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Abstract

Background: A central question for disease studies and crop improvements is how genetics variants drive
phenotypes. Genome Wide Association Study (GWAS) provides a powerful tool for characterizing the genotype-
phenotype relationships in complex traits and diseases. Epistasis (gene-gene interaction), including high-order
interaction among more than two genes, often plays important roles in complex traits and diseases, but current
GWAS analysis usually just focuses on additive effects of single nucleotide polymorphisms (SNPs). The lack of
effective computational modelling of high-order functional interactions often leads to significant under-utilization of
GWAS data.

Results: We have developed a novel Bayesian computational method with a Markov Chain Monte Carlo (MCMC)
search, and implemented the method as a Bayesian High-order Interaction Toolkit (BHIT) for detecting epistatic
interactions among SNPs. BHIT first builds a Bayesian model on both continuous data and discrete data, which is
capable of detecting high-order interactions in SNPs related to case—control or quantitative phenotypes. We also
developed a pipeline that enables users to apply BHIT on different species in different use cases.

Conclusions: Using both simulation data and soybean nutritional seed composition studies on oil content and protein
content, BHIT effectively detected some high-order interactions associated with phenotypes, and it outperformed a
number of other available tools. BHIT is freely available for academic users at http://digbio.missouri.edu/BHIT/.

Background
In this era of explosive genomics development and
next-generation sequencing (NGS) data, genome-wide
association study (GWAS) is central to characterizing
complex traits and diseases [1]. However, the vast majority
of genetic variants associated with complex traits identi-
fied by current GWAS approaches explain only a small
amount of the overall variance of these traits in the
underlying population [1]. Some of the reasons for this
have been extensively studied, including trait identity
problems, sample collection, population resampling and
epigenetic variation [2]. From the perspective of

computational methodology, one prominent limitation of
widely used methods is due to the fact that GWAS usually
analyzes one single nucleotide polymorphism (SNP) at a
time [3]. Admittedly, the single-SNP approach is useful
and (relatively) computationally efficient [4–6]. However,
this approach does not account for collective effects
among SNPs (or interactions among genetic variants in a
more general sense) indicating a phenotype or a disease
[3]. In genetics, these effects arise from the phenomenon
epistasis, where the expression or effect of one gene
depends on the presence of one or more other genes [4].
The roles of SNP interactions have been widely acknowl-
edged in the research community. Hence, a number of
computational methods for detecting SNP interactions
have been developed in recent years [4, 5]. These detected
SNP interactions often illustrate epistasis interactions that
better explain the phenotype from the genotype [7, 8].
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The major challenge in SNP interaction detection
using the whole genome-scale data is computing time
[4, 5, 9]. It may not be feasible to enumerate all possible
two-order interactions in whole genomic scale with typical
computational resources, let alone calculating high-order
SNP interactions (e.g., three SNPs interacting together,
four SNPs interacting together, etc.) across the whole
genome. Even with improved computational strategies
and resources, multiple testing in computing is likely
more problematic. Researchers have developed several
methods to address this issue in detecting and exploring
SNP interactions [5]. Briefly, these methods use four strat-
egies: exhaustive search, heuristic search, sampling, and
two-stage search. This exhaustive search strategy examines
all possible SNP interactions to make sure that no
candidates are missing, which is extremely costly in compu-
tational time. PLINK [10], uses a classic logistic regression
and odds-ratio contrast to infer epistasis, which provides a
baseline of SNP interaction detection. BOOST presents
data in the Boolean format and conducts Boolean computa-
tion to speed up the search process [11]. The heuristic
search, e.g. EDCF [12] sets several rules to prune the search
space, which consumes less time than the exhaustive
search, but may lose some true SNP interactions. The
sampling strategy applies statistics-based sampling
processes to avoid the brute-force search. BEAM uses
Markov Chain Monte Carlo (MCMC) in Bayesian par-
tition to infer high-order interactions in case–control data
[13], then its following version BEAM2 incorporates link-
age disequilibrium (LD) information into Bayesian partition
[14]. The two-stage search strategy separates the two search
processes by first filtering out candidates and then identify-
ing interactions, such as SNPHarvester [15] and TRM [16].
Although there are multiple methods for SNP-

interaction detections, several challenges still remain
open to conquest:

(a)High-order (more than two-order) SNP
interaction is rarely handled. Given the extremely
high computational cost in high-order SNP
interaction detection in GWAS [5], nearly all the
existing methods ignore high-order epistasis,
which are highly important in many cases [4],
especially in quantitative trait analysis [9]. It was
demonstrated that high-order epistasis is critical
in metabolic networks in yeast [17] and E. coli
[18]. Specific interactions have uncovered
two-gene to four-gene interactions showing
differential pleiotropic effects on branching and
flowering in Arabidopsis [19], which cannot be
easily detected by standard two-way tests.

(b) Continuous traits in genotype-phenotype relationships.
Nearly all the existing computational methods are
designed for categorical phenotypes in case–control

GWAS analysis. To our knowledge, no other existing
methods can effectively handle high-order interactions
in continuous traits.

To address these issues, we developed the Bayesian
High-order Interaction Toolkit (BHIT), a novel Bayesian
partition computational method and tool for detecting
SNP interactions. The proposed approach first builds a
Bayesian model on both continuous data and discrete
data, and then extends the model to partition multiple-
phenotype data. When compared with other methods on
both simulation data and real data, the key strengths of
our developed approach are as follows: (i) With the
advanced Bayesian model using MCMC search, BHIT
can efficiently explore high-order interactions. (ii) BHIT
can handle both continuous and discrete phenotypes,
and the interaction within or between phenotypes and
genetic data can also be detected. We have applied BHIT
to both simulation datasets and experimental soybean
oil/protein content datasets, and we were able to obtain
high accuracy and reliable results on both datasets.
Based on BHIT, we also developed a general-purpose
BHIT pipeline to meet the demands of detecting high-
order interactions between genotype and phenotypes for
various species.

Methods
Let Y be the continuous trait with G samples in the
population, Y = (Y1,Y2,…,YG). X contains observed
genetic variations and R is the total number of varia-
tions, X = (X1, X2,…, XR). Assuming traits are condi-
tional dependence on associated genetic variations, Yi
are independent of each other following a Gaussian
distribution, as shown in the example illustrated by
Fig. 1; hence, we assume Y can be divided into M clusters
based on values of the quantitative trait. Let I be indica-
tors, I = (I1, I2,…, IR), indicating group membership of each
Xi. H is the total number of groups (determined by I, 1 ≤
H ≤ R), which means we partition all R genetic variations
into H groups by I. We assume M is the total number of
combination configurations of X{I = 1} that are associated
with Y, where X{I = h} represents all the X in the h-th group,
(h = 1 ⋅ ⋅ ⋅H). In the example of Fig. 1, M equals to 4 by the
values of quantitative traits. In genotype, only four genes in-
ferred in Group 1 (X{I = 1}) is associated with Y; all the other
groups such as X{I= h}(h = 2 ⋅ ⋅ ⋅H) are independent groups,
which are clearly not associated with phenotypes.
The goal of the method is to infer P(I,H|Y, X), which

is partitioning relationships between the genotypes (X)
and phenotypes (Y), and the relationship is depicted by
grouping dependent genotypes and phenotypes in the
same groups (illustrated by I and H). Given partition in-
dicator I, the likelihood is illustrated as (1):
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Where X{I = h} represents all the X in the h-th
group, and Y{m} represents all the Y in the m-th
cluster. For P(X{I = h}|I) we used the multinomial dis-
tribution method and Dirichlet prior as the Bayesian
partition model in our study [20]. Assume that there
are ch possible combination values in the h-th genetic vari-
ation group (X{I = h}); thus, M = c1. In the h-th group, sup-
pose for every Yi (the i-th row in Fig. 1a), X{I = h} has the
probability p1 to be the first combination value, p2 for the
second combination value, … , pch for the last combin-

ation value, and
Xch

j¼1
pj ¼ 1. Then the conditional likeli-

hood for the h-th group of genetic variations is

P X I¼hf gjp1;…; pch; I
� � ¼Ych

j¼1

p
nj
j where nj denotes the

number of the rows in Fig. 1a taking the j-th value in

X{I = h}. However, we do not know the pj. So we assume
they are random and used the Dirichlet prior on them:

peDirichlet α1;…; ; αchð Þ :
P p1;…; pch jα1;…; αch
� � ¼ 1

B αð Þ
Ych
j¼1

p
αj−1
j
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where B αð Þ ¼
Ych

j¼1
Γ αj
� �

Γ

Xch

j¼1
αj

� � , α ¼ α1;…; ; αchð Þ and Γ(x)

= ∫0
∞tx − 1e− tdt.
So we have
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nj
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Ych
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j
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By integrating p we have:

Fig. 1 Bayesian scheme in model relationship between traits of target population and genetic variations. a Traits are presented as Y, e.g., oil or
protein content of soybeans, and genetic variations are presented as X, e.g., SNPs. X1 to X4 are the related binary genetic variations (green is 0
and yellow is 1), and they are inferred as group 1, which is associate with phenotype (Y). b Based on values of quantitative trait, Y can be divided
into 4 clusters: cyan, black, blue and red, each corresponding to one circle. Within each cluster, Y follows a Gaussian distribution. The four
Gaussian distributions can have different means and variances. In this case, X1 to X4, four of R genetic variations X = {X1,…,XR} can be divided into
4 independent clusters of combination configurations (0011, 1010, 1100 and 1110), and they have a clear pattern associated with Y. Hence, the
combination of X1 , X2,X3 and X4 can be treated as one genetic variation interaction. In contrast, if the genotype clusters overlap with each other
significantly in the phenotype space, there is no evidence for such a genetic variation interaction
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For P(Y{m}|X{I = 1}) we use the Gaussian distribution
with conjugate priors on mean and variance. Suppose
there are Gm rows (samples) in Y{m} (the m-th cluster,XM
m¼1

Gm ¼ G ), and they are i.i.d. to follow a N(μm, σm
2 )

distribution. We further use conjugate priors , μm|σm
2 ~

N(μ0, σ0
2/κ0), σ0

2 ~ Inv − χ2(ν0, σ0
2). The resulting posterior

distribution of (μm, σm
2 )|Y{m} is then a NeInv−χ2

μn;
σ2n
κn
; ; νn; σ2

n

� �
distribution (n =Gm), where: �y ¼ �Y mf g ,

μn ¼ 1
κn

κ0μ0 þ n�yð Þ , κn = κ0 + n, νn = ν0 + n. And σ2n ¼ 1
νn

ν0σ20 þ n−1ð Þs2 þ κ0n
κn

�y−μ0ð Þ2
� �

, s2 ¼ 1
n−1

Xn
i¼1
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Using the relationship P Y mf g
� � ¼ P μ;σ2;Y mf gð Þ

P μ;σ2jY mf gð Þ , we can

compute the marginal distribution of the data as (5):
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This form of the marginal distribution is then used to

compute Formula (1).
The joint posterior of the targeted P(I,H|Y, X) was de-

fined as P(I,H|Y, X) ∝ P(H)P(I|H)P(Y, X|I,H), and the
Metropolis-Hasting algorithm applying MCMC [13] was
used to sample from this posterior distribution and
make the inference on I. Considering that different I’s
may represent the same grouping of X, for example,
I = {1, 2, 3} is the same as I = {1, 3, 2} so we order the
group label increasingly, and thus I = {1, 3, 2} is not
allowed.

BHIT Algorithm
The details of the BHIT algorithm is shown below:

Step 1. Initialization. Choose I0 = (I1, I2,…, IR), genotype
matrix X(G × R), and phenotype matrix Y(G × 1);
then H0 equals to R, means each genetic variation
makes one group by initial partition; set the
maximum number of iterations T with the current
iteration t = 0; set the burn-in number of iterations
B (B < T), choose I only when MCMC gets
convergency.

Step 2.Calculate initialized likelihood P0(Y, X|I0,H0) by
(1) (H is determined by I).

Step 3. For iteration t, sample It randomly, get a candidate
It
′, and calculate likelihood of Pt ' (Y,X|It ',Ht ').

Step 4.Calculate the defined acceptance ratio.

α ¼ Pt
0 Y ;XjIt 0;Ht

0ð Þ=Pt Y ;XjIt ;Htð Þ

Step 5. If α ≥ 1, then accept the candidate by setting It +
1 = It '; otherwise, accept the candidate with
probability α. If the candidate is rejected, set It + 1 = It
instead. Meanwhile, set t = t + 1.

Step 6.Check whether iteration t is smaller than burn-
in number T; if not store It.

Step 7.Check whether iteration t meets threshold T; if
not go back to Step 3; or select output It.

Simulation setup
Considering the additive and non-additive effects, we
used four different Epistasis Models as introduced in
[13] to test epistasis on single continuous trait, and then
proposed four additional sophisticated Dependency
Models to mimic scenarios of epistasis detection on differ-
ent types of phenotypes. In addition with calculating stat-
istical powers on type-2 errors of Epistasis and
Dependency Models, two Null-models are constructed to
calculate type-1 errors of BHIT.

Simulation on epistasis models
Epistasis models were designed to check the epistasis
detection on single quantitative trait. Epistasis Models
1–4 were generated upon the genotypes depicted by
discrete numbers (0 for Homozygous Major Allele,
one for Heterozygous and two for Homozygous
Minor Allele), and the quantitative phenotypes
dependent with the genotype were depicted by con-
tinuous values. Each model contains one group of
ground truth loci predefined interacted together ac-
cording individual types of interaction as work [13] in
genotype, and other loci are independent with each
other as the background. The quantitative trait is
simulated based on the genotype of ground-truth loci
combination following normal distribution. Increased
quantitative level was assigned to the specific geno-
type combination of ground-truth loci, and marginal
effect of each ground-truth locus individually ranges
from very small to zero. The odds tables of Epistasis
Models are demonstrated in Additional file 1: Tables
S1–S4. Effect parameter θ sand α are determined
using the same procedure in [13].
Model 1 demonstrates additive effects of paired inter-

actions in genotype. This model contains two ground-
truth loci, each of which contributes to the quantitative
trait independently; furthermore, addictive effects

Wang et al. BMC Genomics  (2015) 16:1011 Page 4 of 20



accumulate when both loci occur. Model 2 is analogous
with Model 1, but the addictive effect is presented only
when both loci have at least one ground-truth allele.
Model 3 is a threshold model in which each of the two
loci contributes to the quantitative trait independently,
but both loci presented simultaneously do not further
increase the quantitative trait. Model 4 contains three
ground-truth loci interacting together.
We used R to generate different marginal effects and

dependencies. First, we used defined Minor Allele
Frequency (MAF) to determine the raw ratio of three ge-
notypes as Major Allele Homozygous (0), Heterozygous
(1), and Minor Allele Homozygous (2). Then the allele of
buried ground-truth epistatic locus was selected to be al-
tered under different settings of Linkage Disequilibrium
(LD). By looking up the Odds table of corresponding
models in Additional file 1: Tables S1–S4, ground-truth
epistatic locus can be kept by probability under the corre-
sponding ratio; otherwise, the allele of the locus can
uniformly change to other allele randomly.
Contrast with Case–control phenotypes construction

in [13], the dependent quantitative phenotype is simu-
lated as follows: For each genotype combination of
altered ground-truth epistatic loci, the individual normal
distribution was built using the rnorm function in R with
mean 0 and standard deviation one. Then the normal
distribution was placed in a related index of genotype
combinations, which corresponds to the continuous
phenotype.
Fifty data sets for each epistasis model were simulated

under each setting, where Minor Allele Frequencies
(MAFs) were chosen in {0.1, 0.5}. Simulation datasets of
Models 1–3 consist of 2000 and 4000 observations, and
Model 4 consists of 5000 and 10,000 observations. Each
dataset has 100 simulated genotype variation linked by
100 loci with different settings of LD effect r in {0.7,1},
and the ground-truth loci (2 in Models 1–3, and 3 in
Model 4) are buried in them.

Simulation on dependency models
We designed Dependency Models 5–8 to simulate
multiple high-order dependencies in both discrete and
continuous phenotypes. We used D to denote discrete
column of data and C to denote continuous column of
data. In Dependency Models, genotypes are illustrated
as D, and phenotypes could be illustrated as different
numbers of D and (or) C.
Discrete and dependent data sets were generated by

selecting the number of different discrete values pos-
sible, then raising that value to the power equal to the
number of data sets to be generated, and generating for
each of those values in a probability of occurrence. In
order to make it obvious that the data are related, the

first value was made to be 80 % of all the values, and the
rest of them were the remaining 20 %.
Independent continuous data were generated by R’s

rnorm function, which selects values from a normal
distribution in each column of continuous independent
data set generated. Dependent continuous data were
generated by R’s mvrnorm function to sample from a
multivariate normal distribution.
To generate a mix of discrete and continuous

dependent data sets, the defined number of discrete data
sets was generated following the same routine as stated
earlier. Afterwards, for each unique group of discrete
data generated (unique by rows – tuples), we generate
continuous data separately for each, hence making the
discrete and the generated continuous data dependent
on each other.
Model 5 contains nine discrete columns and nine con-

tinuous columns. Among them, D1 and D2 are discrete
columns independent of all the other columns. C1 and
C2 are continuous columns independent of all the other
columns. There are four dependencies buried in the
model: (1) D3 and D4 are dependent on each other in
the discrete columns; (2) C3 and C4 are dependent on
each other in the continuous columns; (3) Discrete col-
umns D5 and D6, Continuous columns C5 and C6 are
also dependent on each other; (4) Discrete columns D7,
D8, and D9, Continuous columns C7, C8, and C9 are
dependent on each other. The posterior distribution
matrix is given as Additional file 1: Table S5 and shows
that the independent columns were in partitions by
themselves (column 0 is for partitions containing only
one column) and all of the dependent columns were in
partitions with each other. The generated partition of
Model 5 is {C1} ∪ {C2} ∪ {C3, C4} ∪ {D1} ∪ {D2} ∪ {D3, D4}
∪ {C5, C6, D5, D6} ∪ {C7, C8, C9, D7, D8, D9}.
Model 6 contains one discrete column and four con-

tinuous columns. All these columns are independent.
The generated partition is {C1}∪ {C2}∪ {C3}∪ {C4}∪ {D1}
as posterior distribution matrix in Additional file 1:
Table S6.
Model 7 contains ten discrete columns and ten con-

tinuous columns. There are seven dependencies buried
in the model: (1) D1 and D2, D3 and D4, and D5 and
D6 are three groups dependent on each other corre-
sponding to the discrete columns; (2) C1 and C2, and
C3 and C4 are two groups depending with each other
corresponding to the continuous columns; (3) discrete
columns D7 and D8, and continuous columns C5 and
C6 are dependent on each other; (4) discrete columns D9
and D10, and continuous columns C7, C8, C9, and C10 are
dependent on each other. The generated partition is {C1,
C2}∪{C3, C4}∪ {D1, D2} ∪ {D3, D4}∪ {D5, D6} ∪ {C5, C6,
D7, D8}∪ {C7, C8, C9, C10, D9, D10} as posterior distribu-
tion matrix in Additional file 1: Table S7.
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Model 8 contains eight discrete columns and eight
continuous columns. Among them, discrete column
D1 and continuous column C1 are independent.
There are four dependencies buried in the model: (1)
D2, D3, and D4 are dependent on each other in the
discrete columns; (2) C2, C3, and C4 are dependent
on each other in the continuous columns; (3) discrete
column D5 and continuous column C5 are dependent
on each other; (4) discrete columns D6, D7, and D8,
and continuous columns C6, C7, and C8 are
dependent on each other. The generated partition is
{C1} ∪{D1}∪{C2, C3, C4}∪ {D2, D3, D4} ∪ {C5, D5}∪
{D6, D7, D8, C6, C7, C8} as posterior distribution
matrix in Additional file 1: Table S8.
In simulation, 1000 datasets for each dependency

model were simulated under each setting. Models 5–8
consist of 5000, 1000, 5000 and 10,000 observations, re-
spectively, and these numbers representing variations
are defined in parsimony to illustrate the relationships.

Simulation on null models
Null models were generated under hypothesis that no
phenotypes are associated with genotypes. In Null
Models, the discrete genotypes were composed with one
group of two dependent loci, one group of three
dependent loci and ninety-five independent loci. Null
Model 1 has two independent phenotypes both independ-
ent with genotypes while Null Model 2 only has one
phenotype independent of genotypes, which makes it
comparable with other existed methods as PLINK. Null
Models were generated as Dependency Models. Each Null
model generated 1000 datasets in each setting of simula-
tion with different samples of 1000, 2000 and 5000.

Computational experiment setting
For experiments on simulation, BHIT, PLINK, EDCF,
and SIXPAC ran on BIOCLUSTER operating from the
University of Missouri, which is a 64-bit Linux platform
with 16 CPU and 2 T memory; BOOST (64 bit) ran on a
64-bit Windows 7 platform with 3.40 GHz Intel CPU
and 8 G RAM. Experiments on experimental data also
ran on BIOCLUSTER operating from the University of
Missouri.
BHIT parameters were set as follows: For Epistasis

Models 1–3, the MCMC iteration in BHIT was set at
30,000 times of running and 29,000 times as the built-in
procedure. The MCMC iteration of Epistasis Model 4
was set at 50,000 and 29,000 times as the built-in
procedure. For Dependency Models 7, 9, and 10, the
number of MCMC iterations was set at 2000, and the
built-in procedure was set at 1000. For Dependency
Model 8, the number of MCMC iterations was set at
1000, and the built-in procedure was set at 500.

Results and discussion
BHIT software implementation and pipeline
We implemented the Bayesian partition algorithm on
both categorical and continuous data in the BHIT
(Bayesian High-order Interaction Toolkit) software on
the Linux computing platform using C++. BHIT requires
a user specifying the Minor Allele Frequency (MAF) as
the prior and uses the PLINK ped and map file format.
For long runs in big whole genome data, BHIT also pro-
vides intermediate status output and input in benefits
stepwise running in big whole genome data. Compared
with PLINK’s minutes computing on simulation Epistasis
models of hundreds variation, the typical computing
time of BHIT is about 1 h on a single CPU.
The BHIT pipeline for general species is shown in Fig. 2.

In the preprocessing stage, missing data imputation
methods should be applied to estimate missing entries in
the genotype data if any. Then SNP with MAF less than
0.05 is filtered out. All the genotype data should be con-
verted to the appropriate data format by PLINK-recodeA.
If the input has continuous trait values, whether, the data
should be checked by the Kolmogorov–Smirnov test to
confirm whether they follow the normal distribution or
not. After that, both genotype and phenotype data should
be combined together and converted to the BHIT file for-
mat by the perl script provided at the BHIT website. In
order to handle genome-wide SNPs, we provide three
strategies to use BHIT in the pipeline. Strategy A has a
two stages: (1) feature selection methods (LASSO [21],
etc.) are used first to filter all the SNPs and run BHIT only
on the filtered set of SNPs. Strategy B runs BHIT on indi-
vidual chromosome, one at a time. Strategy C focuses on
SNPs located in protein-coding regions and/or certain re-
gions that users define. This pipeline is applicable to any
species with appropriate genotype and phenotype data.

Simulation results on epistasis models
We used the Epistasis Model based simulated datasets
to compare capability between BHIT and other currently
available tools for case–control pair-wise interaction de-
tection. In this study, we applied the representative
methods PLINK (with parameter “epistasis”) [10],
PLINK-fast (PLINK with parameter “fast-epistasis”),
BOOST [11], EDCF [12], and SIXPAC [22] on the simu-
lation datasets. We also used PLINK(Q) on quantitative
trait dataset directly. We also set BHIT running it once
and then three times to fully use its MCMC properties.
To accommodate the setting of PLINK, BOOST, EDCF,
and SIXPAC on pair-wise effects detection only, we
decomposed the high-order effects to multiple pair-wise
effects, e.g., detecting the complete set of all three pair-
wise relations AB, AC, and BC, which is counted as
detecting the three-order relationship ABC successfully.
In Epistasis Model, the statistical power of these

Wang et al. BMC Genomics  (2015) 16:1011 Page 6 of 20



methods is defined as the fraction of the generated data-
sets on which only topmost results given by the method
matches the ground truth. For triple runs of BHIT, the
statistical power is defined as the fraction of the gener-
ated datasets on any of the three outputs of BHIT
matching the ground truth. We chose 0.5 as the
threshold for the posterior probabilities to determine
the dependency for each loci and phenotype.
We extensively explored the simulation settings on

MAF and LD variants for Epistasis Models 1–4 in
Table 1 and Additional file 1: Figure S1–S8. First, we
considered the genotyped genetic variations to be exactly
ground-truth loci where LD equals 1, an idealistic and
unrealistic situation. When MAF equals 0.5, nearly all the
methods designed to detect pair-wise epistasis could ef-
fectively detect Models 1–3 in various marginal pair-wise
effects with no LD effects. For three-order interactions of
Model 4, PLINK failed to detect high-order interactions,
while BOOST and EDCF significantly lost its power to
effectively detect the three pair-wise interactions decom-
posed from the three-order interaction. However, BHIT
was highly effective in detecting both two-order and
three-order interactions on all four of these models.

Through multiple runs of BHIT, we could perfectly detect
nearly all of these interactions in all the simulation data-
sets of these models. When changing the settings of MAF
to 0.1 with a perfect LD effect, PLINK could still work on
all of these epistasis models fairly well. BOOST and EDCF
decreased their power in pair-wise interactions of Models
1–3 with lower MAF. BHIT maintained relatively high de-
tection power in pair-wise interactions and showed good
performance in detecting three-order interactions in
Model 4. Then we introduced the LD effect as r equals 0.7
in the simulation datasets to mimic a more realistic
scheme. Comparing with no LD effects, PLINK,
BOOST and EDCF showed significant performance
shortfalls in Models 1–3 with MAF settings at either
0.5 or 0.1. We also applied SIXPAC in all these simu-
lations but it failed in all the models, which may be
due to its inability to provide block distances in the
simulation datasets. LD effects also decreased detec-
tion power of BHIT. However, for three-order interac-
tions of Model 4, BHIT showed much more tolerance
with these effects as it nearly detected all the interac-
tions with or without LD. BHIT’s ability could easily
be enhanced by multiple runs.

Fig. 2 Pipeline of BHIT high-order interaction detection. Firstly the pipeline preprocesses raw genotype data by missing data imputation and MAF filtering,
and then checks raw continuous phenotype data to confirm whether it follows the normal distribution by the Kolmogorov–Smirnov test. Both genotype
and phenotype data should be combined together and converted to the BHIT file format. BHIT is applied upon these data via different strategies and
validates its results in the end
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Simulation results on dependency models
In order to demonstrate the potential of detecting more
sophisticated dependency relationships within the data,
we proposed four additional dependency models both
on SNP (discrete) and different types of quantitative
phenotypes (continuous) and discrete phenotypes. Since
no public software to our knowledge can detect such
multiple dependencies of both discrete and continuous
data simultaneously, we only ran BHIT once, thrice and
ten times to evaluate the performance.

Other than detecting loci in Epistasis Models, the statis-
tical power of Dependency Models is defined by detecting
the correct relationships of the correct corresponding var-
iations, which is challenging.
For Dependency Models, BHIT showed its remarkable

capabilities in detecting multiple dependencies both in
discrete and continuous datasets detailed in Table 2,
while no other publicly available tools can handle these
data. For Model 5, the dependencies were correctly de-
tected 81.3 % in 1000 simulation datasets by a single run

Table 1 Simulation results on epistasis models 1–4

Model Sample LD MAF BHIT BHIT PLINK PLINK PLINK BOOST EDCF

number (One) (Triple) (Fast) (Q)

1 2000 1 0.5 1.00 1.00 0.98 0.34 1.00 1.00 1.00

0.1 0.94 1.00 0 0 0.90 0 0

0.7 0.5 0.90 1.00 0.22 0.04 0.68 0.84 0.66

0.1 0.92 1.00 0 0 0.48 0 0

4000 1 0.5 1.00 1.00 1.00 0.84 1.00 1.00 0.80

0.1 0.94 1.00 0 0 1.00 0.22 0.90

0.7 0.5 0.86 1.00 0.68 0.18 1.00 1.00 0.38

0.1 0.88 1.00 0.04 0.04 0.96 0.12 0.82

2 2000 1 0.5 1.00 1.00 0.72 0.38 0.98 1.00 1.00

0.1 0.56 0.74 0 0 0 0 0

0.7 0.5 0.88 1.00 0.22 0.08 0.48 0.42 0.80

0.1 0.20 0.22 0 0 0 0 0

4000 1 0.5 0.98 1.00 1.00 0.88 1.00 1.00 1.00

0.1 0.56 0.78 0 0 0 0.16 0.48

0.7 0.5 0.96 1.00 0.64 0.32 0.92 0.98 0.86

0.1 0.20 0.24 0.06 0.02 0 0.14 0.28

3 2000 1 0.5 0.94 1.00 0.38 0.10 0.82 0.98 1.00

0.1 0.30 0.34 0 0 0 0 0

0.7 0.5 0.94 1.00 0.04 0.32 0.32 0.16 0.74

0.1 0.02 0.04 0 0 0 0 0

4000 1 0.5 1.00 1.00 0.96 0.62 1.00 1.00 1.00

0.1 0.24 0.32 0 0 0 0.02 0.42

0.7 0.5 0.90 1.00 0.28 0.12 0.76 0.60 0.88

0.1 0.12 0.16 0.04 0 0 0 0.28

4 5000 1 0.5 0.96 1.00 0 0 0 0.04 0.14

0.1 0.08 0.16 0 0 0 0 0.08

0.7 0.5 1.00 1.00 0 0 0 0 0.08

0.1 0.02 0.04 0 0 0 0 0

10,000 1 0.5 1.00 1.00 0 0 0 0.32 0.42

0.1 0.66 0.94 0 0 0 0 0.02

0.7 0.5 0.90 1.00 0 0 0 0.02 0.58

0.1 0.58 0.82 0 0 0 0 0

Simulation results of statistical power on each of four defined models in each simulation setting. Each simulation contains 50 simulation datasets generated by
each model. The sample sizes of Models 1–3 are set as 2000 and 4000, and the sample size of Model 4 is set as 5000 and 10,000. The LD between variations and
ground-truth loci is set as 1 or 0.7. The MAF is set as 0.7 or 0.1. Bold shows highest statistical power
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of BHIT, and the detection power increased to 87.8 % in
1000 and 89.8 % in 1000 by running BHIT for triple and
ten runs. For Models 6–8, BHIT correctly detected
nearly all the dependencies (99.8 % in Model 6, 98.5 %
in Model 7, and 99.8 % in Model 8) in all 1000 simulated
datasets. With multiple runs of BHIT, all the interactions
in simulated datasets of Dependency Models could be
detected.

Simulation results on null models
Different from Epistasis Models and Dependency
Models, no phenotypes are associated with genotypes in
Null Models. The statistical power of Null models in
BHIT is defined as the fraction of the generated datasets
showing no dependencies between phenotype with any
genotype, and the statistical power in PLINK is defined
as the fraction of the generated datasets showing no as-
sociation found. As shown in Table 3, in Null Model 1
only 2.1 % of 1000 datasets in each simulation at least
one phenotype were incorrectly inferred as associated
with given genotypes with the settings of 1000 samples
in BHIT, and this number decreased to 1.9 and 0.6 %
with settings of 2000 and 5000 samples. In Null Model
2, the phenotype was incorrectly inferred as dependent
with given genotypes in only 0.6, 0.3 and 0.1 % of 1000
datasets in each simulation setting of 1000, 2000 and
5000 samples. Comparing with same datasets running by
PLINK (with parameter “epistasis”), PLINK-fast (PLINK
with parameter “fast-epistasis”), PLINK(Q) which works
on the quantitative trait, BHIT obviously got confidential
results in Null Models with different settings of samples.
In the simulation studies, BHIT demonstrated its ex-

cellent capabilities and potential in comparison with

other epistasis detection methods on both type-1 and
type-2 errors. On pair-wise interactions with/without
additive effects, BHIT could get same good results as
BOOST and EDCF in high MAF, and outperform them
by a large margin in a lower MAF. With various settings
of MAF and LD, BHIT showed its robustness on high
detection power by adopting the proper setting of prior
on MAF as a Bayesian partition, which other methods
(BOOST and EDCF) neglect. Besides pair-wise interac-
tions, BHIT could also obtain excellent results in three-
order interactions, while other methods were not designed
to handle. Benefiting from the flexible statistics frame-
works, BHIT could detect these dependencies very effect-
ively with various types of phenotypes in simulation
datasets. By checking validity by Null Models, BHIT
showed good results in distinguishing no associations in
simulation datasets.

Results on soybean quantitative traits studies
Soybeans represent one of the most important agricul-
tural crops providing nutrition and sustenance to
humans and household animals. Among its hundreds of
agricultural traits, oil and protein content of its seeds
are among the most interesting of its composition traits
both for farmers and breeders. We used the SoySNP50K
iSelect BeadChip SNP array [23] as the genotype, and
243 Plant Introduction (PI) lines with the oil and pro-
tein contents phenotyped in 2011 (unpublished results).
All the SNPs are mapped to genes by Soybean Know-
ledge Base (SoyKB) [24]. For oil and protein contents
are highly correlated, we only choose oil content as the
phenotype in BHIT running. We applied all three strat-
egies of the BHIT pipeline in this research. Strategy A is
a two-stage strategy, i.e., to choose SNP subsets by fea-
ture selection of LASSO, filtering all the SNPs first and
then apply BHIT on significant SNPs detected by
LASSO. Strategy B uses BHIT on individual chromo-
somes, one at a time. Strategy C is mainly focused on
protein-coding regions, which only applies BHIT on
known protein QTL regions and oil QTL regions. In all
strategies, BHIT was set to running 1,000,000 times of
MCMC, and set 990,000 as the burn-in period to
guarantee the convergency, 0.5 was chosen as the
threshold for the posterior probabilities to determine
the dependency for each loci and phenotype.

Preprocessing on soybean data
There is no missing value in SoySNP50K iSelect Bead-
Chip SNP array, and each SNP in the array is only
chosen with threshold that MAF larger than 0.05. Both
quantitative phenotypes of soybean oil/protein data
are accepted as normal distribution hypothesis by
Kolmogorov–Smirnov test.

Table 2 Simulation results on dependency models 5–8

BHIT(One run) BHIT(Triple runs) BHIT(Ten runs)

Model 5 0.813 0.872 0.898

Model 6 0.998 1.000 1.000

Model 7 0.985 1.000 1.000

Model 8 0.998 0.999 1.000

Simulation results of statistical power on each of four defined models. Each
simulation contains 1000 simulation datasets generated by each model

Table 3 Simulation results on null models

Null model 1 Null model 2

Sample settings BHIT BHIT PLINK PLINK-fast PLINK(Q)

1000 0.979 0.994 0.683 0.380 0.603

2000 0.981 0.997 0.666 0.380 0.618

5000 0.994 0.999 0.637 0.345 0.624

Simulation results of statistical power on Null models. Each simulation contains
1000 simulation datasets generated by each model, the setting of each
simulation of each models differs in samples (observation) as 1000, 2000
and 5000
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Epistasis results on soybean quantitative traits studies by
strategy A
In Strategy A, we first used LASSO to get 153 SNPs re-
lated to protein and oil content, and then we ran BHIT
200 times on this subset. We got 147 SNP-SNP interac-
tions related to oil/protein content traits, including 86
two-order interactions, 40 three-order interactions, 20
four-order interactions and 1 five-order interaction.
Table 4 gives a general view of the most interesting
BHIT results obtained by using Strategy A. The SNP
interaction pair in Index one is located in chromosome
seven at positions 15,667,842 and 15,662,403 (Fig. 3). The
major allele homozygous and minor allele homozygous
genotypes could divide the oil content phenotype signifi-
cantly with p-value 2.75 × 10− 10 by t-test. Considering that
minor allele homozygous pairs are expected to appear
4.12 % in the background, the observed minor homo-
zygous pairs appeared 11.39 times higher than the set
percentage for background appearance. This bias may
be due to breeding selection. When mapping to soy-
bean genes using Soybean Knowledge Base (SoyKB),
both SNPs are associated with individual genes Gly-
ma07g15930.1, a KOG-oxysterol-binding protein func-
tioned in lipid transport process, and Glyma07g15960.1,
a KOG-dehydrogenase (EC/1.1.1.145/3-beta-hydroxy-
Delta(5)-steroid dehydrogenase). Both genes function in

Table 4 SNPs identified by strategy A using BHIT in soybean
data

Index Interaction SNPs Mapped gene Gene annotation

1 Gm07_15667842_T_C Glyma07g15930 Oxysterol-binding
protein

Gm07_15662403_C_T Glyma07g15960 Dehydrogenase EC/
1.1.1.145/3-beta-
hydroxy-Delta(5)-steroid
dehydrogenase

2 Gm07_15667842_T_C Glyma07g15930 Oxysterol-binding
protein

Gm07_15662403_C_T Glyma07g15960 Dehydrogenase EC/
1.1.1.145/3-beta-
hydroxy-Delta(5)-steroid
dehydrogenase

Gm06_42883965_T_C Glyma06g39891 glycerol-3-phosphate
acyltransferase

3 Gm16_1481641_G_A Glyma16g01950 ABI3/VP1 Transcription
factor

Gm19_38897850_C_T Glyma19g31120 Glutamate synthase
(NADH)

Gm19_39737193_T_C Glyma19g31960 AP2-EREBP Transcription
factor

Fig. 3 Genotype division on oil/protein phenotype by Strategy A on SNP Gm07_15667842_T_C and Gm07_15662403_C_T. Y presents the protein
content; X presents the oil content, and each point represents the phenotype of one sample in the soybean population. Genotypes of the
samples are depicted using pairwise SNP combinations in different shapes and colors, where 0 and 2 represent major and minor alleles in
homozygous, respectively, while 1 presents heterozygous. The numbers in parentheses show the number of samples and percentage. We can
see the genotype 00 (blue dots) and 22 (red dots) have clear phenotype (protein and oil) features
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the steroid biosynthetic process are located in chloro-
plast stroma. Index two shows a three-order interaction
with Index one and another SNP located in location
42,883,965 of chromosome six, which is mapped to gene
Glyma06g39891 (Fig. 4). This gene is glycerol-3-
phosphate acyltransferase (EC 2.3.1.15), which is also lo-
cated in the glycerolipid metabolism pathway (http://
www.genome.jp/kegg/pathway/map/map00561.html), func-
tioning in lipid transport and located in endoplasmic
reticulum. Another promising three-order interaction
across chromosomes is Index 3 positioned at 1,481,641 in
Chromosome 16, and 38,897,850 and 39,737,193 in
Chromosome 19 (Fig. 5). The statistical significance p-value
reaches 7.63 × 10− 16 by t-test between triple-major allele
and triple-minor allele. These SNPs are associated with
Glyma19g31120.1, a glutamate synthase (NADH) func-
tioned in glutamate synthase (NADH) activity; Gly-
ma19g31960.1, an AP2-EREBP transcription factor in the
lipid biosynthetic process; and Glma16g01950.1, an ABI3/
VP1 transcription factor located in chloroplast. All three
genes are related to the oil biosynthesis process.

Epistasis results on soybean quantitative traits studies by
strategy B
In strategy B, we split the SoySNP50K data into 20 parts
by their chromosomes, and then ran BHIT separately on

each of these individual chromosomes. Several interest-
ing interactions were detected among the results and are
detailed in Table 5. An interesting SNP pair is located on
Chromosome five at position 34,107,233 and 40,523,205
(Fig. 6), which are annotated by Glyma05g28240, an En-
zyme EC 3.6.4.4, which is a plus-end-directed kinesin
ATPase, and Glyma05g36730, a homologous gene OPI10
in Medicago Truncatula, which is involved in phospholipid
biosynthesis, respectively. This pair of SNP interactions
directly connects to oil content phenotype. The individual
p-values of both SNPs are 3.63 × 10− 7 and, 1.03 × 10− 5 re-
spectively, but the combined p-value reached 4.97 × 10− 12.
Another three-order interaction related to protein synthesis
phenotype is located on Chromosome 13 at position
28,866,067, 28,868,130 and 29,473,740 (Fig. 7), which are
annotated by Glyma13g25650 and Glyma13g26260. Gly-
ma13g25650 is a subtilase family protein acting in the
serine-type peptidase activity, and Glyma13g26260 encodes
Enzyme EC 5.2.1.8 acting in Peptidylprolyl isomerase. The
individual p-values of SNPs are 2.52 × 10− 5, 1.95 × 10− 3,
and 3.41 × 10− 8, respectively, but their combination re-
sults in a p-value of 1.03 × 10− 13. The most significant
four-order interaction detected by this strategy is lo-
cated in Chromosome ten at positions 47,616,648;
47,618,284; 47,730,445; and 47,753,689 (Fig. 8), con-
tained in three genes Glyma10g40110, Glyma10g40260

Fig. 4 Genotype division on oil/protein phenotype by Strategy A on SNP Gm07_15667842_T_C, Gm07_15662403_C_T and Gm06_42883965_T_C.
Y presents the protein content; X presents the oil content, and each point represents the phenotype of one sample in the soybean population.
Genotypes of the samples are depicted using pairwise SNP combinations in different shapes and colors, where 0 and 2 represent major and
minor alleles in homozygous, respectively, while 1 presents heterozygous. The numbers in parentheses show the number of samples and
percentage. We can see the genotype 000 (blue dots) and 222 (red dots) have clear phenotype (protein and oil) features
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and Glyma10g40290. Glyma10g40110 is a pyruvate
kinase participating in the fatty acid biosynthetic
process, Glyma10g40260 has a homologous gene fatty
acyl-CoA reductase three in Medicago Truncatula,
while Glyma10g40290 is a glycosyl hydrolase super-
family protein. The p-values of individual SNPs are
5.68 × 10− 4, 4.15 × 10− 4, 6.69 × 10− 1, and 3.81 × 10− 1, re-
spectively, and the combined p-value reaches 3.79 × 10− 7.
We also detected a 7-order interaction on Chromosome
five at positions 8,688,492, 8,714,882, 8,715,355, 8,800,108,
8,800,879, 8,817,375, and 8,904,128 (Fig. 9). These SNPs
are annotated by gene Glyma05g08810, Glyma05g08830,
Glyma05g08970 and Glyma05g09080. Among them, Gly-
ma05g08810 is EC 4.99.1.4 sirohydrochlorin ferrochela-
tase, while Glyma05g08830 is included in the pre-mRNA
cleavage complex II protein family, and Glyma05g09080 is
an EC 1.14.15.3 alkane 1-monooxygenase. The p-values of
these individual SNPs are around 0.1 but their combined
p-value reaches 3.59 × 10− 7.

Epistasis results on soybean quantitative traits studies by
strategy C
In this Strategy C, we ran BHIT on a subset of 799 SNPs
from Soy50KSNP array, which overlapped with the pro-
tein coding regions and known QTL regions related to

protein/oil contents (Additional file 2: Table S9). Then
we ran BHIT for about 1000 times on this subset using
either oil or protein phenotypes. Table 6 presents some
interesting identified interactions. The first and most in-
teresting interactions among them were identified in 4
loci across two chromosomes located in position
20,897,627; 20,954,490 of Chromosome eight, and
8,642,446; 12,051,017 of Chromosome 19. The first SNP
(named as SNP293) is located in gene Glyma08g26580.1
mapped, which has an Arabidopsis homology AT3G0140
(EC/6.3.2.19) and an ubiquitin-protein ligase. At the se-
quence level, the polymorphism makes the major allele
nucleotide guanine (g) replaced by the minor allele nu-
cleotide adenine (a), which causes the 73th amino acid
of the protein change from glycine (G) to arginine (R).
The added positive charged arginine may have signifi-
cant impact on the protein conformation and function.
The second SNP (named as SNP294) is located in gene
Glyma08g26680.1, which causes the 31st amino acid
change from alanine (A) to valine (V). The function of
this gene is unknown. The third SNP (named as
SNP792) is located in gene Glyma19g07330.1, which also
causes amino acid change from glycine (G) to arginine
(R). This gene has the Arabidopsis homolog
AT3G48990.1, which encodes an oxalyl-CoA synthetase

Fig. 5 Genotype division on oil/protein phenotype by Strategy A on SNP Gm16_1481641_G_A, Gm19_38897850_C_T and Gm19_39737193_T_C.
Y presents the protein content; X presents the oil content, and each point represents the phenotype of one sample in the soybean population.
Genotypes of the samples are depicted using pairwise SNP combinations in different shapes and colors, where 0 and 2 represent major and
minor alleles in homozygous, respectively, while 1 presents heterozygous. The numbers in parentheses show the number of samples and
percentage. We can see the genotype 000 (blue dots) and 222 (red dots) have clear phenotype (protein and oil) features
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Table 5 SNPs identified by strategy B using BHIT in soybean data

Index Interaction SNPs Mapped gene Gene annotation

1 Gm05_34107233_A_G Glyma05g28240 Enzyme:EC 3.6.4.4 Plus-end-directed kinesin ATPase

Gm05_40523205_A_G Glyma05g36730 Homologous gene OPI10 in Medicago Truncatula: involved in phospholipid biosynthesis

2 Gm13_28866067_A_G Glyma13g25650 Subtilase family protein, acted in serine-type peptidase activity

Gm13_28868130_A_C

Gm13_29473740_T_C Glyma13g26260 Enzyme EC 5.2.1.8 Peptidylprolyl isomerase

3 Gm10_47616648_C_T Glyma10g40110 Pyruvate kinase, participate in fatty acid biosynthetic process

Gm10_47618284_C_T

Gm10_47730445_G_A Glyma10g40260 Has homologous Gene Fatty acyl-CoA reductase 3 in Medicago Truncatula

Gm10_47753689_G_A Glyma10g40290 Glycosyl hydrolase superfamily protein

4 Gm05_8688492_T_C Glyma05g08810 EC 4.99.1.4 Sirohydrochlorin ferrochelatase

Gm05_8714882_G_A Glyma05g08830 Pre-mRNA cleavage complex II protein family

Gm05_8715355_C_T

Gm05_8800108_C_T

Gm05_8800879_C_T

Gm05_8817375_T_C Glyma05g08970 Unknown

Gm05_8904128_A_G Glyma05g09080 EC 1.14.15.3 Alkane 1-monooxygenase

Fig. 6 Genotype division on oil/protein phenotype in individual chromosome wild by Strategy B on SNP Gm05_34107233_A_G and
Gm05_40523205_A_G. Pair-wise interaction result. Y presents the protein content, X presents the oil content, and each point represents the
phenotype of one sample in the soybean population. The genotypes of the samples are depicted in different colors. In genotypes 0 and 2 each
present major alleles and minor alleles in homozygous, while 1 presents heterozygous. The numbers in parentheses show the number of samples.
Different from Fig. 3, we only draw the homozygous genotypes in blue and red dots, which divide the phenotypes well
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and is required for oxalate degradation and normal seed
development processes. The fourth SNP (named as
SNP794) is located in gene Glyma19g10100.1, which
causes amino acid change from valine (V) to isoleucine
(I). This gene has the Arabidopsis homology
AT1G51310.1, a tRNA (5-methylaminomethyl−2-thiour-
idylate)-methyltransferases. This transferase is involved
in tRNA processing in chloroplast and cytoplasm. It was
found that protein Glyma08g26580.1 containing SNP293
and protein Glyma19g07330.1 containing SNP792 were
predicted to interact by ProprInt [25]. We predicted
their protein structures by MUFOLD [26] . Then we
docked the two predicted structures using GRAMMX
[27]. Interestingly, the distance between the residue
containing SNP293 and the residue containing SNP792
was shorter than 0.0052 % of all the paired distances be-
tween the two structures, as shown in Fig. 10. This suggests
that the epistatic interaction between the two SNPs may
play a role in the interaction between the two proteins.
Many of the SNP-associated genes in Table 6 are

highly related to oil content according to the literature.
It is known that ubiquitin processes (Glyma08g26580)
have significant influences on fatty acid compensation
[28, 29] . Intracellular composition of fatty acid could

affect the processing and function of enzymes in connec-
tion with the ubiquitin–proteasome pathway, which
might be a common physiological approach to regulate
protein degradation [30]. Under the control of a corn
ubiquitin promoter, positive expression of puroindoline
a and b (PINA and PINB) proteins in transgenic corn
could significantly increase the seed oil content [31]. It
is also well known that acyl-coenzyme A (CoA) synthase
(Glyma19g07330) catalyses the conversion of free fatty
acid to acyl-CoA ester, and is, therefore, necessary for
many pathways of fatty acid and lipid metabolism [32].
Researchers have successfully improved fatty alcohol by
manipulating the CoA synthase in fatty alcohol biosynthesis
pathway in engineered E. coli [33], and they also succeeded
improving fatty acid ethyl esters in Saccharomyces
cerevisiae [34]. Although there is no direct report on the
role of tRNA-methyltransferase (Glyma19g10100) in oil
synthesis in plants, a product of tRNA-methyltransferase,
S-adenosylhomocysteine was shown to have a metabolic
link with the fatty acid metabolism in Alzheimer’s
disease [35]. The potential interaction between Gly-
ma08g26580 and Glyma19g07330 links the ubiquitin
and acyl-CoA synthase through NAD(P)/FAD-
dependent dehydrogenases [36].

Fig. 7 Genotype division on oil/protein phenotype in individual chromosome wild by Strategy B on SNP Gm13_28866067_A_G,
Gm13_28868130_A_C and Gm13_29473740_T_C. Three-order interaction result. Y presents the protein content, X presents the oil content, and
each point represents the phenotype of one sample in the soybean population. The genotypes of the samples are depicted in different colors. In
genotypes 0 and 2 each present major alleles and minor alleles in homozygous, while 1 presents heterozygous. The numbers in parentheses show the
number of samples. Different from Fig. 3, we only draw the homozygous genotypes in blue and red dots, which divide the phenotypes well
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We also checked the neutral mutation hypothesis by
using a dataset by Tajima’s D statistics using DnaSP
software version 4.0 [37]. The Tajima’s D value of the
region is 3.65 (p < 0.001), which significantly rejected
null hypothesis of neutrality and meets the prior know-
ledge of soybean as a human cultivated plants, may
undergo the balancing selection.

Conclusions
Epistasis is a common phenomenon in many complex
biological processes of various organisms, which has
been known to be related to quantitative traits in plants
[38]. From the evolution perspective, epistasis and
natural selection shape the mutational architecture of
complex traits [39]. Epistasis may cause hidden quantita-
tive genetic variation in natural populations and could
be responsible for the small additive effects, missing her-
itability and the lack of replication, which are typically
observed for human complex traits [9, 40]. Towards this
direction, our computational method, tool and pipeline
enable researchers to explore epistasis and may elaborate
on what specific epistasis, especially higher-order epistasis,
play a role in a complex trait.
Seed oil content and protein content are both polygenic

traits controlled by several gene loci in soybeans, which

represent a major source of dietary nutrition and an in-
creasingly valuable feedstock for industrial applications
[41]. However, due to overlapping biosynthesis pathways
and alternative nutrition distribution, seed oil content
shows strong negative correlation with seed protein con-
tent, i.e., improvement of one trait is often achieved at the
expense of the other [42]. Quantitative genetic analyses
and QTL mapping based studies have suggested that both
seed oil content and protein content are governed by the
additive effect of genes involved [43]. Many of the QTL
alleles with positive and negative effects on oil content are
often dispersed among genotypes [44], which suggests that
accumulation of the positive alleles from different genetic
backgrounds could eventually lead to the development of
genotypes with higher seed oil content or protein content
[45]. By computing Tajima’s D, multiple alleles are actively
maintained in the gene pool of a population at frequencies
above that of gene mutation. The significance level of
positive Tajima’s D also supports the hypothesis that the
samples we used are indeed under the balancing selection
with genetic polymorphism conserved by multiple alleles,
not simply by genetic drift. With SNP array data and NGS
data, we could directly focus on the trait study at the
nucleotide level, instead of the QTL level, which could
give us much more detailed information and guidance on

Fig. 8 Genotype division on oil/protein phenotype in individual chromosome wild by Strategy B on SNP Gm10_47616648_C_T, Gm10_47618284_C_T,
Gm10_47730445_G_A and Gm10_47753689_G_A. Four-order interaction result. Y presents the protein content, X presents the oil content, and each point
represents the phenotype of one sample in the soybean population. The genotypes of the samples are depicted in different colors. In genotypes 0 and 2
each present major alleles and minor alleles in homozygous, while 1 presents heterozygous. The numbers in parentheses show the number of samples.
Different from Fig. 3, we only draw the homozygous genotypes in blue and red dots, which divide the phenotypes well
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molecular breeding. Some of our predicted epistatic inter-
actions could serve as hypotheses for molecular breeding
design.
We mainly focus on biological interpretation of epistasis

at the gene level. The trait associated coding region poly-
morphism at the gene level may change the biochemical
property and the protein structural conformation, which
could cause significant functional and phenotype changes.
According to our analysis, these changes are indeed asso-
ciated with the trait change quantitatively. Breen demon-
strated that epistasis is pervasive in protein evolution by
considering amino-acid usage. In this theory, epistasis as
the primary factor in molecular evolution, provides the
primary conceptual framework to describe the tempo and
mode of long-term protein evolution [46, 47]. Another
possible explanation arose from Hemani’s work [48],
which indicates that epistatic interactions can allow dele-
terious mutations to persist under selection and these
interactions can abate the depletion of additive genetic
variation. In our cases, soybean has been cultivated for
thousands of years. Some of the epistasis that we identified
by BHIT could be a result of protein evolution under
human breeding selection. In particular, the differences on
protein conformation in different genotypes may cause

differences in protein-protein interaction, which could
alter the interaction between ubiquitin-protein ligase and
oxalyl-CoA synthetase, as an example. These important
biochemical changes in the oil biosynthesis pathway may
finally affect the phenotypes of oil/protein content quanti-
tatively. It has been noted that some of the SNPs in an
identified epistatic interaction are close to each other in
the genomic sequence, which may be due to LD instead of
epistasis.
The key advantage of BHIT is its advanced flexible

setting on detecting high-order interactions on both
discrete and continuous data. In contrast to other
methods designed to detect only pair-wise interaction,
BHIT does not restrict the computational models to
two-order dependencies, and dependencies in different
orders could be uniformly chosen by adopting larger
likelihood following using a MCMC search. Even though
MCMC could obtain the global maximum in theory, mul-
tiple runs of BHIT may overcome the local maximum in
practice. In addition, the search convergence could be eas-
ily judged by checking the changing status of likelihood
with the need to be determined empirically in other
model-free methods. The design of likelihood computa-
tion between both discrete and continuous attributes gave

Fig. 9 Genotype division on oil/protein phenotype in individual chromosome wild by Strategy B on SNP Gm05_8688492_T_C, Gm05_8714882_G_A,
Gm05_8715355_C_T, Gm05_8800108_C_T, Gm05_8800879_C_T, Gm05_8817375_T_C and Gm05_8904128_A_G. Seven-order interaction result. Y
presents the protein content, X presents the oil content, and each point represents the phenotype of one sample in the soybean population. The
genotypes of the samples are depicted in different colors. In genotypes 0 and 2 each present major alleles and minor alleles in homozygous, while 1
presents heterozygous. The numbers in parentheses show the number of samples. Different from Fig. 3, we only draw the homozygous genotypes in
blue and red dots, which divide the phenotypes well
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BHIT’s capability on both case–control and complex
quantitative trait analysis. In contrast to other model free
machine-learning based methods, the deployed Bayesian
framework could fully use the prior knowledge of Minor
Allele Frequency, which benefits BHIT to become much
more adaptive in different settings of datasets. In simula-
tion studies on epistasis models, in comparison with other
existing methods, BHIT can maintain high efficiency in
various settings of sample numbers, MAF and LD effects.
Another key advantage of BHIT is its capability to deal
with continuous phenotypes as quantitative traits. In both
simulation studies on Dependency Models and soybean
study of oil and protein content traits, BHIT is versatile
and robust in detecting multiple dependencies
simultaneously.
In comparison to BEAM and BEAM2, which were

developed in detecting high-order epistasis from
discrete genotypes in single case–control phenotype,
BHIT expands BEAM by building a flexible framework
to detect multiple high-order epistasis in case–control
and/or quantitative phenotypes. Our work is also different
from Zhang’s work [49] on Pleiotropic and Epistatic
eQTL, which also used the idea of Bayesian partition, in
that a) Zhang’s work aimed at eQTL module identification
while BHIT is a general framework for GWAS analysis; b)

Zhang’s work focused on association with genotype and
continuous traits as eQTL, while BHIT could detect asso-
ciation between genotype and traits, both continuous and
categorical; c) Zhang’s work mainly handled pair-wised in-
teractions, while BHIT can detect high-order interactions.
With the Bayesian method’s strengths and flexible settings,
BHIT demonstrates its great capabilities and potentials in
detecting both pair-wise and high-order interactions in
GWAS datasets both on discrete and continuous data.
The BHIT pipeline is developed to apply BHIT for

general purpose of research on any species and any traits
with appropriate data. Due to detecting multiple orders
of interaction, BHIT demonstrates its capability on
thousands genetic variations by thousands samples on
single CPUs in plausible time. To handle even bigger
datasets genome wide, three different computational
strategies in computational experiment were imple-
mented in the BHIT pipeline to address the computa-
tional intensive nature of BHIT Bayesian computation.
Strategy A screened additive effects first by feature
selection method, penalty-based regression LASSO in
our soybean quantitative trait study, this two-stage strat-
egy may have ignored several true-positive epistasis, but it
was able to fully use all the SNPs in the genome scale. The
application in experimental datasets successfully found

Table 6 SNPs identified by strategy C using BHIT in soybean data

Result index SNP index Interaction SNPs Codon change Amino acid change Mapped gene Gene annotation

1 293 Gm08_20897627_G_A gga- > aga G- > R Glyma08g26580 Enzyme: EC 6.3.2.19 Ubiquitin–protein ligase

294 Gm08_20954490_C_T gct- > gtt A- > V Glyma08g26680 Unknown

792 Gm19_8642446_G_A gga- > aga G- > R Glyma19g07330 Oxalyl-CoA synthetase

794 Gm19_12051017_G_A gtc- > atc V- > I Glyma19g10100 transferases; tRNA (5-methylaminomethyl-2-
thiouridylate)-methyltransferases

2 293 Gm08_20897627_G_A gga- > aga G- > R Glyma08g26580 Enzyme: EC 6.3.2.19 Ubiquitin–protein ligase

294 Gm08_20954490_C_T gct- > gtt A- > V Glyma08g26680 Unknown

699 Gm18_228523_A_G cca- > ccg P- > P Glyma18g00560 Unknown

700 Gm18_263102_C_A gaa- > gca E- > A Glyma18g00620 Sinapate 1-glucosyltransferase.

702 Gm18_304928_T_G ctt- > ctg L- > L Glyma18g00690 Pentatricopeptide repeat (PPR) superfamily
protein

3 293 Gm08_20897627_G_A gga- > aga G- > R Glyma08g26580 Enzyme: EC 6.3.2.19 Ubiquitin–protein ligase

294 Gm08_20954490_C_T gct- > gtt A- > V Glyma08g26680 Unknown

555 Gm15_1507923_G_A gga- > gaa G- > E Glyma15g02250 Myb-like DNA-binding domain

556 Gm15_1541381_T_C ttt- > tct F- > S Glyma15g02280 2-oxoglutarate (2OG) and Fe(II)-dependent
oxygenase superfamily protein

4 181 Gm07_809165_C_T acc- > act T- > T Glyma07g09670 Zn-dependent exopeptidases superfamily
protein

293 Gm08_20897627_G_A gga- > aga G- > R Glyma08g26580 Enzyme: EC 6.3.2.19 Ubiquitin–protein ligase

294 Gm08_20954490_C_T gct- > gtt A- > V Glyma08g26680 Unknown

5 203 Gm07_9506713_T_C cgg- > tgg R- >W Glyma07g11320 5–3 exonuclease

294 Gm08_20954490_C_T gct- > gtt A- > V Glyma08g26680 Unknown

316 Gm08_23691942_G_A aag- > aaa K- > K Glyma08g29220 Unknown
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cross-chromosome epistasis. Strategy B’s individual
chromosome computing was able to fully use all the
candidate SNPs in one chromosome, but it neglected
the cross-chromosome epistasis. The nearby SNPs in
one chromosome might over-estimate epistasis be-
cause of linkage disequilibrium. Strategy C enables
users to use prior-knowledge to select SNPs first,
eliminated the computation by only applying BHIT
on protein-coding regions in known QTL in our
study. Results obtained by this strategy could be well
explained at the protein level but it obviously lost
some information both in the non-coding regions and
non-QTL regions. Besides soybean oil/protein traits,
high order interactions exist in many other species
and traits. The BHIT pipeline can be applied in
detecting high-order interaction between genotype
and phenotype in other species with appropriate data and
strategy. Even with advanced computational technologies
and strategies, BHIT still requires high computational
resources within the whole genome dataset. We are work-
ing on developing an effective approximation algorithm as
well as the parallel and GPU version of BHIT to advance
genotype-phenotype research.
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