in Nairobi, Kenya. A single leaf from
each of ten plants per sample were piled together, the tips
trimmed off and approximately equal amount of leaf seg-
ment cut at once to make a bulk, and transferred into
1.2 mL strip tubes that contained two 4-mm stainless steel
grinding balls (Spex CetriPrep, USA). Genomic DNA was
extracted using a modified version of the CIMMYT high
throughput mini-prep Cetyl Trimethyl Ammonium
Bromide (CTAB) method as described elsewhere [18].

This extraction protocol has longer steps but provides
good quality DNA for different purposes, including GBS
that involves restriction digestion. DNA concentration
was measured using the Quant-iT™ PicoGreen® dsDNA
assay kit (Invitrogen™, Paisley, UK) and the Tecan Infinite
F200 Pro Plate Reader (Grödig, Austria), and normalized
to 50 ng/μL. For GBS, the quality of the extracted DNA
was checked by digesting 250 ng of the genomic DNA
from 8 randomly selected samples with 3.6 units of ApeKI
restriction enzyme (New England Biolabs, Boston, USA)
at 75 °C for three hours. DNA samples were shipped to
both LGC Genomics (http://www.lgcgroup.com) and the
Genomic Diversity facility at Cornell University (http://
www.biotech.cornell.edu/brc/genomic-diversity-facility).
Samples were genotyped with 200 SNPs (Additional file 1)
prioritized by CIMMYT for QC genotyping using KASP
genotyping platform [7]. The same DNA samples were
also genotyped using GBS as described by Elshire and col-
leagues [17]. GBS data was generated by the Genomic Di-
versity Facility, Cornell University using ApeKI as
restriction enzyme and 96-plex multiplexing.

Data analyses
The raw allele calls received from LGC Genomics con-
sisted of several unassigned SNP calls. To minimize the
unassigned calls, the KASP data was rescored using
Kluster caller software from LGC Genomics. Nine SNPs
were excluded either due to large missing data points or
ambiguity in clearly discriminating the homozygous and
heterogeneous genotypes so analyses were conducted
using 191 of the 200 SNPs. Since GBS generates a high
percentage of un-called genotypes, the missing data was
imputed by the Institute of Genomic Diversity (IGD),
Cornell University using an algorithm that searches for
the closest neighbor in small SNP windows across the
maize database [19]. Imputed data for 955,120 loci was
received, but the majority of the GBS markers were
monomorphic. The imputed GBS data was filtered using
a minor allele frequency (MAF) of 0.05 in TASSEL ver-
sion 4.3.2 software [20], yielding 257,268 polymorphic
SNPs (26.9 % of the initial loci) for further analyses
(Table 2). The proportion of missing data after filtering
with a MAF of 0.05 varied between 2.6 and 14.4, and the
overall average across the 80 samples was 7.3 %.
Eight datasets were used for all statistical analyses.

Dataset 1 and dataset 2 consisted of the 191 KASP SNPs
and the 257,268 GBS markers after filtering using a
MAF of 0.05, respectively. Six additional input files were
later created for correlation analyses: (a) dataset 3 con-
sisted of a subset of 100 out of 191 SNPs routinely used
by CIMMYT for QC genotyping; and (b) data set 4 to
dataset 8 were created from dataset 2 using a MAF of
0.10, 0.20, 0.30, 0.40 and 0.50. For QC analysis, the best
SNPs would be those which amplify the two alleles
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Table 1 Proportion of homogeneity (purity) for 80 samples from 16 inbred lines using 191 KASP and 257,268 GBS markers

No Name Seed class Source Homogeneity (%)

KASP GBS

1 SC22_AR Basic AgriCEFT 65 79

2 SC22_AR09 Pre-basic AARC 59 76

3 SC22_BARC2011k Basic BARC 66 80

4 SC22_BARC2012k Basic BARC 69 81

5 SC22_EB Nucleolus BNMR 79 86

6 SC22_GB Gene bank Gene Bank 73 82

7 SC22_HD04/05 Pre-basic HARC 63 79

8 SC22_I11B Pre-basic BNMR 67 81

9 SC22_I12B Pre-basic BNMR 64 80

10 124-b(113)_AR09 Pre-basic AARC 88 88

11 124-b(113)_ASE Basic ASE 76 83

12 124-b(113)_BARC2010k Basic BARC 82 85

13 124-b(113)_BARC2011k Basic BARC 84 85

14 124-b(113)_EB Nucleolus BNMR 88 89

15 124-b(113)_GB Gene bank Gene Bank 89 89

16 124-b(113)_HD Pre-basic HARC 75 82

17 124-b(113)_HD04/05 Pre-basic HARC 69 80

18 124-b(113)_I12K pre-basic BNMR 83 85

19 124-b(109)_EB Nucleolus BNMR 68 81

20 124-b(109)_HD04/05 Pre-basic HARC 58 74

21 124-b(109)_I11B Pre-basic BNMR 59 74

22 124-b(109)_I13B Pre-basic BNMR 56 74

23 CML197 CIMMYT CIMMYT 91 100

24 CML197_EB Nucleolus BNMR 73 85

25 CML197_HD03/04 Pre-basic HARC 69 84

26 CML197_I10K Pre-basic BNMR 69 84

27 CML197_I11K Pre-basic BNMR 72 85

28 CML197_I12K Pre-basic BNMR 67 85

29 CML312 CIMMYT CIMMYT 100 100

30 CML312_EB Nucleolus BNMR 99 100

31 A7033_AR02/03E.C Pre-basic AgriCEFT 61 79

32 A7033_AR08 Pre-basic AARC 63 80

33 A7033_EB Nucleolus BNMR 75 85

34 A7033_GB Gene bank Gene Bank 76 84

35 A7033_HD Pre-basic HARC 61 82

36 A7033_I10K Pre-basic BNMR 62 80

37 A7033_I11K Pre-basic BNMR 65 81

38 A7033_selected Breeder seed BNMR 70 84

39 F7215_AR02/03E.C Pre-basic AgriCEFT 63 77

40 F7215_AR08 Pre-basic AARC 69 78

41 F7215_EB Nucleolus BNMR 77 82

42 F7215_GB Gene bank Gene Bank 64 78

43 F7215_HD04/05 Pre-basic HARC 67 77
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equally (i.e., each with a frequency of 0.50). The propor-
tion of heterogeneity (the number of markers that were
not homozygous due to mixture of two homozygous ge-
notypes or residual heterozygosity) in each sample was
calculated from all datasets using TASSEL version 4.3.2.
Genetic purity was calculated from all datasets in Excel as
the difference between 100-h, where h refers to

heterogeneity in percentage obtained from TASSEL. For
all eight datasets, genetic distance was calculated between
each pair of samples using the identity by descent (IBS)
method implemented in TASSEL. Dendrograms were
constructed from the genetic distance matrices of both
dataset 1 and dataset 2 using the Unweighted Pair Group
Method with Arithmetic Mean (UPGMA) algorithm

Table 1 Proportion of homogeneity (purity) for 80 samples from 16 inbred lines using 191 KASP and 257,268 GBS markers
(Continued)

44 F7215_I11K Pre-basic BNMR 65 77

45 F7215_I12K Pre-basic BNMR 67 78

46 F7215_selected breeder seed BNMR 70 80

47 142-1-e_AR02/03E.C Basic AgriCEFT 82 83

48 142-1-e_EB Nucleolus BNMR 89 86

49 142-1-e_GB Gene bank Gene Bank 89 87

50 142-1-e_I10K Pre-basic BNMR 85 85

51 142-1-e_I12K Pre-basic BNMR 87 84

52 CML202 CIMMYT CIMMYT 99 100

53 CML202_12K Pre-basic BNMR 99 99

54 CML202_EB Nucleolus BNMR 99 99

55 CML202_HD04/05 Pre-basic HARC 96 99

56 CML202_I11K pre-basic BNMR 92 98

57 CML395 CIMMYT CIMMYT 100 100

58 CML395_12K Pre-basic BNMR 64 81

59 CML395_EB Nucleolus BNMR 49 77

60 CML395_HD Pre-basic HARC 60 81

61 CML395_I11K Pre-basic BNMR 59 81

62 144-7-b_I08K Pre-basic BNMR 80 84

63 144-7-b_I09k Pre-basic BNMR 79 83

64 144-7-b_I10k Pre-basic BNMR 81 84

65 CML144 CIMMYT CIMMYT 99 100

66 CML144_EB Nucleus BNMR 98 99

67 CML144_I11B Pre-basic BNMR 98 98

68 CML144_I13B Pre-basic BNMR 96 97

69 CML159_EB Nucleolus BNMR 98 99

70 CML159_I09K Pre-basic BNMR 93 97

71 CML159_I13B Pre-basic BNMR 90 96

72 CML176_EB Nucleolus BNMR 87 94

73 CML176_I12K Pre-basic BNMR 83 94

74 CML161 CIMMYT CIMMYT 100 100

75 CML161_I12B Pre-basic BNMR 99 100

76 CML161_I13B Pre-basic BNMR 100 100

77 CML165 CIMMYT CIMMYT 98 100

78 CML165_EB Nucleolus BNMR 95 98

79 CML165_I11B Pre-basic BNMR 98 99

80 CML165_I12B Pre-basic BNMR 88 93
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implemented in molecular evolutionary genetics analysis
(MEGA), version 6 [21]. Mantel tests [22] were used to
compute the correlation between the genetic distance
matrices derived from all eight datasets using NTSYS-pc
(numerical taxonomy and multivariate analysis system),
version 2.11 [23]. Pearson correlation coefficients between
genetic purity values obtained for all eight datasets were
calculated using MINITAB v14.

Results and discussion
Genetic purity (homogeneity)
We first computed the proportion of homozygous SNPs
on each of the 80 samples as an estimate of genetic pur-
ity or homogeneity. The results were highly variable
across samples, with homogeneity varying from 49 to
100 % for KASP and from 74 to 100 % for GBS (Table 1;
Fig. 1). The overall average homogeneity across all 80
samples was 79 % for KASP and 87 % for GBS. Most

Table 2 Summary of the number of KASP and GBS markers
used in the present study

Chromosome GBS KASP

1 40,666 26

2 31,600 21

3 30,120 19

4 23,977 19

5 29,656 19

6 20,880 17

7 21,084 16

8 21,651 19

9 19,886 19

10 17,748 16

Total 257,268 191

0

10

20

30

40

50

60

70

80

90

100

G
en

et
ic

 p
u

ri
ty

 (%
)

Line name (number of seed source)

0

10

20

30

40

50

60

70

80

90

100

G
en

et
ic

 p
u

ri
ty

 (%
)

Line name (number of seed source)

(b)

(a)

Fig. 1 Comparison of genetic purity of multiple seed sources of the 16 inbred lines using a 191 KASP and b 257,268 GBS. For each line
designation, the number of seed sources is shown in the x-axis in bracket and with different shapes in the plot
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breeding programs now use inbred lines at F4 or later
generations, but previously, lines were often derived at
earlier generations. An inbred line may be considered
pure or homogenous if the proportion of heterozygous
or heterogeneous loci does not exceed 5 % [7]. Samples
with substantially more than 5 % heterogeneity (3.1 %
due to residual heterozygosity in the founder plants plus
1.9 % due to both genotyping error and genetic drift) for
a given set of SNPs are likely to have been contaminated
by pollen or seed of another genotype. In the present
study, approximately 23 % of the samples in KASP and
28 % of the samples in GBS were considered genetically
pure with ≤5 % heterogeneity (Fig. 2). The majority of
the samples (77 % in KASP and 72 % in GBS) showed
high proportion of heterogeneity that varied from 6 to
51 % in KASP and from 6 to 26 % in GBS.
Genetic purity among the multiple seed sources of

each of the 16 inbred lines was compared to understand
whether the high proportion of heterogeneity was spe-
cific to a few lines or common across most lines (Fig. 3).
Genetic purity was consistently lower for all inbred lines
developed by EIAR irrespective of their seed origin or
marker density. The genetic purity of CIMMYT lines
maintained at EIAR and partners was highly variable,
with some showing much lower than the expected level
of purity, while others had high level of purity. For ex-
ample, the seed sources obtained from EIAR and part-
ners for both CML395 and CML197 showed the lowest
purity (49 and 73 % for KASP and 77 and 85 % for GBS,
respectively), while CML312, CML202, CML144 and
CML161 from EIAR and partners showed 96 to 100 %
purity regardless of sources and marker density (Table 1).
All CML seed sources obtained from CIMMYT showed
the highest purity, which varied between 98 and 100 %

for both KASP and GBS except CML197 that showed
conflicting results for KASP (91 %) and GBS (100 %).
Results above highlight two main points. First, the

level of purity for most samples originating from EIAR
and partners was low because most inbred lines sampled
from these sources were early generation inbred lines
used as parents for old commercial hybrids in Ethiopia.
Prior to the release of hybrids, maize farmers in the
country used to grow OPVs for several reasons, includ-
ing the relatively higher cost of imported hybrid seeds
and higher input recommendation for hybrids as com-
pared to OPVs [24]. In addition, the source germplasm
which was available for line development at the time
was unimproved and intolerant to inbreeding depres-
sion. To cope with these challenges, breeders of the time
opted to develop and release hybrids using early gener-
ation parental inbred lines [3]. Although this strategy
favors cheaper seed production and hybrids derived from
such early generation parental lines out-yielded OPVs,
generally they remain inferior in uniformity as compared
to hybrids developed from fixed lines.
Second, the level of purity from the present study

clearly agrees with the stage of inbreeding and our field
observation on lack of uniformity for most of the older
EIAR inbred lines. Complaints from growers on the un-
expectedly high level of variability under farmers’ field
conditions is associated with a combination of genetic
reasons, handling of early generation inbred lines and in-
adequate seed inspection and quality assurance system
for hybrid seed production in the country. However,
mislabeling, pollen contamination and seed admixture
are some of the other major reasons that might have
contributed for the variation observed under the
farmers’ field.
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Fig. 2 Summary of the heterogeneity of 80 seed sources from 16 inbred lines based on 191 KASP and 257,268 GBS markers. See Table 1 for
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Genetic identity
Multiple seed sources of a given inbred line developed
after four generations of inbreeding are expected to be
genetically identical or nearly so with a maximum allelic
difference of <5 % [7]. In the present study, genetic dis-
tance among the different seed sources of the same line
designation varied from 0.000 to 0.295 for KASP and from
0.004 to 0.230 for GBS. As shown in Fig. 3, the genetic
distance among all pairewise comparisons of seed sources
for five CMLs (CML144, CML159, CML161, CML202
and CML312) was < 0.05. The remaining eleven inbred
lines, including four CMLs and all seven lines from EIAR,
showed higher proportion of mismatch for two or more
seed sources. The dendrograms in both Figs. 4 and 5 also
clearly show the extent of genetic differences among
multiple seed sources of the same line designation.
Importantly, dendrograms from both KASP and GBS
datasets have grouped different seed sources of the same
line designation together except 124-b (109) EB. The

grouping of all sources of the same line designation to-
gether is an indication that all sources of the same line
were derived from the same origin, but most of them have
diverged significantly for several reasons, including re-
sidual heterozygosity, seed or pollen contamination, gen-
etic drift and the method of line maintenance. Labeling
error is the most likely explanation for one of the samples
of 124-b (109) EB mis-grouping from the other sources
(Figs. 4 and 5). The effect of method and frequency of
maintenance on genetic structure of heterozygous individ-
uals is hastened by natural and artificial selection, which
entails the elimination of individuals carrying undesirable
alleles [5, 11, 13]. To maintain allele frequencies in early
generation inbred lines, it is compulsory to raise large
population sizes in the sibbing blocks in order to avoid
genetic drift. In standard line maintenance, however, the
breeders would most likely be using few plants which can
affect the identity of early generation lines amongst
sources due to drift and selection bias. Because of this

KASP

GBS

Fig. 3 Summary of pairwise comparisons of genetic distance among multiple sources of the same line designation genotyped with 191 KASP
and 257,268 GBS markers. For each line designation, the number of seed sources is shown in the x-axis in bracket and with different shapes in
the plot
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practical difficulty, EIAR breeders have been incrementing
pre-basic/basic seed of all early generation inbred lines
only in isolated blocks in order to minimize genetic drift.
This method allows for frequent inspection of seed pro-
duction fields along with rigorous rouging when off-type
plants are observed; and has helped to maintain early gen-
eration lines for more than two decades enabling farmers
to access true-to-type hybrid seed every season. Reliable
seed production has contributed to the sharp increase in
maize productivity in the country for food security. How-
ever, when seed companies started to produce their own
pre-basic/basic seed in different locations, the supply of
consistent hybrid seed to farmers become a challenge. Sig-
nificant variation of performance of various seed lots of
the same hybrid designation was observed, likely due to
differences in parental line maintenance methods.

Correlation between low and high marker density
Semagn et al. [7] prioritized a subset of about 100 to 200
SNPs for routine QC analysis using KASP genotyping

platform. In order to understand the relationship be-
tween marker types and densities using KASP or GBS
markers for estimating genetic purity and identity, we
conducted correlation analyses by creating several sub-
sets of data (Fig. 6). The correlation between the subset
of 100 and 191 KASP SNPs recommended for QC ana-
lysis by Semagn et al. [7] was 0.95 for identity and 0.99
for purity. When the 100 KASP markers were compared
with the entire 257,268 GBS markers, the correlation co-
efficients were 0.82 for identity and 0.90 for purity. The
increase in KASP markers from 100 to 191 increased the
correlation with GBS by only 0.03 for purity and 0.06 for
identity. The KASP and GBS markers showed some dis-
crepancy in terms of numerical values when heterogen-
eity exceeded 12.5 %, with 61.3 % of the samples
showing 12.5 to 25 % heterogeneity in GBS and 43.8 %
of the samples showing >25 % heterogeneity in KASP
(Fig. 3). However, the conclusions reached in assigning
lines into genetically pure or not were highly similar.
Given the low accuracy of GBS in correctly calling
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Fig. 4 UPGMA dendrogram of 80 samples from 16 inbred lines based on genetic distance matrix computed from 191 KASP SNPs
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highly heterogeneous and heterozygous germplasm and
some of the issues associated in imputing GBS calls,
such discrepancies may be expected. A reduction in GBS
markers from 257,268 to 1,343 did not impact correl-
ation values for the various pairwise comparisons (Fig. 6).
Therefore, the effect of marker density for routine QC
analysis seems relatively minor. It is concluded that 100
to 200 SNP markers routinely used by CIMMYT for QC
genotyping are sufficient for genetic purity and identity
purposes. The use of high density GBS markers for QC
analysis, at least at present, does not add value to the
process for different reasons, including longer data turn-
around time and lower accuracy in correctly calling alleles
in highly heterogeneous and heterozygous germplasm.

Implication of the QC results and recommendations
Overall, most seed sources from CIMMYT were consid-
ered genetically pure, which was not the case for the
majority of samples originating from EIAR. Such results,
however, are expected for inbred lines developed with
only a few generations of inbreeding. One of the major

objectives of maize breeders in Ethiopia during the
1980s was to develop maize germplasm that performed
better than OPVs in order to address the outcry over
food insecurity in the country. During that time,
breeders had limited access to diverse maize germplasm
for new pedigree starts, there were no private companies
involved in maize breeding and/or seed multiplication
and marketing in the country, and there were no clear
seed regulations governing quality control and assur-
ance. Breeders were pressured to release improved hy-
brids which could outperform widely grown OPVs. They
used early generation inbred lines to develop and release
hybrids, and maintained these lines in isolation increases
without losing their identity. This contributed to sharp
growth of maize production in the country. Currently,
Ethiopia has a relatively well established seed law for
QC/QA using morpho-agronomic traits. This can be
strengthened by incorporating modern molecular tools.
Maize breeders in the country also have better access to
a wide range of germplasm for new pedigree starts from
different national programs in Africa, CIMMYT, and the
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Fig. 5 UPGMA dendrogram for 80 seed sources from 16 inbred lines based on genetic distance matrix computed from 257,268 GBS markers
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International Institute for Tropical Agriculture (IITA).
They are now developing inbred lines after four or later
generations of selfing and more recently released hybrids
developed using inbred lines with higher genetic purity.
This will assist to maintain homogeneous parental in-
bred lines in the next generation hybrids in Ethiopia.
The use of parental inbred lines with high heterogen-

eity in breeding programs can have multifold negative
effects, including the use of wrong donors in new breed-
ing starts for line development, hybrid formation as well
as genetic and molecular studies. Genetic purity of a
given parental line also has major impact on the produc-
tion and distribution of certified seed to farmers. Failure
to undertake regular quality control analysis could result
in generation and dissemination of incorrect products to
the end user. Maize breeders commonly exchange seed
of the most widely used inbred lines; therefore, unex-
pected level of genetic heterogeneity in a given seed lot
or high mismatch across different seed sources of a
given inbred line can quickly spread across different pro-
grams with consequent negative effects. Obtaining seed
from a reliable source and undertaking routine quality
control, will be useful for minimizing errors associated
with purity and identity. Our results showed that a sub-
set of 100 to 200 SNP (KASP) markers would be suffi-
cient for routine QC analysis. In cases where there is no
reference genotype data for inbred lines that will be used
for comparison purposes, it is recommended to grow
out multiple sources of different sources of the same line
designation in nurseries, generate SNP data, compare
SNP data with field notes, and discard those sources that

show deviation from expectation in terms of purity and
identity. CIMMYT has carried out this exercise to resolve
genetic purity and identity issues from 280 seed sources
involving 40 inbred lines and strongly recommends this
regular activity for other breeders (M. Worku, personal
communication). The information presented in this paper
would be highly useful for maize breeders that are in-
volved in new pedigree start, developing populations for
QTL mapping and marker-assisted breeding, and the seed
companies.

Conclusions
Our results clearly showed high discrepancy both in gen-
etic purity and identity by the origin of the seed sources
(institutions) irrespective of the type of genotyping plat-
form and number of markers used for analyses. Overall,
most seed sources from CIMMYT were considered genet-
ically pure, which was not the case for the majority of
samples originated from EIAR. One of the reasons for
such discrepancy in genetic purity and identity was the
level of inbreeding prior to releasing the parental lines for
hybrid formation. Although there were some differences
between KASP and GBS results, the overall conclusions
reached from both methods was basically similar, which
clearly suggests that smaller subset of preselected high
quality markers are sufficient for QC analysis that can eas-
ily be done using low marker density genotyping plat-
forms, such as KASP. GBS data would be highly useful for
establishing reference marker database at the time of re-
leasing an inbred parental line for used in heterotic group-
ing and planning hybrid combinations and new pedigree

Fig. 6 Correlation coefficients between different number of KASP and GBS markers for genetic purity and identity estimated from 80 samples
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starts. Results from this study would be highly relevant for
plant breeders and seed system specialists.

Additional file

Additional file 1: Summary of the 200 KASP SNPs used for
genotyping. (XLSX 17 kb)
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