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Abstract

Background: Most currently-used normalization methods for miRNA array data are based on methods developed
for mRNA arrays despite fundamental differences between the data characteristics. The application of conventional
quantile normalization can mask important expression differences by ignoring demographic and environmental
factors. We present a generalization of the conventional quantile normalization method, making use of available
subject-level covariates in a colorectal cancer study.

Results: In simulation, our weighted quantile normalization method is shown to increase statistical power by as
much as 10 % when relevant subject-level covariates are available. In application to the colorectal cancer study, this
increase in power is also observed, and previously-reported dysregulated miRNAs are rediscovered.

Conclusions: When any subject-level covariates are available, the weighted quantile normalization method should
be used over the conventional quantile normalization method.
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Background
A critical data analysis step in detecting differentially
expressed microRNA (miRNA) features is normalization.
The normalization procedure reduces technical variation
and maintains true biological changes between arrays.
Various normalization techniques exist, but until recently,
all were developed for messenger RNA (mRNA) arrays.
The miRNA data are very different from mRNA data
due to the small total number of miRNAs (a few hun-
dred versus 10,000 to 50,000 genes in mRNA data), and
the majority of miRNAs are either not expressed or are
expressed at very low levels [1]. Therefore, normalization
methods used for mRNA expression arrays may not be
appropriate for miRNA arrays. More information about
the biology of miRNAs and their role in cancer develop-
ment is given in Suyundikov [2] and Suyundikov et al.
[3], which also present the colorectal cancer (CRC) study
motivating this paper. Briefly, the study data used here has
miRNA data from paired tumor and normal samples in
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over 400 subjects, with over 2,000 miRNAs. (These are
the first available subjects from about 2,000 subjects in
the overall study.) The study was approved by the Institu-
tion Review Board for Human Subjects at the University of
Utah (IRB_00002335 and IRB_00055877). All participants
provided informed written consent prior to participating
in the study.
The importance of finding an appropriate normaliza-

tion method for miRNA data in our colorectal cancer
(CRC) study [3] motivated us to develop a normaliza-
tion method that accounts for the characteristics of data,
removes any artificial variations, and keeps the crucial
biological information. CRC is the third most common
type of cancer and the second leading cause of cancer
death in the United States [4]. Most colorectal cancers
are due to demographic, lifestyle, and health-related fac-
tors, with only a small number of cases due to underly-
ing genetic disorders [5, 6]. Cunningham et al. [7] and
Watson and Collins [8] listed older age, male gender, high
intake of fat, alcohol or red meat, obesity, smoking, and
a lack of physical exercise as risk factors of CRC. Taken
together with known and hypothesized associations of
miRNA with CRC, this suggests that the expression levels

© 2015 Suyundikov et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-015-2199-4-x&domain=pdf
mailto: john.r.stevens@usu.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Suyundikov et al. BMC Genomics  (2015) 16:1045 Page 2 of 10

of miRNAs in tissues from risk group (for example, older
and smoker) patients are more likely to be differentially
expressed than the expression levels from non-risk group
(younger and non-smoker) patients.
In our CRC study, we have collected extensive infor-

mation about demographic and lifestyle variables of CRC
patients along with the miRNA features from normal
and tumor samples. These data may be helpful to con-
sider not only the artificial intra- and inter-array differ-
ences, but also the differences caused by the demographic
and lifestyle characteristics of patients, and to main-
tain only biological differences during the normalization
procedure.
In this paper, we incorporate subject-level covariates

(specifically the demographic and lifestyle variables) in
miRNA normalization, which has not been done before.
We modify the quantile normalization method from
Bolstad et al. [9] that is commonly used in miRNA
data analysis and was found as an efficient method to
remove the artificial differences across arrays [10–14].
The quantile normalization equalizes the distributions of
expression intensities across samples while ignoring any
differences of characteristics of samples. In the quantile
normalization method, each subject’s normalized distri-
bution of expression values depends on all other sub-
jects’ distributions equally. Such normalization of miRNA
expressions while ignoring the characteristics of data
results in loss of important biological information. In our
modified normalization method, we assume that the nor-
malized distribution of miRNAs from one subject should
depend on the weighted distribution of miRNAs from
other subjects. The weights of subjects are determined
from the distance matrix generated from various dis-
tance metrics of multiple covariates. The elements of
the generated distance matrix represent the pairwise dis-
tances between two subjects based on demographic and
lifestyle variables. The distances (weights) among sub-
jects are considered in the quantile normalization of
miRNA.
This paper is arranged in the following manner: first, we

provide an overview of normalization methods developed
for miRNA data and explain our modified normalization
method in detail. Then we show the application of nor-
malization techniques using simulation and real data sets.
Finally, we conclude with a discussion of the important
findings presented in this paper.

Methods
Normalization methods for miRNA data
Normalization (along with background correction and
summarization [14]) is one of the important steps of pre-
processing of miRNA data. The procedure removes the
systematic differences between arrays that do not repre-
sent true biological variation. Meyer et al. [15] state that

“normalization, often an underestimated aspect of data
processing, can minimize systematic technical or exper-
imental variation and thus has significant impact on the
detection of differentially expressed miRNAs.” Bolstad et
al. [9] highlight that the need for normalization arises nat-
urally when multiple arrays are involved in experiments.
There are two types of variations that can be expected: the
first variation is an “interesting” variation, which repre-
sents biological differences between the expression levels
of genes (or miRNAs) from tumor and normal tissues
(for example, as in our CRC study), and the other is
an “obscuring” technical variation, which is not interest-
ing for the researchers and needs to be removed by a
normalization procedure. Currently used normalization
methods in miRNA data analysis were primarily devel-
oped for mRNA arrays, which have an exceedingly high
density of probes with 10,000–50,000 genes. In compari-
son, miRNAs are lower density arrays with a few hundred
to a couple of thousand genes.Wang and Xi [1] mentioned
that the majority of miRNAs are either not expressed or
are expressed at very low levels. Therefore, researchers
have generally concluded that off-the-shelf normalization
methods for mRNA arrays may not be appropriate for
miRNA arrays [11, 13, 15].
Several studies have compared the performance of nor-

malization methods for mRNA data to see how these
methods can reduce the experimentally induced variation
and maintain true biological changes between arrays in
miRNA data analysis. Rao et al. [11] applied commonly
used normalizationmethods, including cyclic loess, quan-
tile, median or mean, and no normalization techniques to
normalize miRNA expression arrays. Their analyses show
that the quantile normalization method works better than
other normalization techniques in removing differences
across arrays in miRNA expression data. Pradervand et
al. [13] also examined the impacts of mRNA array nor-
malization procedures based on scaling, quantile, and
variance stabilizing normalization (VSN) on miRNA data.
They found that the quantile normalization was the most
robust procedure and performed at least as well as the
developed normalization method based on the set of
invariants (invariants-based) among the mRNA normal-
ization techniques that they considered (including quan-
tile, invariants-based, scaling, VSN, and no normalization
methods) over all experimental conditions tested. All nor-
malization methods performed better than no normal-
ization. For this reason, we chose not to perform the no
normalization technique along with other normalization
methods in our analysis. Over the last decade, the quan-
tile normalization method has been commonly used in
miRNA data analysis compared to the other normaliza-
tion techniques developed for mRNA data [10, 12, 14].
We explain the algorithm of quantile normalization in
the “Conventional quantile normalization” section.
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A number of modifications to normalization methods
for mRNA data have been performed to adapt to the char-
acteristics of miRNA data. Though each modified nor-
malization method has been shown to perform well based
on the characteristics of tested miRNA data [16–20],
a universal normalization method for miRNA data has
not been developed yet. Meyer et al. [15] strongly sug-
gest selecting the optimal normalization method based
on the characteristics of the data set, and then examining
the normalized data carefully in specific biological con-
texts. The choice of normalization method is one of the
primary factors that affects the inference of differential
expression [18].

Quantile normalization: conventional andmodified to
incorporate covariates
Conventional quantile normalization
Bolstad et al. [9] were among the first to apply quantile
normalization to microarray data analysis. They com-
pared its performance with the cyclic loess and contrast
based normalization methods that had already been suc-
cessfully used in mRNA data analysis. The purpose of
the quantile normalization is to force the distribution of
probe intensities for each array in a set of arrays to have
the same or at least similar distribution. Bolstad et al. [9]
were motivated by the idea that a quantile-quantile plot
demonstrates the same distribution for two data vectors if
the plot is a straight diagonal line, and not the same dis-
tribution if the plot is other than a diagonal line. They
extended this concept to N dimensions of data vectors so
that all data vectors have the same distribution. The quan-
tiles of N data vectors (here, the intensities of N arrays)
are plotted in such a way that (after normalization) the
plot gives a straight line along the line given by the unit
vector

(
1√
N , . . . , 1√

N

)
. To achieve this normalization, one

can make the distribution of a set of data vectors the same
if one projects the points of the N dimensional quantile
onto the diagonal unit vector. More details about the pro-
jection of the quantiles onto the diagonal are provided in
Bolstad et al. [9]. The numerical dependence induced by
this normalization method is relatively minimal [21].
Bolstad et al. [9] provided the following algorithm to

perform a quantile normalization: arrange the logarith-
mic transformed microarray data into a G × N matrix ~X,
where G and N are total numbers of genes and arrays,
respectively. Sort each column of ~X to give ~Xsort . Then
take the means across the rows of ~Xsort and assign this
mean to each element in the row to get ~X

′
sort . At the end,

obtain the normalized version ~Xnorm of ~X by rearranging
each column of ~X

′
sort to have the same ordering as in the

original ~X.
Another algorithm to carry out the quantile normal-

ization was introduced by Amaratunga and Cabrera [22].

They described the algorithm as follows: “calculate the
percentiles (Qi0, . . . ,Qi100) of the ith array and the per-
centiles (QM0, . . . ,QM100) of the median mock array. For
any value Xgi, find the interval,

[
Qih,Qi(h+1)

]
, to which

it belongs and obtain its normalized value, X′
gi, by lin-

early interpolating between the pair points (QMh,Qih) and(
QM(h+1),Qi(h+1)

)
” [22]. In this algorithm, Xgi means the

logarithmic transformed spot intensity measurement for
gene g on array i. They define the median mock array as
the array fashioned out of the medians of the arrays being
normalized.
While the algorithm from Bolstad et al. [9] is more

widely applied in practice than the algorithm of Ama-
ratunga and Cabrera [22], no study has yet been published
that evaluates their relative performance. In our analysis,
we used the normalize.quantiles function from the
R package preprocessCore [23] that is based upon the con-
cept of the quantile normalization from Bolstad et al. [9].
We further refer to the quantile normalization based on
the algorithm from Bolstad et al. [9] as the conventional
quantile normalization.

Weighted quantile normalization
The conventional quantile normalization does not
account for additional characteristics of samples when it
normalizes the miRNA arrays. In this respect, we pro-
pose a novel approach that removes the non-biological
differences across samples while incorporating the
demographic and lifestyle characteristics of sample-
subjects in normalization. Here, we assume that the
normalized distribution of miRNA expression levels
from one sample should depend on the weighted dis-
tribution from other samples. The weights of subjects
are determined from a distance matrix, which is aggre-
gated [2] from various normalized distance matrices
(values are between 0 and 1 [24]; based on Euclidean,
Manhattan, Minkowski, and other methods) of multiple
covariates. The elements of the aggregated distance
matrix (~D) represent the pairwise distances between two
subjects based on relevant demographic and lifestyle
variables.
The algorithm of our proposed method is based on

the quantile normalization algorithm from Bolstad et al.
[9], but accounts for the weighted distance metrics of
demographic and lifestyle variables. The algorithm is as
follows:

1. Obtain the logarithmic (log2-based) transformed
miRNA data as a G × N matrix ~X, where G is the
total number of miRNAs and N is the total number
of subjects. The log-transformation of miRNA data is
performed to reduce the effect of outliers on the
calculation of miRNA expression levels.

2. Sort each column-subject of ~X to give ~Xsort .
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3. Obtain an aggregated distance matrix as a N × N
matrix ~D.

4. Obtain the between-subject weight matrix as a
N × N matrix ~W , with elements wij. We calculate
the weight of subject i in the normalized expression
distribution of subject j as in (1):

wij = 1 − dij
max{di1, . . . , diN } (1)

where dij (an element of ~D) is the distance between
subjects i and j with i, j = 1, . . . ,N . If i = j, then
wij = 1. Note that the matrix ~W is not symmetric
and the elements of row i correspond to the weights
of the N subjects in the normalized expression
distribution of subject i.

5. Normalize the between-subject weight matrix ~W by
the sum of the weights of row-subjects and obtain a
N × N matrix ~W

∗. For example, the weighted means
of weights of subjects in the normalized expression
distribution of subject i can be found as in (2):

w∗
ij = wij∑N

j′=1 wij′
s.t.

N∑
j=1

w∗
ij = 1. (2)

6. Calculate the weighted means across the rows of

~Xsort and assign this weighted mean to each element
in the row to get a G × N matrix

~
X′
sort .

The weighted means of ~Xsort can be computed as in
(3):

~
X′
sort = ~Xsort

[
~W

∗]T . (3)

7. Obtain the normalized version ~Xnorm of ~X by
rearranging each column of

~
X′
sort to have the same

ordering as in the original ~X.

The above mentioned algorithm generalizes the quan-
tile algorithm of Bolstad et al. [9], in which all w∗

ij = 1
N .

While the conventional quantile normalization method
equally weights all subjects, this weighted quantile nor-
malization method instead weights subjects according
to their similarity to each other. That is, the weighted-
normalized expression values for a given subject are
affected more by the expression values of similar sub-
jects than by those of unsimilar subjects. This weighted
quantile normalization algorithm is implemented (with a
demonstration using simulated data) in code written for
the R language [25], and is provided as Additional file 1
(see “Additional files” section).
In contrast to the normalization methods for miRNA

data where disjoint clusters of miRNAs were considered

(Mestdagh et al. [26], Bargaje et al. [27]), this normal-
ization technique will consider both clustered and over-
lapped subjects by accounting for each subject’s weight
in the average. The clustered subjects will have heav-
ier weights in the average than the weights of subjects
who are not clustered. This normalization technique will
contribute to reduction of intra- and inter-array tech-
nical variability while maintaining biological differences.
We subsequently refer to this proposed method as the
weighted quantile normalization.

Results and discussion
In this section, we demonstrate the performance of the
weighted quantile normalization method over the con-
ventional quantile normalization method using different
simulation scenarios.

Motivating example
Figure 1 illustrates the potential danger of normalizing
without regard for relevant demographic or environmen-
tal factors. The miRNA distributions for two CRC sub-
jects are displayed. For each individual (one from the
“non-risk” and one from the “at-risk” sample), both the
non-normalized and conventionally quantile-normalized
distributions are plotted. The first (non-risk) subject
is a 41-year-old, non-smoking, non-drinking, normal-
weight woman, while the second (at-risk) is a 76-year-old,
current-smoking, heavy drinking, overweight man. The
non-normalizedmiRNA expression histograms, at the top
of Fig. 1, show clear disparities between the two subjects.
The distribution of the risk-group patient is clearly more
variable and right-skewed in comparison to the miRNA
distribution of the non-risk patient. (Skewness is quan-
tified here in terms of the Fisher-Pearson coefficient of
skewness, and reported in Fig. 1.) However, after perform-
ing the quantile normalization of miRNA expressions,
both subjects have almost indistinguishable distributions.
This suggests that their similarity is merely an artifact
of the normalization, and that important differences in
gene expression could be masked by ignoring demo-
graphic and environmental factors. Our repeated obser-
vation of such examples has motivated our development
of the novel weighted quantile normalization method (see
the “Weighted quantile normalization” section) that prop-
erly removes any technical variations, while preserving
important biological information with regard to expres-
sion differences, and further allowing us to account for
additional covariates.
We evaluate the performance of our proposed weighted

quantile normalization method using simulated data in
sections “Simulation data sets” through “Normalization
accounting for unrelated covariates”. We return to the
motivating example in the “Application to motivating
example (real CRC data)” section.
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Fig. 1 Non-normalized and quantile normalized miRNA expressions of tumor samples from non-risk and risk group subjects

Simulation data sets
The normalization analyses were carried out on bimodally
distributed paired data matrices of G = 2000 miRNA
expression features (rows) for each of the normal and
tumor samples with sample sizes of N = 200 and 400 sub-
jects (columns). We simulated expression levels of miR-
NAs for normal and tumor samples by controlling true
differentially expressed miRNAs of tumor samples across
all simulations. The simulated bimodal miRNA data sets
were generated by the mixture of two normal distribu-
tions, and reflect the two modes (for non-expressed and
expressed features) generally seen in miRNA data. Par-
ticularly, all miRNA features of normal samples and only
non-differentially expressed miRNA features of tumor
samples were simulated based on μ = 0.75 and σ = 0.025
for the first distribution and μ = 4.0 and σ = 0.5 for
the second distribution, while the differentially expressed
miRNA features of tumor samples, which consisted of
20 % of all miRNA features of tumor samples, were sim-
ulated based on μ = 0.75 and σ = 0.025 for the first
distribution and μ = 3.25 or μ = 4.75 and σ = 0.5 for the
second distribution. These parameters were chosen based
on observed characteristics of our CRC study data. We
performed 20 simulations for each sample size.
Moreover, we simulated demographic and lifestyle vari-

ables of subjects in such a way that they could reflect
the characteristics of our CRC study and also carry some
useful information for the normalization procedure. In
our analysis, we simulated all available 19 noncollinear

demographic and lifestyle variables (as listed in Tables 1
and 2) from the CRC study. Briefly, the covariates’ values
were simulated to be associated with the expression val-
ues of several randomly-selected miRNAs that were con-
trolled as truly differentially expressed between tumor and
normal; for details, see Suyundikov [2] and Suyundikov et
al. [3].
We started the simulation analyses by generating

miRNA expressions of normal and tumor samples and
demographic and lifestyle variables based on the sim-
ulation parameters mentioned above. During simula-
tion of miRNA expressions, we controlled arbitrarily
20 % of miRNAs from tumor samples as differentially
expressed features. Euclidean distance was used for con-
tinuous covariates and Manhattan distance for discrete
or binary covariates. The two Euclidean and Manhattan

Table 1 Summaries of continuous covariates in real CRC data

Covariate Mean SD

Age at diagnosis or selection (years) 64.1 9.8

Average num. cigarettes per day 12.5 14.7

Calories (kcal) 2504.7 1199.3

BMI 27.6 5.4

lutein + zeaxantin (mcg) 3119.3 2542.3

Vitamin D (mcg) 6.7 5.0

Lycopene (mcg) 8850.5 8195.1
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Table 2 Summaries of binary or discrete covariates in real CRC
data

Covariate Summary

Gender 54 % male, 46 % female

Recent aspirin/NSAID use 64 % no, 36 % yes

Recent smoker 83 % no, 17 % yes

(among women) menopause 12 % pre, 88 % post

(among post-menopausal women)

taking HRT within 2 years 30 % yes, 70 % no

Data collection center 79 % Kaiser, 21 % Utah

Race 81.6 % White, 8.5 % Hispanic,
7.6 % Black, 2.1 % other

Smoking status 13 % current, 45 % former,
42 % never

Long-term alcohol consumption 38 % none, 35 % moderate,
27 % high

SEER summary stage 1 % in situ, 34 % localized, 52 %
regional, 12 % distant, 1 % unknown

AJCC severity stage 1 % 0 (in situ), 26 % 1, 31 % 2, 30 % 3,
12 % 4 (distant)

Colon or rectal cancer 76 % colon, 24 % rectal

between-subject distance matrices were normalized by
scaling between 0 and 1 [24] and aggregated into a single
between-subject distance matrix by taking their weighted
average [2].
As an aside, the application of the weighted quantile

normalization method is not computationally burden-
some; it took less than one minute to normalize the
expressions of 2000 miRNAs from 400 subjects on a
machine with CPU speed of 1.86 GHz and 2 GB RAM.

Differential expression testing
We carried out the normalization methods mentioned
in the “Methods” section. We conducted the differential
expression analyses on tumor-normal differences (using
a per-miRNA Wilcoxon signed rank test, or SRT) on the
normalized data sets to check whether the weighted quan-
tile normalization method has an equal statistical power
in finding differentially expressed miRNA as the con-
ventional quantile normalization. First, we obtained the
Wilcoxon SRT statistic and p-value for each miRNA fea-
ture in each normalized data set and controlled the false
discovery rate (FDR) at 0.05 within each simulation. Then,
we calculated the true positive rate (TPR) and the false
discovery rate (FDR) based on the miRNAs which were
controlled as truly differentially expressed in the simula-
tions. The TPR was defined and calculated as in Bolstad
[28] and Stevens et al. [29], and the FDR was defined as in
Benjamini and Hochberg [30].

Figure 2 shows the performance (including power and
FDR control) of the Wilcoxon SRT on the data sets nor-
malized by the conventional quantile and the weighted
quantile methods for the numbers of subjects of 200 and
400. As shown in this scatter plot, the power (i.e., the TPR
values) increases (as would be expected) for the conven-
tional quantile (a blue open rectangular symbol) and the
weighted quantile (a red solid triangular symbol) normal-
ization methods with larger sample sizes. The weighted
quantile normalization has clearly higher power than the
conventional quantile method. For 400 subjects, which
is more similar to the size of our CRC study, the differ-
ences of TPR values between the two methods are up to
10 %: the power for the weighted quantile normalization
is in the range of 83.6–90.5 %, while the power for con-
ventional one is in 77.2–85.3 %. That is, one can increase
power asmuch as 10 % by using the weighted quantile nor-
malization method rather than the conventional quantile
method. Both normalization methods generally control
the FDR near 0.05 for both sample sizes. Results were gen-
erally similar when Manhattan distance was used for all
covariates (see Additional file 2), rather than Euclidean for
continuous covariates and Manhattan for discrete (as in
Fig. 2).

Normalization accounting for unrelated covariates
The application of the weighted quantile normalization
method only increases power (compared to conventional
quantile normalization) when demographic and lifestyle
variables (on which between-subject distance is based) are
relevant to the “treatment” group comparison of interest.
To demonstrate this, we again simulated the 19 covariates,
but this time only as noise, without any reference to the
miRNA data as in Suyundikov et al. [3]. Figure 3 shows the
performance (the TPR versus the FDR) of the Wilcoxon
SRT on the simulated data sets that are normalized by the
conventional quantile and the weighted quantile methods
while accounting for these unrelated (pure noise) covari-
ates. The power and the FDR control are essentially the
same (overlap in most simulations) for both normaliza-
tion methods. Thus, the weighted quantile normalization
performs at least as well as the conventional quantile nor-
malization when demographic and lifestyle variables are
not associated with the treatment group. Results were
generally similar when Manhattan distance was used for
all covariates (see Additional file 3), rather than Euclidean
for continuous covariates and Manhattan for discrete (as
in Fig. 3).

Application to motivating example (real CRC data)
We used the Wilcoxon SRT to identify differentially
expressed miRNAs in the paired tumor-normal miRNA
data from our CRC study [3]. The miRNA data were nor-
malized by the conventional quantile and by the weighted
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Fig. 2 TPR and FDR for sample sizes of 200 and 400 for conventional and weighted quantile normalizations

Fig. 3 TPR and FDR for sample sizes of 200 and 400 for the quantile normalization and the weighted quantile normalization while accounting for
unrelated covariates
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quantile methods while accounting for the demographic
and lifestyle characteristics of CRC subjects. These data
sets contain the first available 527 subjects with 2006
miRNA on each sample. In this analysis, we used all avail-
able 19 noncollinear demographic and lifestyle variables,
as summarized in Tables 1 and 2.
Figure 4 shows a scatter plot of the FDR adjusted p-

values in logarithmic scale. The green circles (there are
121) in the plot represent the miRNAs that are found sig-
nificant from the quantile normalized data, but not found
significant from the weighted quantile normalized data.
The red circles (there are 119) show the miRNAs that
are found significant only in the weighted quantile nor-
malized data. There is no information about the truly
differentially expressed miRNAs that could be helpful to
evaluate the performances of both normalization meth-
ods. However, we can see from Fig. 4 that many miRNAs
(in the lower right triangle of the plot) that are found sig-
nificant in the quantile normalized data are found to be
even more significant in the data set normalized by the
weighted quantile method. The plot shows that the pro-
posed weighted quantile normalization method has more
power than the conventional quantile method.
By way of validation, our results (from the use of

the weighted quantile normalization method) can be
placed in the context of recent CRC miRNA studies by
comparing the resulting list of candidate miRNAs with
those published by Dong et al. [31] and Mazeh et al. [32].

Specifically, we focus on those miRNAs reported in Table
2 of [31] as being prognostic or predictive markers for
CRC, and those miRNAs reported in Table 1 of [32] as
dysregulated (by at least four studies) in colorectal tissue
samples. A total of 41 miRNAs were thus considered.
Due to changes over time in miRNA naming schemes

and platform capabilities, any direct comparison of results
is inherently uncertain. For example, what was previously
reported as miR-203 (up-regulated in tumor [32]) could
appear in our CRC study as miR-203a (up-regulated in
tumor), miR-203b-3p (no significant difference in tumor),
or miR-203b-5p (no significant difference in tumor). Sim-
ilarly, what was previously reported as miR-195 (down-
regulated in tumor [32]) could appear in our CRC study
as miR-195-3p (up-regulated in tumor) or miR-195-5p
(down-regulated in tumor).With this in mind, and assum-
ing that what previous studies reported for a general-
named miRNA was actually what we found for more
specific-named miRNA(s), we can report that of those
41 miRNAs previously reported [31, 32] as differen-
tially expressed in tumor compared to normal colerectal
tissue, we reach the same conclusion (for both statis-
tical significance and direction of dysregulation) for 38
miRNAs. (This 93 % validation rate is summarized in
Additional file 4.) Of the three remaining discrepancies,
one (miR-1 down-regulated in tumor [32]) we found with
marginal significance (FDR-adjusted p-value .08), and the
other two involved possible naming scheme discrepancies.

Fig. 4 Scatter plot of adjusted p-values of the CRC miRNA data, normalized by the quantile and the weighted quantile normalization methods (in
log-scale). The green and red circles represent the miRNAs that are found significant only in the horizontal and vertical analyses, respectively
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Specifically, miR-106a was previously reported as up-
regulated in tumor [31, 32], and our CRC study found
no significant difference for miR-106a-3p (FDR-adjusted
p-value 1), and did not measure miR-106a-5p (which per-
haps was the miRNA actually studied previously). Also,
miR-30a-3p was previously reported as down-regulated
in tumor [32]; while we found no significant difference
in miR-30a-3p (FDR-adjusted p-value 1), we did find
miR-30a-5p significantly down-regulated (FDR-adjusted
p-value < 0.0001). In short, the weighted quantile nor-
malization method allowed the rediscovery of nearly all
of the dysregulated miRNAs previously reported by [31]
and [32].
In the 38 dysregulated miRNAs rediscovered here, the

weighted quantile normalization results tended to have
lower p-values than those from the conventional quantile
normalization (Additional file 4), illustrating the greater
power alluded to in Fig. 4.

Conclusion
In this paper, we modified the quantile normalization
method from Bolstad et al. [9] to reduce not only the
artificial variations across samples, but also the varia-
tions caused by the characteristics of data, as well as
to maintain true biological differences across samples.
The proposed normalization method incorporates demo-
graphic and lifestyle variables by considering the distances
(weights) among subjects based on their characteristics,
and considers these weights in equating the quantiles of
distributions of miRNA expressions. Accounting for such
subject-level covariates in the normalization step helps
avoid the masking of important expression differences,
which can otherwise occur with conventional quantile
normalization (Fig. 1).
We performed differential expression tests on simulated

bimodally distributed miRNA expressions and demo-
graphic and lifestyle variables that reflect the character-
istics of our CRC study. We applied the Wilcoxon SRT
to identify differentially expressed miRNAs from the nor-
malized simulated miRNA data. The scatter plots of TPR
versus FDR help to evaluate the impact of normalization
techniques on the results of the differential expression test
(Fig. 2). The simulation study provides strong evidence
that our weighted quantile approach yields up to a 10 %
gain in power in comparison to the conventional normal-
ization method. Both methods generally control the FDR
near 0.05 for both sample sizes, and the weighted quantile
normalization method is computationally convenient.
When irrelevant subject-level covariates are used in

weighted quantile normalization, power and FDR control
are essentially the same as when conventional quantile
normalization is used (Fig. 3). This suggests that whenever
subject-level covariates are available, weighted quantile
normalization should be used because it is at least as good

as conventional quantile normalization (in terms of power
and FDR control), but substantially better in the presence
of relevant demographic or environmental factors.
For the differential expression tests on the paired tumor-

normal miRNA data from our CRC study, the Wilcoxon
SRT found many miRNAs which were called significant
in the conventional quantile normalized data, even more
significant in the data set normalized by the weighted
quantile method (Fig. 4).

Additional files

Additional file 1: Provides an implementation of the weighted
quantile normalization algorithm (as describe in the “Weighted
quantile normalization” section) written for the R language [25], with
a demonstration using simulated data. (R 2 kb)

Additional file 2: Reproduces Fig. 2 , but with Manhattan distance
used for all covariates (rather than Euclidean for continuous
covariates and Manhattan for discrete, as in Fig. 2). (PDF 6 kb)

Additional file 3: Reproduces Fig. 3, but with Manhattan distance
used for all covariates (rather than Euclidean for continuous
covariates and Manhattan for discrete, as in Fig. 3). (PDF 5 kb)

Additional file 4: Summarizes the reproduction of significance
results from previous CRCmiRNA literature [31, 32] as discussed in
the “Application to motivating example (real CRC data)” section,
using the weighted quantile normalization method. (XLSX 16 kb)
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