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Abstract

Background: Pathway enrichment analysis is a useful tool to study biology and biomedicine, due to its functional
screening on well-defined biological procedures rather than separate molecules. The measurement of malfunctions
of pathways with a phenotype change, e.g., from normal to diseased, is the key issue when applying enrichment
analysis on a pathway. The differentially expressed genes (DEGs) are widely focused in conventional analysis, which
is based on the great purity of samples. However, the disease samples are usually heterogeneous, so that, the
genes with great differential expression variance (DEVGs) are becoming attractive and important to indicate the
specific state of a biological system. In the context of differential expression variance, it is still a challenge to
measure the enrichment or status of a pathway. To address this issue, we proposed Integrative Enrichment Analysis
(IEA) based on a novel enrichment measurement.

Results: The main competitive ability of IEA is to identify dysregulated pathways containing DEGs and DEVGs
simultaneously, which are usually under-scored by other methods. Next, IEA provides two additional assistant
approaches to investigate such dysregulated pathways. One is to infer the association among identified
dysregulated pathways and expected target pathways by estimating pathway crosstalks. The other one is to
recognize subtype-factors as dysregulated pathways associated to particular clinical indices according to the DEVGs
relative expressions rather than conventional raw expressions. Based on a previously established evaluation scheme,
we found that, in particular cohorts (i.e, a group of real gene expression datasets from human patients), a few
target disease pathways can be significantly high-ranked by IEA, which is more effective than other state-of-the-art
methods. Furthermore, we present a proof-of-concept study on Diabetes to indicate: IEA rather than conventional
ORA or GSEA can capture the under-estimated dysregulated pathways full of DEVGs and DEGs; these newly
identified pathways could be significantly linked to prior-known disease pathways by estimated crosstalks; and
many candidate subtype-factors recognized by IEA also have significant relation with the risk of subtypes of
genotype-phenotype associations.

’

Conclusions: Totally, IEA supplies a new tool to carry on enrichment analysis in the complicate context of clinical
application (i.e, heterogeneity of disease), as a necessary complementary and cooperative approach to
conventional ones.
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Background

Being a computational approach based on the prior
knowledge, pathway enrichment analysis is widely used
in the study of genotype-phenotype associations [1]. Bio-
logical pathway as a set of interactive genes (and a few
of their interactions with biomolecules) produces par-
ticular cellular response/outcome by executing a series
of functional cascades. It is curated by experts from wide
range of science fields [2, 3] so that can supply more
creditable functional details than general GO module or
network module. Different from exploring the unknown
or indeterminate functions by network module,
pathway-centered analysis always makes an effort to cap-
ture the permutation of established functions (e.g.,
KEGG pathways [2, 3]) in the change of phenotypes
(e.g., from normal to diseased). As a key approach of
pathway-centered analysis, the pathway enrichment ana-
lysis or well-known gene set enrichment analysis (GSEA)
[1] can identify dysregulated pathway by qualitatively
measuring the changed status of a pathway [4].

In the pathway enrichment analysis, the dysregula-
tion of a pathway is the most important issue [5],
and should be mathematically defined and measured
well [6]. It can estimate the conditional enrichment
or status of a pathway, which is assumed to be asso-
ciated with particular phenotypes. Current researches
generally use genes with significantly differential ex-
pressions or differential correlations to evaluate the
extent of the dysregulation of a pathway. One kind of
conventional method is evaluating the dysfunction of
pathways in different conditions [7-9], such as
FiDePa (Finding Deregulated Paths Algorithm) [10],
SPIA (Signaling Pathway Impact Analysis) [11] and
iPEAP (Integrative Pathway Enrichment Analysis
Platform) [12]. The other kind is using pathways to
characterize individual samples [13, 14], like CORGs
[15] and Pathifier [16]. Generally, all these methods
focus on the genes with differential expression and
their enrichments in pathways (i.e., the analysis in the
context of differential expression) [17, 18], which as-
sume the samples are of good purity in genotype-
phenotype association study. However, in the study of
complicated phenotypes, e.g., cancer study, a relevant
problem is the samples with the same disease pheno-
type might be full of different unknown subtypes due
to disease heterogeneity [19]. It is necessary to detect
genes with new features observable in the compli-
cated disease samples, and enhance the pathway en-
richment analysis to be applicable in such previously
unexpected situation [20].

Actually, there are new expression features extracted
in recent studies, e.g., genes with differential expression
variances [21, 22]. In the context of differential expres-
sion variance, it is still a challenge to measure the
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enrichment or status of a pathway. A solution to this
problem can promote the efficiency of pathway enrich-
ment analysis on genotype-phenotype association be-
cause it will consider more complete information about
the expression changes of pathway genes. It can also
provide new insights on the biological pathways by inte-
grating additional expression and network features. In
this work, we propose a multiple-label based enrichment
analysis to detect such dysregulated pathways, which
simultaneously takes into account the genes with differ-
ential expression (a label as DEGs) and genes with differ-
ential expression variance (the other label as DEVGs)
together (Fig. 1).

Obviously, the hypothesis underlying IEA is that the
dysregulated pathways involved in disease heterogeneity
would be full of DEGs and/or DEVGs. That means the
identified pathways by IEA would be disease pathways
or their up-streams/down-streams (e.g., heterogeneity-
relevant pathways or subtype-relevant pathways). How-
ever, current methods in pathway enrichment analysis
only expect to give high-rank to disease pathways (e.g.,
target pathways in approach evaluation). When IEA
identifies up-streams/down-streams of disease pathways,
it further assistantly supplies a network of pathways to
recover a global functional map and infer the associa-
tions among disease pathways and subtype-relevant
pathways. Noted, the biological meaning of the edge in
such network of pathways is the pathway crosstalk,
which is just an important biological mechanism or
functional relationship among pathways [23-26]. Con-
ventional researches tend to simply determine a pathway
crosstalk by the overlapped genes in two pathways [27],
which disregard the statistical significance of the genes
and interactions involved in the pathway crosstalk. By
contrast, DEGs and DEVGs in one pathway can be used
as seeds, and further detected their interactive genes in
the candidate crosstalking pathways by a random walk
restart algorithm [28]. The significance of a pathway
crosstalk can be finally evaluated by the genes involved
in this crosstalk as their enrichments in two pathways
(i.e., the proposed multiple-label based enrichment).

Based on the above concepts and mathematical
models, a new pathway-centered analysis framework,
the integrative enrichment analysis (IEA), is imple-
mented as (i) pathway enrichment score calculated by
the hypergeometric test on differential genes (DEGs
and DEVGs); (ii) pathway crosstalk ranked by the
random walk and hypergeometric test on rewired
molecule networks; (iii) pathway-phenotype associ-
ation and subtype-factors determined by DEVGs in
pathways. According to a previously established evalu-
ation scheme [29], we found that, in particular co-
horts (i.e., a group of real gene expression datasets
from human patients), a few target disease pathways
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can be significantly high-ranked by IEA, which sup-
plied the evidences of the deviation-based disease
characteristics (i.e., disease subtypes), and IEA is more
effective than other state-of-the-art methods in this
condition. Furthermore, by a proof-of-concept study,
we shows the details of IEA on analyzing real tran-
scriptional data related to complex diseases, e.g., Dia-
betes and Colorectal cancer. IEA indeed captures the
previously under-estimated pathways full of DEVGs
and DEGs. These newly identified dysregulated path-
ways would be heterogeneity-relevant pathways and
are found to be significantly linked to disease path-
ways (i.e., target pathways in conventional analysis) by
estimated crosstalks. Many candidate subtype-factors
are also recognized as DEVGs or pathways associated
with the risk of subtypes of genotype-phenotype asso-
ciations. Totally, IEA supplies a new way of over-
representation approach [30] to carry on enrichment

analysis in the complicate context of clinical applica-
tion (i.e., differential expression and differential ex-
pression variance), and could be easily expanded to
functional class scoring or pathway topology based
approaches [31-34], which will be a necessary com-
plementary and cooperative approach to conventional
ones [35]. The Matlab scripts of the software named
IEApackage and some alternative R scripts have been
deposited in GitHub and accessed in https://github.-
com/bluesky2009/integrative-enrichment-analysis. This
software has been developed and tested in Windows
7 or Windows 8, and Matlab 2010 or Matlab 2012.

Methods

Generally, enrichment analysis includes three categor-
ies of methods: over-representation approach, func-
tional class scoring and pathway topology based
approaches. Although these methods are all focusing
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on evaluating the phenotype-associated pathway, they
would be based on different hypothesis. This work
and the proof-of-concept study are based on the
over-representation approach, which measures the
dysregulation extent of a pathway according to the
number of dysregulated genes in this pathway. Trad-
itional methods only evaluated the DEGs in a path-
way; by contrast, IEA evaluates the DEGs and DEVGs
in a pathway. Thus, the meaning of the statistic for
the integration of IEA is as completely as possible to
measure the dysregulation extent of a pathway ac-
cording to the number of dysregulated genes (DEGs
& DEVGs) in this pathway, which have been well de-
fined and introduced in follows.

Differential gene expression and differential expression
variance

Given a gene x has expression profiles in control and
case samples as X and X’ respectively, the expression
variance of this gene in control and case condition are
E((X-u)*) and E((X’-«)?) respectively. Here, u and u’ are
average expressions of gene x in control and case sam-
ples respectively. Then, the conventional criterion and
measurement of genes with differential expression
(named as DEGs) are:

Hy : E(X) = E(X’); Hp rejected; (1)

where X or X’ are the original/raw expression levels.
Noted, the differential expression includes up-regulation
(the expressions of genes in case samples are larger than
those in control samples) and down-regulation (the ex-
pressions of genes in case samples are less than those in
control samples).

Except for these DEGs (e.g., genes rejected by
Student’s T-test in significance test), the genes with dif-
ferential expression variance are also discriminative fea-
tures [21, 36]. The expression variance concerned
features, e.g., bimodal gene expression, is already known
as an important expression pattern in the control of a
transition of biological systems [37], such as: disease de-
velopment, cellular differentiation, and phase transition.
However, the differential expression variance of genes
has not been studied in a systematic way to the best of
our knowledge, especially for its usage in the pathway
enrichment analysis. The differential expression of genes,
used in conventional enrichment analysis, requires the
gene’s expressions under different conditions to distrib-
ute around different mean expression levels (seeing
above formula 1). By contrast, differential expression
variance of genes (named as DEVGs) can be defined as
the genes’ deviations being significantly different under
dissimilar conditions (deviation means the distances
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between a gene’s original expression levels and its mean
expression level), such as:

Hy : E(|X-u|) = E(|X"-#/'|); Ho rejected; @)
and Hy : E(X) = E(X’); Hp not rejected

where X or X’ is the original expression level, |X-u| or
|X’-u’| is the relative expression level.

Noted, the differential expression variance includes
tight-regulation (the expression variances of genes in
case samples are less than those in control samples) and
relax-regulation (the expression variances of genes in
case samples are larger than those in control samples).
And importantly, as defined above, the DEVGs have ex-
cluded DEGs, or there is no overlap between DEVGs
and DEGs in this work. That means, when one gene has
both differential expression and differential expression
variance, this gene is thought as DEG in priority in order
to be consistent with conventional analysis; and, of
course, this kind of genes are worthy of deep research in
future work.

Actually, given X or X’ satisfy normal distribution, |X-
u| or |X’-u’| will be folded normal distribution, then the
Wilcoxon rank sum test instead of Student’s T-test is
used in the significance test of DEVGs.

Integrative enrichment analysis in the context of
differential expression variance

Obviously, the conventional enrichment analysis limits
to estimate the extent of differential expression rather
than differential expression variance. When considering
the contribution of DEVGs on pathway’s dysregulation,
it is necessary to refine the conventional approach to
take into account the DEGs and DEVGs together. Natur-
ally, an easiest strategy is to put DEGs and DEVGs to-
gether as the same dysregulated genes and use
conventional hypergeometric test to obtain the P-value.
However, this will disregard the respective distribution
of DEGs and DEVGs in a target pathway and in the
whole transcriptome. Thus, we extended the hypergeo-
metric test on two kinds of enriched genes simultan-
eously as bellows. Our approach, noted as HT2
(hypergeometric test on the model of the drawn of two
group balls), still depends on the hypergeometric distri-
bution and uses P-value to measure the dysregulation of
a pathway in the context of differential expression
variance.

Briefly seen in Table 1, given there are expression data
on total N genes, and x; DEGs and x, DEVGs selected
respectively. For some pathway, k; and k, genes from
pathway members (totally y genes) have differential ex-
pression and differential expression variance respect-
ively. Then the significance of deregulated genes as
DEGs or DEVGs enriched in this pathway can be



Yu et al. BMC Genomics (2015) 16:918

Table 1 The statistic of DEGs and DEVGs for pathway
enrichment analysis in the context of differential expression
variance

Pathway Others All
DEG 3 Xq-Kq X4
DEVG ko Xo7Ko )
Others y-kq-ky N+ k; + ko-xq-%p-y N-X;-%5
All y N-y N

estimated by formula 3. This P-value also ranges from
zero to one. The less the P-value is, the larger dysregula-
tion extent the pathway has, when the significantly lar-
ger number of genes in this pathway show differential
expression or differential expression variance.

(5) () (C5)
P(Xy =k, Xy = ky) = ki) \ ke N y-kizk»
(5)
P(Xy > ki, Xy > ky) = 1- > P(Xy = i1, Xy = iy)

<in,ip>€[021] % [0,209] = (1 w1 X (K 2]

() () ()
i1 i y-i1—ip
(5)

y

= 1_Z<il,i2>e[0.x1]><[O,xg]—(kl.xl]x(kzxz]

(3)

Estimating pathway crosstalks to link the dysregulated
pathways identified by IEA and prior-known disease
pathways
The first assistant down-stream analysis method of IEA is
to link the dysregulated pathways identified by IEA and
some prior-known disease pathways. Obviously, IEA tends
to detect the dysregulated pathways related to disease sub-
types. These pathways would be disease pathways as cur-
rently known, or the up-stream/down-stream of the
disease pathways. Conventional pathway enrichment usu-
ally analyses single pathway rather than multiple ones.
But, the pathway crosstalk, as a pair of pathways, also
plays important roles in the change of phenotypes [25].
An enrichment analysis of such pathway crosstalk requires
evaluating the enrichment of interactive genes from two
pathways correspondingly. And the pathway map based
on such estimated pathway crosstalks is just an additional
computational method to assistantly supply a bridge be-
tween subtype-relevant pathways (ie., IEA recognized
pathways) and disease-relevant pathways (i.e., Target path-
ways from disease database KEGQG).

Given several genes in a pathway as seeds, IEA uses
random walk to find their partner genes in the other
pathway. In fact, random walk with restart (RWR) is a
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well-known ranking algorithm for candidate gene
prioritization [28]. It supplies the probability of search-
ing the random walker at nodes in the steady state, so
that, it can give a measure of proximity between source
nodes (e.g., genes as seeds in a pathway) and other nodes
in molecule network (e.g., genes in the candidate path-
way with crosstalk).

Let N be the adjacency matrix of a gene network with
node set V and edge set E, in which the element Nj
equals one if e(i,j) € E (where e(j, j) represents the inter-
action between genes/nodes i and j), or zero otherwise.
Based on the topological structure of the gene network,
the transition matrix 7 can be calculated. Each element
in the transition matrix is denoted as Tj; and represents
the probability of transition from node i to node j. The
value of Tj; can be given by one of two ways as follows,
the first one is topology-weighted and the second one is
correlation-weighted.

Ny ..
Tj= {7!’ if e(i, j)<E , where d; =

. jeVNij
0, otherwise

l

wyNy ..
Tl-j _ {—W s lf e(l,J)EE , Where w; = Zje\/wijNij
0, otherwise

The RWR algorithm [28] updates the probability vectors
by

Pyt = (1-0)TP, + APy, k>0

where T is the transition matrix and p, is the initial
probability vector with the sum of the probabilities as
one. In py, all the source nodes are assigned equal prob-
abilities and other nodes are given zero. P., is obtained
when the algorithm is convergent. If P..(i) > P..(j), node i
is thought to be more proximate to source nodes than
node j does.

Thus, a two-way RWR approach (twRWR) is proposed
to search the genes involved in two interactive pathways
and estimate their enrichment for evaluating the path-
way crosstalk. The steps of two-way RWR include:

(i) For each pathway u, its DEGs and DEVGs are
used as source nodes/genes, and RWR is used
to rank the genes in known molecule network,
e.g., protein association network collected from
STRING database [38].

(i) In the high-ranked genes from above RWR
analysis, the genes belonging to pathway v are
the partner genes interactive with source genes.
Based on the sources genes and their partner
genes, the enrichment of those interactive genes
(Eyy) in pathways u# and v can be evaluated by
our HT2 approach, i.e., P-value in formula 3.
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(iii) For every pathway, the analysis in steps (i) and (ii)
is repeated. Then, given a pathway pair (&,v), it is a
pathway crosstalk only when E, and E,, are both
significant. Finally, the map of pathways consist of
those selected pathway crosstalks, where a node
represents a pathway and an edge represents a
pathway crosstalk.

Screening subtype-factor of genotype-phenotype
associations based on DEVGs and dysregulated pathways
supplied by IEA

The second assistant down-stream analysis method of
IEA is to screen subtype-factors according to the avail-
able clinical indices. As stated above, IEA focus on the
DEVGs and their involved pathways, and these genes
and pathways are thought as signatures of potential sub-
types of heterogeneous samples. However, these hidden
subtypes might have not been identified or formalized in
clinics. To evaluate such new signatures or subtypes,
one direct strategy is to measure the correlation between
genetic signatures (e.g., DEVGs or dysregulated path-
ways) and clinical indices (e.g., age or bmi). If one signa-
ture is significantly related to some clinical index, the
subtype represented by such signature would be medical
meaningful as to be observable in clinics and this signa-
ture is also called as subtype-factor related to particular
clinical index. The approach to identify such subtype-
factors is described in bellows.

For each pathway, its DEVGs are used to group case
(or control) samples into two clusters, when the case (or
control) samples have high varying expression compared
to control (or case) samples. That means these genes
have over-expression in one group of samples and
under-expression in the other group of samples. This
pathway would be a candidate subtype-factor when these
two sample clusters are discriminative on some clinical
index. On this condition, a clinical subtype of samples is
thought to be related to a given clinical index, which is
represented by a subtype-factor (e.g., a DEVG or a dys-
regulated pathway from IEA). Obviously, the clinical
subtype of a particular sample might be contributed by
many subtype-factors (i.e, many pathways). Given a
known phenotype (e.g., a clinical index), a few subtype-
factors correlated with this phenotype can be found, al-
though which just reveals only the tip of the iceberg for
the subtypes of genotype-phenotype associations.

Particularly, different from conventional un-supervised
clustering for subtype identification, a supervised-like
clustering approach (SLC) is proposed to identify
subtype-factors on the level of pathways. Firstly, the case
samples can be grouped into two clusters according to
their features’ values (i.e., DEVGs' expressions) com-
pared to those values of control samples: on each feature
(DEVG), one group of samples have larger values than
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controls meanwhile the other group of samples have less
values than the same controls, or vice versa. That
means, a hyperplane determined by a few control sam-
ples could separate the samples space into two sub-
spaces, and case samples in each of two sub-spaces are
grouped into one cluster. Secondly, some clinical infor-
mation of samples can be used to evaluate the potential
subtype represented by such two clusters of case sam-
ples. If the clinical values of these two groups of samples
have significant difference, a clinical subtype of
genotype-phenotype association (e.g., the correlation be-
tween clinical indices and pathway DEVGs) is identified
and the corresponding pathway is a subtype-factor cor-
responding to the given clinical index.

Practically, the SLC algorithm on a pathway is imple-
mented as bellows:

(i) Discrete the expressions of DEVGs of case samples
into binary vector based on the values of controls:
for a DEVG, if its expression value is larger than
the mean of controls, it is one in the binary vector;
otherwise, it is zero.

(i) Clustering case samples based on the binary
vectors by conventional methods as hierarchical
clustering or K-means, which obtains two sample
clusters.

(iii) Calculating the significance of difference between
clinical indices among above two sample clusters.
If the difference is significant, this pathway is
identified as a subtype-factor of the association
between the given pathway and clinical index.

Results and discussion

The evaluation of biological meaning of IEA by method
comparison

IEA is proposed to evaluate dysregulated pathways by
differential gene expression and differential expression
variance together. Differential expression variance has
been reported as a new and important expression
change during a phenotype change [36], e.g., diseases. In
this work, the biological hypotheses underlying IEA is
that, the dysregulated pathways full of genes with differ-
ential expression variance would be subtype-relevant
pathways. Although subtype-relevant pathways for par-
ticular complex disease are unclear in current pathway
databases, e.g., KEGG, it is still able to investigate if
prior-known disease pathways in KEGG would be
subtype-relevant and if IEA can identify them. In the
previous study of gene-set analysis [29], a comparison
scheme has been built to evaluate the performances of
different enrichment analysis methods (e.g, ORA or
GSEA) based on multiple expression datasets about
complex diseases. Different from previous general com-
parison, we focus on the comparisons by approach-
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specific datasets, in order to mainly evaluate the bio-
logical meaning of IEA.

According to the comparison protocol [29], we ran
total eight representative enrichment analysis methods
on 36 GEO datasets with target pathways in KEGG, and
obtained the rank of target pathway estimated by each
method on each dataset; then, for each dataset, we rank
the eight methods according to their prioritization per-
formance or sensitivity performance [29], and this data-
set is assigned as a specific-data for the Top-K methods
(K is set 3); thus, all specific-data for one method can
consist of K-order approach-specific dataset. Generally,
on one method’s approach-specific dataset, this method
should have best or comparable performances than
other methods, so that, the biological characteristics as-
sumed by this given method would significantly dis-
played on these datasets. Therefore, we can use this
strategy to investigate the biological meaning of IEA in
real datasets. In bellows, we firstly summarize the bio-
logical hypothesis hold by different state-of-the-art en-
richment analysis methods and their respective
quantitative measurements, and then discuss the com-
parison between IEA and others.

(i) PLAGE: it assumes the activity of pathway
rather than the expression of pathway genes
determines the activated or inhibited status of
pathways under different conditions; and the
pathway activity is measured by an activity
score as the weights of a metagene extracted
from all pathway genes by SVD (singular value
decomposition) [39].

(ii) GSVA: it proposes the change of pathway activity
between control and case should be evaluated at
the level of samples, e.g., considering the variation
of pathway activity over a sample population; and
the pathway activity is measured by so-called
GSVA score as a function of the expressions of
genes inside and outside the pathway, and these
scores are assessed similarly as GSEA by using
the Kolmogorov-Smirnov (KS) like random walk
statistic [40].

(ili) PADOG: it assumes that, if the genes highly
specific to a given pathway occur differential
expressions, the respective pathway would be truly
relevant in that condition; thus, a new gene set
score is calculated as the mean of absolute values
of weighted moderated gene t-scores where the
gene weights are designed to be large for the genes
appearing in few pathways and small for genes that
appear in many pathways [41].

(iv) GLOBALTEST: it holds an assumption that, if a
group of genes (e.g., pathway genes) can be used
to predict the clinical outcome, the expression
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patterns of such gene group must differ for dis-
similar clinical outcomes; thus, it uses generalized
linear model to give one P-value for a group
of genes, not a P-value for each gene, which can
be applied to estimate the enrichment of a given
pathway [42].

(v) MRGSE: it proposes that the high ranks of expression
changes (e.g., fold-change) of genes can indicate the
differential expression of a set of genes (e.g., pathway
genes); and the enrichment score or the test statistic
of a pathway is the mean rank of this gene set, ie,
the average of the ranks of t-statistics of pathway
genes [43].

(vi) GSA: it is similar to GSEA, and proposes two
improvements as the maximal average statistic for
summarizing gene-sets, and restandardization for
accurate enrichment inferences [44].

(vii) ORA: it takes into account the number of differen-
tially expressed genes observed in a pathway as indi-
cators of pathway states; generally, it uses a basic
contingency table to test the association between
the differential expression status of a gene (e.g.,
differentially expressed gene, or not) and its mem-
bership in a given gene set (e.g., pathway gene, or
not), which can be measured by the P-value of a
hypergeometric test [45].

(viii) IEA: it is proposed in this work to generally con-
sider the contribution of expression variance in a
dysregulated pathway; as one implementation, this
work takes into account the number of DEGs
and DEVGs observed in a pathway as indicators of
pathway states; it is designed to test the association
between the differential expression/differential ex-
pression variance status of a gene and their member-
ships in a given gene set, which can be measured by
the P-value from proposed HT2 approach in this
work.

First of all, we can cluster the above eight approaches
by their performances on all datasets to investigate the
general association among different methods. As shown
in Figs. 2 and 3, the similarity among any two methods
is measured by four kinds of criterion: the first one is
whether the ranks given by two methods on the same
dataset are also the same (i.e., Euclidean distance on
ranks in Fig. 2a); the second one is whether the ranks
given by two methods have the same change tendency
among different datasets (ie., Correlation distance on
ranks in Fig. 2b); the third one is whether the P-values
given by two methods on the same dataset are also the
same (i.e., Euclidean distance on P-values in Fig. 3a); and
the last one is whether the P-values given by two
methods have the same change tendency among differ-
ent datasets (i.e., Correlation distance on P-values in
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Fig. 3b). Obviously, GSA and PADOG are both based on
conventional GSEA, so that they are similar; the pro-
posed IEA is based on ORA, thus, they also have similar
performances on different datasets; PLAGE and GLO-
BALTEST are closely clustered together, one reason is
that they both estimate a score from all pathway genes
rather than individual genes (i.e., PLAGE uses weights of
a metagene extracted from all pathway genes by SVD,
and GLOBALTEST uses generalized linear model to give
one P-value for a group of genes); in addition, MRGSE
and GSVA are much different, and also different form
other methods, which is possibly because they have spe-
cific design principles on the measurement of pathway
dysfunctions, i.e, MRGSE combines the t-statistics of

individual pathway genes meanwhile GSVA uses a score
as a function of the expressions of genes inside and out-
side a pathway.

Then, we directly grouped the datasets according to
the performance of a given method, e.g., some datasets
are included as K-order IEA-specific datasets, only when
the rank of IEA performance compared to all methods
are in the Top-K on these datasets, where K is set 3 in
this study. To quantify the performance, sensitivity (i.e.,
P-value) and prioritization (i.e., rank) are adopted as pre-
viously [29]. In previous evaluation on these datasets,
PADOG displays consistently comparable performance
with other methods, meanwhile, PLAGE, GLOBALTEST
and MRGSE have the best performances on some
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categorise of datasets [29], which already suggest the ex-
istence of approach preferences. Thus, the categories of
datasets induced in this work can indicate potential pref-
erences of different methods on particular datasets. Of
course, on the preference-specific datasets (ie.,
approach-specific datasets), the preferred method should
have the best performance; meanwhile, some other
methods would have comparable performances. There-
fore, this new evaluation scheme can supply evidences
for two hypotheses: one is that the expression features of
a pathway measured by a given method actually have
biological meaning, and are existing or observable in real
datasets corresponding to particular phenotypes (e.g.,
complex diseases); the other one is that a method has
significant preferences (i.e., highest performance) on a
group of datasets (i.e., diseases), which is comparable or
not by other methods.

As seen in Table 2 for prioritization performance,
every method shows its preferences on particular data-
sets (The list of these 3-order approach-specific datasets
is in Additional file 1: Table S1); in addition, the method
comparison on more strict specificity as 2-order
approach-specific datasets (K =2) and more weak speci-
ficity as 4-order approach-specific datasets (K =4) have
also been done and reported in Additional file 2: Table
S2 and Additional file 3: Table S3. Combined these re-
sults together, it is easily to see that: IEA, ORA and
PADOG have significant preferences, due to their high-
est performances than all other methods on their corres-
pondingly preferred datasets; GLOBALTEST, GSVA,
PLAGE and MRGSE also have significant preferences on
datasets, although sometimes PADOG could have com-
parable performances with them (e.g, PADOG and
MRGSE are comparable when K =3 in Table 2, but not
when K =2 in Additional file 2: Table S2; or PADOG are
comparable to GLOBALTEST, GSVA, PLAGE when K =
4 in Additional file 3: Table S3, but not when K < 4); be-
sides, GSA is challenged by PADOG, because on the
GSA-specific datasets, PADOG always achieves similar
or better performances, but not vice versa.

Page 9 of 19

And seen in Table 3 and Additional file 4: Table S4 for
sensitivity performance, again, every method shows its
preference on particular datasets (The list of these 3-
order approach-specific datasets is in Additional file 5:
Table S5). It seems that GLOBALTEST and PLAGE have
generally comparable performances with other methods
according to their performances on many preferred
datasets of other methods. Even though, IEA shows the
best performance on the IEA-specific datasets, and is
better than ORA on the ORA-specific datasets. This fact
strongly suggests that, IEA actually can detect dysregu-
lated pathways, and displays competitive performance
than conventional methods in current evaluation scheme
when those dysregulated pathways are just target path-
ways (e.g., disease pathways in KEGQG); besides, IEA is
realized based on the conventional ORA, and improves
ORA on the sensitivity performance, which would just
be contributed by considering the new feature genes as
DEVGs in dysregulated pathways.

Finally, above dataset-driven method comparison sup-
plies new insights on the performance specificities of
many gene-set approaches, especially for IEA; and also
supports the importance and biological meaning of dys-
regulated pathways identified by IEA. We can draw fol-
lowing conclusions:

(i) Although a few methods have consistent perfor-
mances on many datasets (e.g,, GLOBALTEST and
PLAGE on sensitivity performance, or PADOG on
prioritization performance, as shown in both this
study and previous work [29]), different method
still have their preferences on the expression char-
acteristics of dysregulated pathways, so that each
method can achieve significantly better perfor-
mances on their specific datasets rather than all
datasets. Especially, on the IEA-specific datasets,
IEA indeed are the best one than other methods;
and even on the ORA-specific datasets, IEA is
better than ORA on sensitivity performance. On
the IEA-specific datasets, the target pathways or

Table 2 The prioritization performance about method comparison on approach-specific datasets (K= 3)

D GSA-specific ~ PADOG-specific  IEA-specific MRGSE-specific  ORA-specific ~ GLOBALTEST-specific GSVA-specific PLAGE-specific
GSA (14.93,12.82) (25.57,25.66) (4447,2940)  (3743,26.53) (45.72,2972)  (32.23,3144) (22.52,26.76)  (33.26,22.45)
PADOG (11.98,12.48) (10.06,9.34) (29.232383)  (19.32,15.79)  (26.56,2069)  (16.84,21.56) (1547,12.87)  (18.80,21.06)
IEA (52.05,2886)  (51.15,26.26) (18.55,11.72) (68.01,16.79) (34.14,1548)  (41.20,26.26) (53.0429.63)  (51.87,31.13)
MRGSE (51.973059)  (51.23,29.03) (65.8131.64) (24.67,16.48) (74.35,19.55)  (50.63,2847) (45.72,27.77)  (49.39,26.17)
ORA (472231.35)  (4891,2829) (24.80,15.05)  (69.98,17.56, (23.56,14.62) (52.3823.61) (38.76,28.78)  (53.60,26.98)
GLOBALTEST (36.52,21.70)  (31.10,18.93) (3039,15.78)  (3544,18.29 (41.53,1815)  (14.66,16.19) (452921.23)  (26.1822.77)
GSVA (33.56,24.84)  (47.83,28.90) (59.092648)  (52.99,27.27 (52522558)  (61.99,29.17) (13.42,10.25) (62.49,25.01)
PLAGE (26.44,16.96)  (29.07,2048) (42.06,34.24)  (3548,19.88 (45.77,2491)  (30.15,27.15) (31.86,16.67)  (13.61,11.04)

The performance of an approach on its specific dataset is highlighted in bold. And the performance of comparable approaches on some specific dataset is

highlighted in bolditalic
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Table 3 The sensitivity performance about method comparison on approach-specific datasets (K= 3)

D GSA- PADOG- IEA-specific MRGSE-specific ORA-specific ~ GLOBALTEST- GSVA-specific - PLAGE-
specific specific specific specific

GSA (0.10,0.12) (0.22,0.28) (0.35,0.29) (0.042,0.014) (0.48,0.40) (0.25,0.27) (0.19,0.22) (0.21,0.22)

PADOG (011,015 (0.051,0.11)  (0.24,0.20) (0.057,0011) (0.41,0.28) (0.14,017) (0.13,0.12) (0.12,0.15)

IEA (0.11,017) (0.13,0.13) (0.044,0.057) (0.12,0.14) (0.012,0.0043) (0.092,0.11) (0.12,0.13) (0.10,0.12)

MRGSE (073019 (046,031) (0.59,0.27) (0.020,0.012) (0.56,0.077) (047,032) (046,0.31) (0.50,0.32)

ORA (0.24,0.23) (0.49,0.27) (0.24,021) (0.50,0.60) (0.13,0.085) (039,029 (0.37,0.28) (0.40,0.29)

GLOBALTEST (0.11,0.13) (0.013,0.028)  (0.052,0.084) (0.00011,0.00015) (0.083,0.10) (0.011,0.044) (0.037,0086)  (0.025,0.073)

GSVA (0.11,011) (0.32,0.28) (0.33,0.26) (0.060,0.080) (0.21,0.23) (0.24,0.26) (0.013,0.017) (0.21,0.25)

PLAGE (0.097,0.11) (0.063,0.18) (0.095,0.15994) (0.010,0.014) (0.19,0.10) (0.036,0.11) (0.034,0076)  (0.022,0.066)

The performance of an approach on its specific dataset is highlighted in bold. And the performance of comparable approaches on some specific dataset is

highlighted in bolditalic

disease pathways are possibly just the subtype-
relevant pathways, so that, [EA have competitive
performance in the comparison scheme. Therefore,
the expression variance focused by IEA is actually
full of biological meaning, and will help IEA to
detect new dysregulated pathways, e.g., subtype-
relevant pathways. In addition, the complex diseases
concerned in IEA-specific datasets actually already
have reports about the existence of subtypes on
genetic level, such as dilated cardiomyopathy [46],
renal cancer [47], prostate cancer [48], colorectal
cancer [49], and thyroid cancer [50].

Every method, or every method category, can actually
capture particular dysregulated pathways. When the
target pathway of a dataset just displays the expres-
sion characteristics focused by an approach, such
approach would have better performance on this
dataset. On some specific datasets preferred by other
methods, IEA should face two conditions: one is
under the condition that the target pathway is not
subtype-relevant pathway, and IEA will be underesti-
mated but has supplied a useful down-stream analysis
(ie, map of pathways) to assistantly link the target
pathway and potential subtype-relevant pathway
identified; the other one is under the condition that
the target pathway is a subtype-relevant pathway,
and IEA should be further enhanced by integrating
expression variance with other pathway pattern
(e.g., linear model in GLOBALTEST or weights of
overlapping genes in PADOG), which is worthy of
study in future.

(i)

A proof-of-concept study of IEA on transcriptional
analysis of complex diseases (diabetes)

IEA has been applied to detect the biological malfunc-
tion of complex diseases (e.g., Type II Diabetes) on the
pathway level rather than gene level. [EA, as a pathway-
centred analysis approach, not only supplies the conven-
tional pathway enrichment analysis but also extracts

divergent pathway associations, such as: pathway & dis-
ease genes, pathway & pathway (i.e., pathway crosstalk),
and subtypes of pathway & clinic (i.e., genotype-
phenotype association).

Firstly, it is the data pre-procession. Data needed in
IEA have been prepared from the public resources: The
gene expression data of human islets from non-diabetic
and diabetic were downloaded through GEO [51]; there
are two datasets, the main dataset GSE41762 [52] con-
tains samples from 57 non-diabetic and 20 diabetic with
20950 genes, and the replicate dataset GSE38642 [53]
contains samples from 54 non-diabetic and 9 diabetic
with 19514 genes; the gene lists of 186 KEGG pathways
are obtained from GSEA package [1]; the human protein
interaction network (PIN) are extracted from STRING
database [38] with confidence score no less than 0.9;
four clinical indices are also obtained from the supple-
mentary of original study [52] as sex, age, bmi, and
HbA;; meanwhile, diabetes associated genes are
searched from GeneCards database [54].

Secondly, it is the main step of IEA. Different scores
of pathway enrichment are calculated: (i) the conven-
tional score (ORA) as P-values of hypergeometric distri-
bution of DEGs in a pathway; (ii) the conventional score
(GSEA) as P-values of estimated pathway enrichment;
(iii) the new score (IEA) as P-values of hypergeometric
distribution of differential genes (integrating DEGs and
DEVGs) in a pathway calculated by the proposed HT2
approach. For ORA or IEA, the thresholds of P-value of
significance test on DEGs or DEVGs are both set as
0.05, and adopted a pervious strategy to select those fea-
ture genes [29]: 1) select all genes with FDR adjusted p-
values no more than 0.1; 2) if the genes selected are less
than 200, re-select all genes with P-values no more than
0.05 and fold-change no less than 1.5; 3) if the genes se-
lected are still less than 200, directly use the top 1 % of
genes ranked by P-values from least to largest.

Thirdly, it is one assistant step of IEA. Pathway cross-
talks are evaluated by two-way RWR approach. The
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interactions selected from PIN consist of differential net-
work [55], where the selected interactions have signifi-
cant correlation difference between diabetic and non-
diabetic groups. On this differential network, two-way
RWR approach is used to find the pathway crosstalks.
The most significant pathway crosstalks (the threshold
of P-value of significance test is set as 0.001 strictly) con-
sist of the map of pathways. Besides, the enrichments of
pathway genes or disease-associated genes in the high-
ranked genes of RWR are also analyzed and evaluated by
AUC [56], which support the efficiency of RWR on
pathway-related analysis.

Fourthly, it is the other assistant step of IEA. The
DEVGs in each pathway are used to group samples in
two clusters by SLC approach. For each clinical index
from sex, age, bmi, and HbA,,, its subtype-factors are
identified. As comparisons, the all genes of each pathway
are also used to directly group samples to evaluate the
significance of detected subtype-factors.

Obviously, the above analysis routine can be applied
on any other dataset of samples with different kinds of
complex diseases.

Noted, our proof-of-concept study is to combine a
group of genes with differential expression and a group
of genes with differential expression variance. (i) We
don’t select the genes with high variances, but the genes
whose expression variances can distinguish different
conditions/phenotypes. If the expression variance of a
gene can classify samples with different phenotypes well,
the dominant component of this gene’s variance could
be biological variance. Obviously, the technique variance
should have no such discrimination. (ii) We have also
checked the correlation between the variance of each
DEVG and each clinical index. Many genes’ expression
variances even have significant correlation with clinics,
which would not be caused by technique variance too.
(iii) Our experiment on microarray is an application of
IEA to support the idea of combining DEG and DEVG,
and the results show our method’s efficiency. Indeed,
many approaches are still proposing to improve the se-
lection of conventional DEG or even new DEVG. The
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removal of technique variance will improve the selection
of DEVG and final IEA, which is our future work.

Diabetes associated genes on pathways

First of all, we investigated the overlap between prior-
known disease genes (e.g., diabetes associated genes) and
pathway genes. Many pathways are full of diabetes asso-
ciated genes (Additional file 6: Table S6), which means
pathways could have great changes during disease devel-
opment and progression. These pathways would be
causes or outcomes of the disease. Although IEA pays
attention to the identification of dysfunctional pathways
(e.g., subtype-relevant pathways) rather than discrimin-
ation of causal pathways, as introduced in follows, the
map of pathways can further complementally supply
some clues of the causal roles of pathways at the level of
network of networks [57].

Then on the main dataset GSE41762 [52], we have ob-
tained feature genes as summarized in Table 4. There
are 2558 DEGs and 345 DEVGs selected by IEA, many
of them are also detected on the replicate dataset
GSE38642 [53]. The 523 genes of DEGs are disease
genes, and 658 genes are pathway genes; meanwhile, the
63 genes of DEVGs are disease genes and 79 genes are
pathway genes. Obviously, there are many disease-
informative or function-informative genes disregarded in
conventional analysis (i.e., DEVGs rather than DEGs),
and IEA can capture these genes and estimate their ef-
fects in the dysfunction of pathways.

Furthermore, in DEGs, there are 1493 gene up-
regulated in disease state and 1065 genes down-regulated.
Meanwhile, there are 185 genes tight-regulated in disease
condition and 160 genes relax-regulated. The examples of
such four expression patterns are shown in Fig. 4. MYC,
known as a cancer oncogene, is also reported to be altered
in diabetes [58]. Seeing Fig. 4a, MYC is indeed up-
regulated in the diabetes state. Insulin is known as a main
cause of diabetes [59], and its an isoform as INS-IGF2 ac-
tually has down-regulation when diabetes occurs (Fig. 4b).
HOXDS, as a gene in the homeobox family encoding a
highly conserved family of transcription factors, has an

Table 4 The statistic on DEGs, DEVGs and their overlapping with pathway or disease genes (Diabetes)

DEG*  DEVG PG_DEG  DG_DEG PG_DEVG ~ DG_DEVG DEGup  DEGdown  DEVGup DEVGdown
GSE41762 2558 345 658 523 79 63 1493 1065 160 185
GSE38642 2306 632 647 515 167 128 1294 1012 389 243
Overlapping 836 28 246 10 219 3 489 346 15 13
Significance 0 74832e-07 0 3.353%-11 0 000059927 0 0 52401e-08  3.6083e-08

°DEG points genes with differential expression; DEVG points genes with differential expression variance; PG_DEG points the pathway genes in DEGs, i.e., the
overlaps between pathway genes and DEGs; DG_DEG points the disease genes in DEGs, i.e., the overlaps between disease genes and DEGs; PG_DEVG points the
pathway genes in DEVGs, i.e., the overlaps between pathway genes and DEVGs; DG_DEVG points the disease genes in DEVGs, i.e,, the overlaps between disease
genes and DEVGs; DEGup and DEGdown point genes with up-regulation and down-regulation respectively; DEVGup and DEVGdown point genes with

relax-regulation and tight-regulation respectively
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Fig. 4 The cases of differential expression patterns of DEG and DEVG. For genes MYC, INS-IGF2, HOXDS8, and REXOT1, (a)-(d) give their expression
profiles on dataset GSE41762; (e)-(h) give their expression distribution on dataset GSE41762; (i)-(I) give their expression profiles on dataset
GSE38642; (m)-(p) give their expression distribution on dataset GSE38642

important role in the morphogenesis. It has tight-
regulation in diabetes condition (Fig. 4c), so that, it may
participate in the accurately regulation [21] of bio-
logical processes associated to diabetes. By contrast,
REXO1, known as Transcription elongation factor B
polypeptide 3-binding protein 1, would be a cofactor
involved in gene regulation [60]. This gene shows
relax-regulation in diabetes condition (Fig. 4d). Thus,
REXO1 would be a cause or indicator of some sub-
types of diabetes. Indeed, the original study has sup-
plied four clinical indices [52], we found age is
mostly related to the subtypes or sample clusters of
diabetes determined by REXO1 (Seeing Additional file
11: Table S11 and Additional file 12: Table S12).
More importantly, DEVGs (either "tight" or "relax" ex-
pression) don’t mean no-changes. As the key point of
our model and method, DEVG means a gene would de-
note activation of a signalling pathway (or sub-pathway)
in a group of samples, meanwhile, inactivation of this
signalling pathway (or sub-pathway) in another group of
samples. This would be a main cause of heterogeneous
samples. The biological mechanism underlying this
phenomenon would be the switch of pathway activation.
If based on other kinds of enrichment analysis frame-
work, it is possible to discuss the activation, inactivation,

or activation-switch of a signalling pathway, which will
be studied in our future work.

Dysregulated pathways identified to capture DEGs and
DEVGs simultaneously

In conventional analysis, the genes with differential ex-
pression are focused; now, the genes with differential ex-
pression variance are also attractive. In the context of
differential expression variance, the dysregulated pathways
are expected to have as many DEGs & DEVGs as possible,
which can be captured by over-representation approach
like the proposed IEA. For evaluation, a gene-distribution
graph is further introduced to show the percentages of
DEGs and DEVGs respectively for each pathway. In Fig. 5,
a pathway is represented by a point whose indices in axis
are the percentages of DEGs and DEVGs in this pathway
respectively. Obviously, the pathways full of DEGs and
DEVGs tend to locate at the right-up conner of such
gene-distribution graph.

To validate the pathways identified by IEA and
compare to other methods ORA and GSEA, we firstly
calculated the percentages of DEGs and DEVGs of
each KEGG pathway and plot them on the gene-
distribution graph. Then we calculated the dysfunc-
tional score (i.e., enrichment) and rank all KEGG
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pathways, and found the Top-30 selected pathway
(labelled in red) in graph. Obviously, the pathways
high-ranked by ORA have least scores located at the
right-bottom of gene-distribution graph (Fig. 5a). It
means the pathways selected by ORA are full of
DEGs rather than DEVGs. By contrast, in the IEA,
the detected pathways are full of DEGs and DEVGs
respectively and significantly (Fig. 5b). Even more, the
dysregulated pathways detected by well-known GSEA
[1] on these datasets shown weak performance on the
identification of pathways full of DEVGs (Fig. 5c).
Thus, IEA indeed can effectively detect the pathways
under-scored in conventional analysis, and these dys-
functional pathways would be disease-relevant or
subtype-relevant. This conclusion is also supported by
the similar results from the analysis on replicate data-
set (Fig. 5d-f).

Noted, the pathways identified by different methods
can be significantly observed in the analysis on the rep-
licated dataset (P-value less than 0.05, whose details are
supplied in Additional file 7: Table S7). The issue of the
consensus of pathway identification is not discussed
more here, although some other studies have worked to

improve the robustness of dysregulated pathway identi-
fication by integrating other prior information (e.g.,
biological network or GO annotation) [16].

In the high-ranked pathways identified by IEA,
many pathways are actually full of DEVGs. These
DEVGs could be further associated to potential sub-
types of samples, which are discussed in follows. Be-
sides, some of these pathways under-scored by other
methods indeed have been reported to be altered in
the disease state (e.g., diabetes). For examples,

(i) 'KEGG HEMATOPOIETIC CELL LINEAGE'" Dia-
betes is known to compromise the function of the
bone marrow (BM) [61], and diabetic complications
mainly including macrovascular events might be
from the dysfunctional BM-derived hematopoietic
cells.

(i) 'KEGG CYTOKINE-CYTOKINE RECEPTOR
INTERACTION'. Cytokines regulate inflammatory
and immune responses, which play important roles
in the pathogenesis of diabetes and its microvascular
complications. The functional variations of cyto-
kines and their receptors can benefit the prediction
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of the susceptibility and progression to Diabetic
nephropathy (DN) [62]. As the potential pathogenic
mediators in DN, cytokines might provide new po-
tential therapeutic agents for disease treatments.

Dysregulated pathway-crosstalk identified to reveal the
interactive map and module among pathways

Different from conventional strategy to use the over-
lapping genes as pathway crosstalks [27], two-way
RWR is assistantly applied to find the interactive
genes between any two pathways. RWR is previously
used in the rank of disease genes [28], which holds
the assumption that the candidate pathogen genes are
more proximate to the known disease genes than ran-
domly selected genes. This assumption is expected to
be hold for pathway genes too.

We first evaluated the pathway genes possibly selected
by RWR,which uses the identified DEGs & DEVGs in a
pathway as seeds. In the high-scored genes by RWR,
there is a significant amount of pathway genes (seeing
Table 5), which is the same as disease genes ranked by
RWR (Table 6). In the evaluation in Table 5, we have set
two kinds of control experiments. One is the prior-known
network used, i.e., two sources as STRING [38] and HPRD
[63] are both applied; the other one is the feature genes
used in the given background network, i.e., three kinds of
feature genes (as all ranked genes with P-values, the
ranked DEGs with P-values and the ranked genes from
RWR excluding the seeds) are respectively used to calcu-
late the AUC values [28] to evaluate the efficiency of
selecting/ranking pathway genes or disease-associated
genes. Depending on these experiments, we can find:

(i) As a control, when all genes are ranked according
to P-values, its AUC is low. And when the selected
DEGs are ranked according to P-values, the AUC is
similar to that of all genes. Meanwhile, when the
genes from two-way RWR excluding seeds are
ranked according to proximity values, the AUC
achieves highest, which support again RWR-based
approach is effective to capture interactive pheno-
typic genes as pathway genes or disease-associated

Table 5 The AUC of different rank lists for pathway genes
(Diabetes)

PIN STRING-based HPRD-based

Data GSE41762 GSE38642 GSE41762 GSE38642
All genes 0.4861° 048611 0.4861° 048611
DEGs 046342 051717 046342 051717
twRWR 0.83498 0.83326 0.68449 0.68023

For feature genes like all genes and DEGs, they don't use network
information, so that, they have the same AUC values on the same dataset
although different network used
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Table 6 The AUC of different rank lists for disease-associated
genes (Diabetes)

PIN STRING-based HPRD-based

Data GSE41762 GSE38642 GSE41762 GSE38642
All genes 0.46994° 046567 0.46994° 046567
DEGs 045695 047277 045695 047277
twRWR 0.73546 0.73652 0.70633 0.69904

°For feature genes like all genes and DEGs, they don't use network
information, so that, they have the same AUC values on the same dataset
although different network used

genes. Thus, two-way RWR is effective to mimic the
pathway crosstalk and construct the associations
among pathways, which is obviously consistent in
multiple control experiments by using different
prior-known network (e.g., STRING and HPRD),
or different datasets (e.g, GSE41762 and
GSE38642), or even different ranked/selected
feature genes (e.g., pathway genes and disease-
associated genes).

(i) The protein association network (as in STRING
[38]) rather than protein physical network (as in
HPRD [63]) would be more efficient to lead the
two-way RWR to link seed genes to pathway genes
or disease-associated genes. There are at least two
reasons for this result: one is that the known pro-
tein physical network is still greatly incomplete, by
contrast protein association network would supply
additional predicted interactions with high confi-
dence; the other one is that, except for direct in-
teractions between pathways, protein association
network would cover much more indirect interac-
tions or long-term interactions, which would mimic
the pathway crosstalk well. In all, protein association
network is efficient to detect the associations
among pathways, whose usage to accurately predict
physical interaction of pathways is out of this work
and would be a future study.

Thus, RWR is actually effective to detect the genes
interactive within known pathway genes. Then by two-
way RWR, we can find the interactive genes from two
pathways, and select any pathway-pair as a crosstalk sig-
nificantly (Additional file 8: Table S8). All the crosstalks
connect the known pathways as a map, where each
crosstalk is an edge and a pathway is a node. This map
of pathways is a network of networks, rather than the
original background network of separate molecules. In
the map of pathways, the modules of interactive path-
ways can be detected, where a module represents a
group of closely inter-connected pathways. In these
pathway modules, two modules are obviously related to
diabetes. One module (Module 1 shown in Fig. 6) is the



Yu et al. BMC Genomics (2015) 16:918

Page 15 of 19

Aaco s cau. sece @i ranan

/ A\
/ KEGG_T_CELL RECEPTOR SIGNALING PATHWAY\
| KEGG_BUTANOATE_METABOLISM

KEGG_LYSINE_DEGRADATION

KEGG_CYTOSOLIC_DNA SENSING PATHWAY

KEGG_TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY

:

Azea,cvsyswzm.o.«ws,mmaousm

ceas orner ve@) rost oiserse
redg ooy resecron
N\

KecG @A
m ®

KEGG,_PRIMARY_IMMUNODEFICIENCY

KEGG_AUTOIMMUNE THYROID BISEASE, KEGG_ARGININE_AND_PROLINE_METABOLISM

KEGG_SELENOAMINO_ACID_METABOLISM

KEGG_PRIMARY_BILE_ACID_BIOSYNTHESIS

B

KEGG_STEROID HORMONE BIOSYNTHESIS

KEGG.TAURINE_AND_HYPOTAURINE_METABOLISM

s oy oo versosn

KEGG_DRUG METABOLISM_CYTOCHROME_P450

KEGG_GLUTATHIONE _METABOLISM

KEGG_RETINOL_METABOLISM

KEGG_GLYCEROLIPID_METABOLISM

Module 2 is full of disease/diabetes associated pathways

KEGG_PEROXISOME

KEGG_VALINE_LEUCINE_AND_ISOLEUCINE_DEGRADATION

KEGG_PROPANOATE METABOLISM

KEGGMK,’GWW

KEGG_GLYCINE_SERINE ANBITHREONINE METABOLISM

KEGG_HISTIDINE_METABOLISM

e veor e prnmny

ke vboRNNOBLYEA E.m HRORREABILERTE

Fig. 6 The main topological structure of the map of pathways reconstrcucted on diabetes datasets. Module 1 is full of signalling pathways, and

KEGG_FATTY /ACID_METABOLISM

Keco TRYPTOABN NETABOLISH

KEGG_PYRUVATE_METABOLISM

KEGG. CITRATE CYCLE TCA CYCLE

KEGG_NITROGEN_METABOLISM

KEGG_GLYCOLYSIS_GLUCONEOGENESIS

KEGG_PENTOSE_PHOSPHATE PATHWAY.

KEGG_ALANINE ASPARTATE AND_GLUTAMATE_METABOLISM

KEGG. NICOTIATE Aw‘mwme METABOLISM R A,.NOSE P
ceco Pur‘maousM /

KEGG_RIBOFUAVIN_METABOLISM
KEGG_DRUG_METABOLISM OTHER ENZYMES

KEGG_GALACTOSE METABOLISM

KEGG_STARCH_AND_SUCROSE_METABOL

KEGG,GLVCQSAM\NC.CAN _DEGRADATION

P —
Kese Gwcosvmueou?m‘mss\s oawaL0_seRES

KEGG_SPHINGOLIID. VETABOLISM
xece euvcoserncoLpoffiness 6Loe0 seres
KEGG_GLYCOSAMINOGLYCAN B YNTHESIS_KERATAN_SULFATE

KEGG_GLYCOSPHINGOLIPID_BIOSYNTHESIS_LACTO_AND_NEOLACTO. SERIES
KEGG_OTHER GLYCAN_DEGRADATION

KEGG_O_GLYCAN_BIOSYNTHESIS

group of signalling pathways. Signalling pathways are
known as the up-stream functions in the cascades of sig-
nals, so that, they have great possibility to be the causes
of the dysfunction of down-stream functions, e.g., dia-
betes pathways. The other module (Module 2 shown in
Fig. 6) is just the group of pathways concerning glycoly-
sis, sugar metabolism, glycosaminoglycan and diabetes,
which seems to be extremely a core pathway module of
diabetes. Noted, the Type II diabetes pathway would
have significant crosstalk with pentose phosphate path-
way as shown in Fig. 6. As reported, the pentose phos-
phate pathway is widely activated in diabetes and its
complications [64—67], thus this pathway would be im-
portant to understand the risk of diabetes diagnosis and
treatment in clinical application. Obviously, the pentose
phosphate pathway have no significance on the selection
by IEA or other methods, and actually, its importance is
reflected from the topological structure of the map of
pathways. These facts reveal: (i) conventional approaches
usually focus on single pathways, so that, they can some-
times capture the disease associated pathways relevant
to particular phenotypes but can’t distinguish or under-
estimate the potential causal relationship among path-
ways; (ii) the proposed IEA supplies the map of

pathways to reflect the functional organization of path-
ways, and disclose the key modules of pathways, such as
the upstream pathways related to signalling pathways
and the downstream pathways associated to diseases;
(iii) on the map of pathways, those pathways full of
DEVGs and DEGs tend to interact with disease path-
ways, indicating the determinant of subtypes (i.e., the
subtype-factors identified in follows) are actually also the
potential determinants of diseases. Totally, the map of
pathways supplies us a new viewpoint of functional
organization at the level of network of networks.

Dysregulated pathways associated to clinical indicator as
subtype-factors

The pathways full of DEGs and DEVGs are specially se-
lected by IEA, in which the DEVGs might be the cause
of potential subtypes of samples. Compared to the mean
values of genes in case, the samples in control can be di-
vided into two groups: one group of samples have larger
gene expressions than that mean value; and the other
group of samples have fewer values, or vice versa. Thus,
we have applied two strategies to cluster the samples in
control or case group, which can associate one pathway
to some clinical index. The first common strategy (noted
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as PGC) is using the expressions of whole genes in a
pathway to cluster samples into two clusters, and test
the significance of these two groups of samples on one
clinical indicator (The test is to see if one group of sam-
ples have larger or fewer clinical values than those of the
other group of samples). The second strategy (just as
proposed SLC) is using the discrete value of DEVGs in
the same pathway to group samples and measuring their
relationships with clinical indices.

Additional file 9: Table S9 gives the P value of the as-
sociation of each pair between a pathway and a clinic
index for normal samples, and Additional file 10: Table
S10 gives those for diabetes. Generally, SLC tends to dis-
cover more significant potential subtypes of samples cor-
responding to particular clinic index (Fig. 7). Thus,
DEVGs actually have more power to identify the sub-
types of genotype-phenotype associations than conven-
tional approaches based on differential expression only.

Obviously, one pathway can associate to multiple clin-
ical indices, and one clinical index can also relate to mul-
tiple pathways. KEGG WNT SIGNALING PATHWAY’ is
consistently related to bmi in the analysis of duplicate
datasets. In fact, this pathway already has a few evidences
on their associations with body weight [68-70]. ‘KEGG
CELL CYCLE’ is found to possibly associate with age, sex,
bmi or Hba, which is known as a common factor in dis-
ease development and progression [71].

Although each DEVG can separately determine some
potential subtype-factor, here, we only discuss the
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determination of DEVG combination at the level of
pathway. In addition, the association of each pair be-
tween a gene (i.e., one DEVG) and a clinical index are
listed in Additional file 11: Table S11 and Additional file
12: Table S12 for normal and diseased samples
respectively.

Noted, subtype is a potential biological explanations of
DEVG, so that, we have evaluated the possible subtype-
factors rather than subtypes by the association between
DEVG (or DEVG-full pathways) and known clinical
index. In the statistical analysis, we have analyzed age,
sex, bmi, and even Hbalc which evaluates the risk of
diabetes. Thus, this clinical information can help us to
find subtype of genotype-phenotype associations as
stated above. Of course, in breast cancer, there are some
well-known subtypes determined on genotypes. To the
best of our knowledge, in diabetes, the subtypes as T1D,
T2D, Gestational diabetes, Surgically induced diabetes,
Chemically induced diabetes, are not defined by one or
two genes/proteins. Thus, our finding of subtype-factors
(DEVGs or pathways) would be the causes or indicators
of disease (e.g., diabetes) subtypes on genome level,
which will be further studied in future.

Conclusion

Pathway enrichment analysis is a useful tool in the study
of biology or biomedicine, due to its functional screen-
ing on the well-known biological processes rather than
single molecules. The measurement of dysfunctions of

Sex correlated

3 1 25

Pathways
based on
gene expressions

Pathways
based on
DEVG expressions

Bmi correlated

12 1 28

Pathways
based on
gene expressions

Pathways
based on
DEVG expressions

many subtype-factors

Fig. 7 The summary of dysregulated pathways identified as subtype-factors corresponding to four clinical indices. For example, there are 11
pathways identified by IEA to be correlated with Hba values (i.e., based on DEVG expressions of pathway genes), but, there are only 1 pathways
recognized by conventional strategy (i.e, bsaed on raw expressions of pathway genes). Similarly, for other clinical indices, IEA can also identify
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pathways during a phenotype change, e.g., from normal
to diseased, is the key issue when applying enrichment
analysis for pathway or other functional gene set. Differ-
ent from differentially expressed genes focused in previ-
ous methods, the genes with great differential expression
variance are also attractive and important, which indi-
cate another specific characteristic of a biological system
in the change of phenotypes.

In the context of differential expression and expression
variance, [EA is proposed to identify the pathways full of
DEGs and DEVGs simultaneously, rather than conven-
tional approaches focusing on only DEGs. The biological
meaning of IEA has obtained strong evidences by an
evaluation scheme based on method comparison. On
the real datasets of disease samples, IEA indeed specific-
ally identify pathways containing DEGs and DEVGs,
which are usually under-scored by other methods. The
map of pathways was further reconstructed based on the
selected pathway crosstalks, and the module
organization among pathways was also detected. The
topological structure of such network of pathways re-
veals the signalling pathways as upstream functions
would be causes of disease, and the disease-relevant
pathways as downstream functions would link to those
upstream pathways by crosstalk. In addition, some
disease-relevant pathways or subtype-relevant pathways
are well associated with clinical indices according to
their DEVGs’ relative expression level, which are usually
not observed from the raw expression profiles of path-
way genes. Although many identified subtype-factors
haven’t clinical evidences due to the limit in the clinical
application, the IEA actually show its ability to identify the
risk of subtypes of genotype-phenotype associations.
Those subtype-factors could help us in accurately
realizing personal prevention or personal treatment [72,
73]. Besides, the additional analysis results on colorectal
cancer also support these conclusions (Additional file 13:
SI document - a case study on colorectal cancer and
Table A1-A3; Additional file 14: Table A4; Additional
file 15: Table A5).

Totally, IEA supplies a new way to carry on enrich-
ment analysis in the context of differential expression
and expression variance, and can easily expand to handle
with the analysis in other more complicated context
(e.g., the differential expression covariance). It is also ne-
cessary to expand IEA to functional class scoring or
pathway topology based approaches in future work.
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