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Abstract

Background: The Pacific white shrimp (Litopenaeus vannamei) is the world’s most prevalent cultured crustacean
species. However, the supply of high-quality broodstocks is limited and baseline information related to its
reproductive activity and molecular issues related to gonad development are scarce. In this study, we performed
transcriptome sequencing on the gonads of adult male and female L. vannamei to identify sex-related genes.

Results: A total of 25.16 gigabases (Gb) of sequences were generated from four L. vannamei gonadal tissue
libraries. After quality control, 24.11 Gb of clean reads were selected from the gonadal libraries. De-novo assembly of
all the clean reads generated a total of 65,218 unigenes with a mean size of 1021 bp and a N50 of 2000 bp. A
search of all-unigene against Nr, SwissProt, KEGG, COG and NT databases resulted in 26,482, 23,062, 20,659, 11,935
and 14,626 annotations, respectively, providing a total of 30,304 annotated unigenes. Among annotated unigenes,
12,320 unigenes were assigned to gene ontology categories and 20,659 unigenes were mapped to 258 KEGG
pathways. By comparing the ovary and testis libraries, 19,279 testicular up-regulated and 3,529 ovarian up-regulated
unigenes were identified. Enrichment analysis of differentially expressed unigenes resulted in 1060 significantly
enriched GO terms and 34 significantly enriched KEGG pathways. Nine ovary-specific, 6 testis-specific, 45 testicular
up-regulated and 39 ovarian up-regulated unigenes were then confirmed by semi-quantitative PCR and
quantitative real-time PCR. In addition, using all-unigenes as a reference, a total of 13,233 simple sequence repeats
(SSRs) were identified in 10,411 unigene sequences.

Conclusions: The present study depicts the first large-scale RNA sequencing of shrimp gonads. We have identified
many important sex-related functional genes, GO terms and pathways, all of which will facilitate future research
into the reproductive biology of shrimp. We expect that the SSRs detected in this study can then be used as
genetic markers for germplasm evaluation of breeding and imported populations.
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Background
The Pacific white shrimp (Litopenaeus vannamei) is a
species of Penaeus shrimp that are native to the eastern
Pacific Ocean, from the Mexican state of Sonora as far
south as northern Peru [1]. It has become the world’s
most prevalent cultured crustacean species as a result of
its fast growth, adaptability to a wide range of salt and
temperature, strong disease resistance, and low demand
for dietary protein [2]. By 2004, global production of L.
vannamei approached 1,116,000 tons, and exceeded that
of Penaeus monodon [3]. By 2010, production had
reached 2,721,000 tons [4]. However, the very limited
supply of high-quality broodstocks is contrasted with the
heavy demand of shrimp larvae from large-scale cultiva-
tion, especially in non-native countries such as China.
The employment of inferior-quality broodstocks could
lead to an eventual loss in gametic and larval quality,
and production would then decline. Studies aimed at im-
proving reproductive performance would therefore be
helpful for the industrial applications of L. vannamei.
However, previous studies primarily focused on disease
resistance mechanisms and culturing techniques of L.
vannamei [5–9], and baseline information related to its
reproductive activity and molecular aspects of gonadal
development remain scarce. Thus, it is important to
understand the regulatory mechanisms of reproductive
phenotypes in this species.
The first step toward understanding molecular mecha-

nisms of reproduction is to identify and characterize
sex-related genes and regulatory pathways. Many efforts
have been made to reveal sex-related genes, and many of
these genes are cloned and characterized in shrimp; for
example, M-phase phosphoprotein 6 (MPP6) [10], cell
division cycle 2 (Cdc2) [11], cyclin A and cyclin B [12],
gonad-inhibiting hormone (GIH) [13], mitogen-activating
protein kinase 1 (MAPK1) [14], prostaglandin reductase
1 [15], and valosin-containing protein (VCP) [16] in
Penaeus monodon; and sex-determiner transformer-2
(Tra-2) [17], activated protein kinase C1 (RACK1) [18],
and cell apoptosis susceptibility (FcCAS) [19] in Chinese
shrimp Fenneropenaeus chinensis. In L. vannamei,
vasa-like, vitellin, gonadotropin-releasing hormone-like
and a sex-related marker have been identified [20–23].
Additionally, research methods, such as suppression
subtractive hybridization SSH [24, 25], proteomic
analysis [26, 27], EST sequencing [28–30], and micro-
array [28, 31, 32], have also been applied to scientific
studies of shrimp in order to reveal potential sex-related
genes. However, because of the lack of genomic se-
quences, comprehensive identification of sex-related genes
and construction of regulatory networks associated with
shrimp gonadal development are lacking.
Newly developed next-generation high-throughput

sequencing technology has become a powerful tool for

identifying genes involved in gonadal development, sex
determination and sex differentiation [33–37]; and for
SNP/SSR marker discovery [38–40] in aquaculture
species where the genomic sequences are not available.
In the present study, we performed transcriptomic se-
quencing of the gonads of 13-month-old adult male and
female L vannamei to identify sex-related genes. The
gonadal transcriptomic data of one-day post-eyestalk-
ablation females (Day1O) and six-day post-eyestalk abla-
tion females (Day6O) were also used for de-novo assembly
and annotation so as to identify more genes during
ovarian maturation. Results from the transcriptomic ana-
lysis would be particularly important for better under-
standing the regulation of gonadal development between
sexes in this economically important aquaculture species.
In addition, real-time PCR verification of 104 sex differen-
tially expressed genes herein validates the reliability of the
transcriptomic analysis strategy, and emphasizes some
candidate genes of interest involved in sex determination
and gonadal development for further functional studies.

Methods
Ethics statement
All procedures involving the handling and treatment of
shrimp used in this study were conducted with the ap-
proval of the Animal Care and Use Committee of the
Guangxi Academy of Fishery Sciences, Nanning, China.

Experimental shrimp and sample collection
L. vannamei used in this study were reared at
Fangchenggang aquaculture base, Guangxi Academy of
Fishery Sciences, Nanning, China. The experimental
shrimp were 13 months of age with a weight of 40–50 g.
First, shrimp were anesthetized on ice for three minutes,
then testes from male shrimp (Testis), and ovaries from
the pre-eyestalk ablation female shrimp (PreO) were re-
moved. The ovaries of one-day post-eyestalk ablation
female shrimp (Day1O) and the six-day post-eyestalk
ablation female shrimp (Day6O) were also isolated. The
gonadal tissues (testis for male and ovary for female) were
cut into cubes of approximately 0.5 × 0.5 × 0.5 cm in size
and immediately immersed in liquid nitrogen overnight,
and then stored at −80 °C until RNA extraction. Some
pieces of gonad from each shrimp were fixed in 4 % PFA
and sectioned at 5 μm for hematoxylin and eosin (HE)
staining and observation by light microscopy.

RNA isolation, library preparation, and Illumina Hiseq2500
sequencing
Total RNA was isolated using TRIzol® Reagent (Invitro-
gen, CA, U.S.) according to the manufacturer’s instruc-
tions, and genomic DNA was removed using DNase I
(Takara, Tokyo, Japan). Then RNA quality was determined
with a 2100 Bioanalyser (Agilent, CA, U.S.) and quantified
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using a ND-2000 (NanoDrop Technologies, DE, U.S.).
Three RNA samples from each group (Testis, PreO,
Day1O, and Day6O) were pooled equally, and the mRNA-
seq libraries were then prepared using 5 μg of pooled total
RNA and the TruSeqTM RNA sample preparation Kit
(Illumina, San Diego, CA). First, mRNA was isolated with
oligo(dT) beads and then fragmented to 100–400 bp by
fragmentation buffer. Second, double-stranded cDNA was
synthesized using a SuperScript double-stranded cDNA
synthesis kit (Invitrogen, CA) with random hexamer
primers (Illumina). Then the synthesized cDNA was sub-
jected to end-repair, phosphorylation, and ‘A’ base addition
according to Illumina’s library construction protocol. The
libraries were amplified by PCR for 15 cycles using Phu-
sion DNA polymerase (NEB), and then target cDNA frag-
ments of 200–300 bp were selected using 2 % Low Range
Ultra Agarose gel. After quantification by TBS380, paired-
end sequencing of 101 bp reads was performed for the
four cDNA libraries in one lane on an Illumina HiSeq2500
high-throughput sequencer.

De-novo assembly and annotation
The raw paired-end reads were trimmed and quality
controlled by filter fq (BGI internal software) to remove
reads with adaptors, reads with unknown nucleotides larger
than 5 % and low-quality reads (the rate of reads in which
the quality value ≦ 10 was more than 20 %). Then the clean
data from samples (Testis, PreO, Day1O, Day6O) were
used to perform de-novo assembly with Trinity (https://
github.com/trinityrnaseq/trinityrnaseq/wiki; version Trini-
tyrnaseq_r2013-02-25) and with min_kmer_cov set to 2
and all other parameters set to default [41]. The longest-
assembled sequences per gene model were called contigs.
Then the reads were mapped back to the contigs, as with
paired-end reads we are able to detect contigs from the
same transcript as well as the distances between these
contigs. Finally, we retrieved sequences without Ns and
these could not be extended at either end. Such sequences
were thereby defined as Unigenes. TGICL (http://source-
forge.net/projects/tgicl/files/tgicl%20v2.1/; v2.1) [42] was
used to further assemble all the unigenes from different
samples to form a single set of non-redundant unigenes
(called all-unigenes). The all-unigenes displaying >70 %
sequence identities were grouped into a cluster, in which
the prefix is CL, and the cluster ID is locater after. And
the others were singletons whose the prefix was Unigene.
The completeness of the transcriptome assembly was

tested by Core Eukaryotic Genes Mapping Approach
(CEGMA) software (cegma_v2.4.010312, using the default
parameters), by comparing known 248 Core Eukaryotic
Genes (CEGs) and the transcripts assembled by Trinity.
CEGMA was developed to identify a subset of 248 highly
conserved core eukaryotic genes (CEGs) deriving from six
diverse model organisms in eukaryotic genomes [43].

All non-redundant unigene sequences were searched
against protein databases (Nr, SwissProt, KEGG, COG.)
using blastx (evalue < 0.00001) and the nucleotide data-
base NT (e-value < 0.00001) by blastn (evalue < 0.00001)
(http://blast.ncbi.nlm.nih.gov/Blast.cgi; v2.2.26 + x64-linux).
Protein function information was predicted from annota-
tion of the most similar protein available in the databases.
BLAST2GO (http://www.blast2go.com/b2ghome; v2.5.0,

release 2012-08-01) [44] program was used to retrieve GO
annotations of unigenes for describing biological pro-
cesses, molecular functions and cellular components.
Metabolic pathway analysis was performed using online
KEGG Automatic Annotation Server (http://www.genome.
jp/; BGI internal version, Release 63.0) [45].

Identification of sex-specifically expressed and
differentially expressed genes
SOAPaligner/soap2 (http://soap.genomics.org.cn/) was used
to map the reads to the assembled transcriptome. Unique
mapped reads including paired-end reads for which only
one part matched, were used to calculate the level of gene
expression using the fragments per kb per million frag-
ments method (FPKM) [46]. The method edgeR was used
to identify differentially expressed genes (DEGs) between
two samples [47]. The threshold for the P-value was
determined by the false-discovery rate (FDR). Unigenes
with FDR ≤ 0.001 and ratio of FPKMs of the two samples
larger than 2 (genes for which FPKM< 1 were filtered) were
considered to be differentially expressed genes in this study.
In addition, functional-enrichment analysis was performed

to identify which GO terms and metabolic pathways were
significantly enriched in DEGs. Hypergenometric test and
0.05 cutoff P adjusted were used for analysis of the enrich-
ment of functional terms. GO functional enrichment and
KEGG pathway analysis were carried out using Goatools
(https://github.com/tanghaibao/Goatools) and KOBAS
(http://kobas.cbi.pku.edu.cn/home.do) [48].

Simple sequence repeat (SSR) detection
SSRs were detected among the unigenes using MISA
software (MIcroSAtellite; http://pgrc.ipk-gatersleben.de/
misa/misa.html; version 1.0). Six types of SSRs were in-
vestigated: mono-, di-, tri-, quad-, penta-, and hexa-
nucleotide repeats; and we kept the SSRs in which the
lengths at both ends of the Unigene were more than
150 bp for primer design by Primer 3 (http://www.online
down.net/soft/51549.htm; Release 2.3.4).

Semi-quantitative and quantitative real-time PCR
validation
Quantitative and semi-quantitative real-time PCR were
used to verify sex differentially expressed genes as identi-
fied from the gonadal transcriptome.
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The sequences of 47 up-regulated testicular and 57
up-regulated ovarian unigenes were chosen for primer
design using Array Designer 4 (http://premierbiosoft.com/
dnamicroarray/index.html). The β-actin (BQF: 5′-GTGT
GACGACGAAGTAGC-3′, BQR: 5′-GATACCTCGCTT
GCTCTG-3′) was used as a reference gene. Total RNAs
were reverse-transcribed with Goscript™ reverse transcrip-
tion system (Promega, U.S.) according to the manufac-
turer’s instructions.
Primers for Testis-specific (FPKM of PreO = 0 and

FDR ≦ 0.001) and PerO-specific (FPKM of Testis = 0
and FDR ≦ 0.001) unigenes were first amplified by semi-
quantitative PCR using equivalent cDNAs from testis
and ovary of pre-eyestalk ablation shrimp as templates.
PCR products were analyzed with gel electrophoresis
using 1.2 % agarose gel. When a gene was found to be
expressed only in testis, the gene was considered to be a
testis-specific gene, while a gene that was expressed only
in PreO was considered to be an ovary-specific gene. For
the genes that were expressed in both ovary and testis,
quantitative real-time PCR was further conducted to ver-
ify whether they were differentially expressed in ovaries
and testes. The primers for other DEGs were also veri-
fied by quantitative real-time PCR.
The quantitative real-time PCR was performed in the

Applied Biosystems 7500 fast real-time system using
THUNDERBIRD qPCR Mix (TOYOBO, Japan) as rec-
ommended by the manufacturer. The original cDNAs
were diluted 100-fold for the target gene and β-actin
amplification, and the PCR cycle for both the target
genes and the β-actin was as follows: 3 min at 94 °C;
then 36 cycles of 15 s at 94 °C, 30 s at 56 °C and 30 s at
72 °C; followed by 10 min at 72 °C. The PCRs used to
detect all the target genes and β-actin reference gene
were performed with three biologic replicates. The speci-
ficity of the amplification was assessed by a melting
curve analysis to exclude primers with nonspecific amp-
lification peaks. The relative expression level of target
genes was calculated with the 2−ΔΔCT method [49]. The
Student’s t-test was conducted using SPSS 23.0 (http://
www-01.ibm.com/software/analytics/spss/), and significant

differences were determined at a P-value < 0.05 (two-tailed
test).

Results
Sequence analysis and assembly
A total of 25.16 gigabases (Gb) of sequences were gener-
ated from four L. vannamei gonadal tissue libraries (The
raw reads data can be obtained from the NCBI Short Read
Archive [SRA] under accession number SRA SRP059164.)
After quality control with filter_fq, 63,782,344, 60,300,542,
58,195,380, and 61,048,948 clean reads were retrieved
from the testis, PreO, Day1O and Day6O library, respect-
ively. De-novo assembly of all the clean reads from four li-
braries generated a total of 65,218 unigenes with a mean
size of 1021 bp and N50 of 2,000 bp (Table 1) (The assem-
bled transcriptome can be obtained from the NCBI Tran-
scriptome Shotgun Assembly (TSA) Database under
accession number GDUV00000000). The length distribu-
tion of the unigenes obtained is illustrated in Fig. 1. The
completeness of the transcriptome assembly was tested by
CEGMA software by comparing known 248 Core
Eukaryotic Genes (CEGs) and the transcripts assembled
by Trinity. As a result, 234 out of 248 (94.35 %) CEGs
were deemed to be complete proteins in the tran-
scriptome, and 245 out of 248 (98.79 %) CEGs were
found in the transcriptome including some partial
proteins (Table 2), indicates a high level of complete-
ness of the transcriptome.

Sequence annotation
All-unigene sequences were searched against Nr, SwissProt,
KEGG, COG and NT databases, which returned 26,482
(40.61), 23,062 (35.36), 20,659 (31.68), 11,935 (18.30), and
14,626 (22.43 %) matches, respectively; providing a final
total of 30,304 annotated unigenes (46.47 %) (Table 3).
The 20,659 unigenes with a KO annotation were

mapped to 258 pathways (Additional file 1: Table S1).
The top 3 pathways were metabolic pathways (1,517
unigenes), RNA transport (562 unigenes), and regulation
of actin cytoskeleton (501 unigenes). Importantly, the
main biological pathways involved in germ cell meiosis

Table 1 Summary statistics of the gonadal transcriptome of L. vannamei

Samples Testis PreO Day1O Day6O Total

Total number of raw reads 64,971,684 61,702,958 59,778,572 62,654,322 249,107,536

Overall length of raw reads (Mb) 6562.14 6232.00 6037.64 6328.09 25159.86

Total number of clean reads 63,782,344 60,300,542 58,195,380 61,048,948 243,327,214

Overall length of clean reads (Mb) 6314.30 5981.34 5768.63 6049.23 24113.50

Number of unigenes / / / / 65,218

Mean length of unigenes (bp) / / / / 1,021

N50 length of unigenes (bp) / / / / 2000
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during gonadal development were cell cycle (ko04110,
233 unigenes), DNA replication (ko03030, 61 unigenes),
mismatch repair (ko03430, 41 unigenes), base excision
repair (ko03410, 73 unigenes), oocyte meiosis (ko04114,
141 unigenes) and homologous recombination (ko03440,
41). The primary pathways involved in oogenesis, sperm-
atogenesis and gonadal maturation were MAPK signal-
ing pathway (ko04010, 309 unigenes), GnRH signaling
pathway (ko04912, 118 unigenes), progesterone-mediated
oocyte maturation (ko04914, 153 unigenes), focal adhe-
sion (ko04510, 412 unigenes), calcium signaling pathway
(ko04020, 229 unigenes), ubiquitin mediated proteolysis
(ko04120, 344 unigenes) and wnt signaling pathway
(ko04310, 228 unigenes). Further investigation of these
pathways would be expected to reveal the regulatory
mechanisms governing reproductive processes in L.
vannamei.

Sex-biased gene identification and enrichment analysis
Comparison of gene expression levels in testis and
different ovarian stages revealed similar numbers of

differentially expressed genes (testis vs. PreO, 22,808
DEGs; testis vs. Day1O, 22,168 DEGs; testis vs. Day6O,
22187 DEGs), and over 84 % of the DEGs between testis
and different ovarian stages are always the same (Fig. 2);
and unigenes of testis and PreO libraries were selected
for further analysis. Among 45,998 unigenes expressed
in testis and ovary with lengths > 200 bp and FPKM> 1,
22,808 (45.6 %) showed sex-biased expression (Additional
file 1: Table S2); 3,529 unigenes were up-regulated in the
ovary and 19,279 were up-regulated in the testis (Fig. 2).
Interestingly, the number of male-biased genes was much
greater than that for female-biased genes, and the testicu-
lar up-regulated genes showed a greater average in fold-
change than did the female-biased transcripts (Calculating
from data in Additional file 1: Table S2, the average FC for
male-biased and female-biased genes was 106.9 and 21.1,
respectively).
Gene ontology (GO) annotation was performed to

classify sex-biased genes (Fig. 3). Results also showed a
much higher number of male-biased genes than female-
biased genes. Most of the GO terms showed significantly

Fig. 1 Length distribution of all-unigenes. X-axis, size distribution of unigenes; Y-axis, number of unigenes in different length ranges

Table 2 Statistics regarding completeness of the Unigene assembly based on 248 CEGs

Complete Partial

Prots Completeness(%) Total Average Ortho(%) Prots Completeness(%) Total Average Ortho(%)

Group1 60 90.91 138 2.3 65 64 96.97 155 2.42 65.62

Group2 52 92.86 110 2.12 59.62 55 98.21 128 2.33 67.27

Group3 60 98.36 127 2.12 51.67 61 100 138 2.26 57.38

Group4 62 95.38 113 1.82 38.71 65 100 122 1.88 41.54

All 234 94.35 488 2.09 53.42 245 98.79 543 2.22 57.55

Group: Set of genes selected by Genis Parra; Prots: Number of 248 ultra-conserved CEGs present in the transcriptome; %Completeness: Percentage of 248 ultra-
conserved CEGs present; Total = total number of CEGs present including putative orthologs; Average = average number of orthologs per CEG; % Ortho = percentage of
detected CEGS that have more than 1 ortholog. ‘Complete’ refers to those predicted proteins in the set of 248 CEGs that when aligned to the transcriptome, give an
alignment length that is 70 % of the protein length. If a protein was not complete but still exceeded a pre-computed minimal alignment score, then we called the
protein ‘partial’. A protein that was deemed to be ‘Complete’ was then also included in the set of Partial matches
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higher counts for male-biased genes. At the molecular
function level, there were significantly more DEGs in
catalytic activity and binding GO terms than in other
terms. The cell part and cell GO terms had greatest
DEG counts at the cellular component level. At the bio-
logical process level, cellular processes, metabolic pro-
cesses, and single-organism processes had the top counts.
By enrichment analysis, there were 49, 53, and 312
enriched GO-terms for male-biased DEGs, and 111, 155,
and 380 enriched GO-terms for female-biased DEGs, in
the cellular component, the molecular function and the
biology process categories, respectively (Additional file 1:
Table S3). The most enriched GO-terms for male-biased
DEGs included DNA-directed RNA polymerase in the cel-
lular component category, RNA polymerase activity in the
molecular function category and isoprenoid biosynthetic
and metabolic process in the biology process category
(Table 4). As for female-biased DEGs, the most enriched
GO-terms at cellular component level was mitochondrion
and ribosome, the most enriched GO-terms associated
with molecular function were aminoacyl-tRNA ligase ac-
tivity, and the most enriched biology process were transla-
tion, cellular biosynthetic process and organic substance
biosynthetic process (Table 4).
Enriched pathways (Table 4) associated with male-biased

DEGs were mRNA surveillance pathway, RNA transport,
ABC transporters, terpenoid backbone biosynthesis etc.
And enriched pathways for female-biased DEGs were

oxidative phosphorylation, metabolic pathways, aminoacyl-
tRNA biosynthesis, steroid biosynthesis, ribosome biogen-
esis in eukaryotes, DNA replication, vasopressin-regulated
water re-absorption, neuroactive ligand-receptor inter-
action, cell cycle, nucleotide excision repair etc.
According to the enrichment analysis results, tran-

scription was the most enriched activity in testis and
translation and mitochondrion synthesis were the most
enriched activities in ovary. Further studies on DEGs as-
sociated with the GO terms and pathways are needed to
reveal the different molecular mechanisms that appar-
ently exist between ovarian and testicular developmental
processes.

Real-time PCR confirmation of sex-biased genes
One hundred and four DEGs with different levels of
FPKM and FDR values were selected for RT-PCR valid-
ation to determine the veracity of the transcriptomic
analysis. In male-biased genes, 6 of 14 testis-specific
genes showed a specific testicular expression pattern by
semi-quantitative PCR (Fig. 4), and the other 8 genes
were significantly up-regulated in the testis as assessed
with quantitative real-time PCR (Table 5). For the 33
male-biased DEGs, 32 showed the significantly up-
regulated expression in testis, and only one gene was
up-regulated in ovary (Table 5). In the female-biased
genes selected, 9 of 14 PreO-specific genes in the ovary
showed a specific expression pattern by semi-quantitative

Table 3 Statistics of annotation results

Databases NR NT Swiss-prot KEGG COG GO All

Annotated unigenes 26,482 14,626 23,062 20,659 11,935 12,320 30,304

Fig. 2 Statistical evaluation of differentially expressed genes between testis and ovaries that were obtained at different points in time. a: Venn
diagram of DEGs that showed more expression in the testis than in the ovaries; b: Venn diagram of DEGs that showed more expression in the
ovaries than in the testis
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PCR (Fig. 5), and the other 5 genes were significantly up-
regulated in ovary (Table 6). For the 43 female-biased
DEGs, 33 showed up-regulated ovarian expression, 5
showed up-regulated testicular expression and 5 did not
show expression differences between ovary and testis
(Table 6). In total, 9 ovary-specific, 6 testis-specific, 45 tes-
ticular up-regulated and 39 ovarian up-regulated unigenes
were obtained by real-time PCR confirmation.
SSRs in the gonadal transcriptome of L. vannamei SSR

detection was performed with the MicroSAtellite
(MISA) software using all-unigenes as references. A total
of 13,233 SSRs were identified in 10,411 unigene se-
quences, with 2,192 (21.05 %) unigenes containing more
than one SSR. Among the different types of SSRs, the
di-nucleotide repeats were the most abundant, account-
ing for 41.83 %, followed by the tri-nucleotide repeats
(28.25 %), mono-nucleotide repeats (24.79 %), quad-
nucleotide repeats (2.86 %), penta-nucleotide repeats
(1.23 %) and hexa-nucleotide repeats (1.04 %) (Fig. 6).
The distributions of SSRs in unigenes and primers for
SSRs are shown in Additional file 1: Table S6.

Discussion
L. vannamei is one of the most important aquaculture
species and has attracted the attention of many re-
searchers. A high-throughput RNA sequencing strategy
has already been used in studying the mechanisms of
viral resistance [50–53] and nitrite adaptation [54], as

well as in revealing gene expression patterns in muscle,
hepatopancreas, gills and pleopods of normal shrimp
[55, 56]. However, data regarding its reproductive or sex
phenotypes is lacking. Herein, we performed RNA-Seq
on the gonads of adult males and females in an attempt
to unravel sex-related genes. The reason we chose adult
individuals for gonadal transcriptomic analysis was that
we focused primarily on genes involved in gonadal de-
velopment and gametogenesis. Moreover, these cell types
showed more diversity in adult gonads; for example, oo-
gonia/spermatogonia, and primary and secondary oo-
cytes/spermatocytes are all present in adult gonads
(Additional file 1: Figure S1). This stage selection was
appropriate since we identified in our assembled se-
quences a great majority of genes involved in gonadal
development, oogenesis, and spermatogenesis, as well as
some sex-determining genes previously reported.

Reference gonadal transcriptome of L. vannamei
De-novo assembly of the sequencing data from four L.
vannamei gonadal cDNA libraries resulted in 65,218
unigenes with an average length of 1021 bp. Approxi-
mately half of the unigenes (46.47 %) had significant
matches against existing sequences and 40.65 % were an-
notated using Gene Ontology terms. The L. vannamei se-
quences possessed top matches with D. pulex sequences,
since this latter species is also a crustacean and its entire
genome has been sequenced [57]. KEGG pathway analysis

Fig. 3 Distribution of DEGs among GO terms in biological processes, molecular functions, and cellular components
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Table 4 Representative enriched GO terms (Bonferroni-corrected P-value ≤ 0.05) and pathways for sex-biased (Q value ≤0.05) genes

Enriched GO terms for sex-differentially expressed genes Enriched pathways for sex-differentially expressed genes

GO no. Gene ontology term Corrected
p-value

Male or female
biased

Pathway ID Pathway Q-value Male or female
biased

Cellular component ko03015 mRNA surveillance
pathway

1.85E-14 Male biased

GO:0005665 DNA-directed RNA polymerase II,
core complex

2.59E-05 Male biased ko03013 RNA transport 1.87E-08 Male biased

GO:0000428 DNA-directed RNA
polymerase complex

0.00051 Male biased ko00534 Glycosaminoglycan
biosynthesis -
heparan sulfate

4.74E-03 Male biased

GO:0030880 RNA polymerase complex 0.00051 Male biased ko02010 ABC transporters 1.32E-02 Male biased

GO:0055029 Nuclear DNA-directed RNA
polymerase complex

0.00051 Male biased ko00900 Terpenoid backbone
biosynthesis

3.49E-02 Male biased

GO:0005665 DNA-directed RNA polymerase II,
core complex

2.59E-05 Male biased ko00190 Oxidative
phosphorylation

6.77E-26 Female biased

GO:0005739 Mitochondrion 2.70E-32 Female biased ko00100 Steroid biosynthesis 4.43E-17 Female biased

GO:0044429 Mitochondrial part 6.55E-28 Female biased ko01100 Metabolic pathways 2.36E-13 Female biased

GO:0044455 Mitochondrial membrane part 1.14E-17 Female biased ko00970 Aminoacyl-tRNA
biosynthesis

1.31E-11 Female biased

GO:0000313 Organellar ribosome 2.49E-17 Female biased ko03030 DNA replication 1.64E-04 Female biased

GO:0005761 Mitochondrial ribosome 2.49E-17 Female biased ko04350 TGF-beta signaling
pathway

2.98E-04 Female biased

GO:0005746 Mitochondrial respiratory chain 5.51E-17 Female biased ko04962 Vasopressin-regulated
water reabsorption

9.56E-04 Female biased

GO:0005840 Ribosome 8.15E-17 Female biased ko00020 Citrate cycle (TCA cycle) 9.56E-04 Female biased

Molecular function ko04080 Neuroactive
ligand-receptor
interaction

3.11E-03 Female biased

GO:0003899 DNA-directed RNA polymerase
activity

2.30499E-05 Male biased ko04110 Cell cycle 1.23E-02 Female biased

GO:0034062 RNA polymerase activity 2.30499E-05 Male biased ko03420 Nucleotide
excision repair

1.81E-02 Female biased

GO:0003824 Catalytic activity 3.27116E-05 Male biased ko03008 Ribosome biogenesis
in eukaryotes

1.98E-02 Female biased

GO:0019003 GDP binding 0.00072 Male biased ko00630 Glyoxylate and
dicarboxylate
metabolism

2.28E-02 Female biased

GO:0004631 Phosphomevalonate kinase activity 0.00119 Male biased ko03010 Ribosome 2.37E-02 Female biased

GO:0004812 Aminoacyl-tRNA ligase activity 1.13E-16 Female biased ko04964 Proximal tubule
bicarbonate
reclamation

3.19E-02 Female biased

GO:0016875 Ligase activity, forming
carbon-oxygen bonds

2.12E-16 Female biased

GO:0016876 Ligase activity, forming
aminoacyl-tRNA and related
compounds

2.12E-16 Female biased

GO:0003954 NADH dehydrogenase activity 8.17E-15 Female biased

GO:0003735 Structural constituent of
ribosome

1.47E-12 Female biased

Biological process

GO:0008299 Isoprenoid biosynthetic process 3.68E-06 Male biased

GO:0006720 Isoprenoid metabolic process 9.90E-05 Male biased

Peng et al. BMC Genomics  (2015) 16:1006 Page 8 of 18



showed that, the main biological pathways involved in go-
nadal development and gametogenesis were obtained,
which will facilitate the further in-depth analysis of the re-
lationships between different genes in the transcriptome
of gonads. However, there were far fewer pathways in-
volved in spermatogenesis than in oogenesis, and more
female-biased genes (75.6 %) than male-biased genes
(37.9 %) showed NR hits. This could be due to the fact
that researchers have mainly focused on the reproductive
phenotypes of female crustaceans because of their eco-
nomic importance to aquaculture [15, 26]; thus, genetic
information for female crustaceans has been much richer
than for males.

Sex-determining genes
The transcription factor, sex-determining region of the
Y-chromosome (Sry), is the sex-determining gene in
mammalians. The correct expression of Sry triggers tes-
ticular development, while decreased or delayed Sry ex-
pression leads to testicular defects [58]. Sry acts by
activating the Sox9 gene [59], and then, downstream
genes of Sox9 promote testis development. Once expres-
sion of sox9 or its downstream genes is impeded, the
gonad can switch to ovarian development [60]. Double-
sex (Dsx) is a male sex-determining gene that plays an

important role in controlling sexual dimorphism in in-
vertebrate organisms such as nematodes, insects and
Daphnia magna, as well as in vertebrates [61–63]. Fem-1
is also a male sex-determining gene required for somatic
and germline development in the testis of C. elegans
[64, 65]. Herein, we identified all male sex-determining
genes mentioned above in L. vannamei, including a testicu-
lar up-regulated Sry (Unigene7231_All), sox9 (CL86.Contig
2_All, Unigene2458_All), Dsx (Unigene35364_All) and
seven fem-1 or fem-1-like genes (Unigene24042_All, Unigene
9434_Al, Unigene9463_All, Unigene24047_All, Unigene
11407_All, Unigene2036_All, Unigene15025_All).
Foxl2 (Forkhead box l2) encodes a conserved tran-

scription factor and is a sex determiner in female verte-
brates. It is preferentially expressed in the ovary and
involved in ovarian differentiation and maintenance by
repression of testis-specific genes [66, 67]. Although
foxl2 orthologs have been cloned in some invertebrates,
its role in sex determination or differentiation remains
unclear [68]. We found foxl2 (Unigene24037_All) in our
gonadal transcriptomic data, and intriguingly, it shows
up-regulated expression in testis.
The identification of known sex-determining genes in

the present study proved that transcriptomic sequencing
is a powerful tool in mining sex-determining genes. The

Table 4 Representative enriched GO terms (Bonferroni-corrected P-value ≤ 0.05) and pathways for sex-biased (Q value ≤0.05) genes
(Continued)

GO:0021953 Central nervous system neuron
differentiation

0.00023 Male biased

GO:0009240 Isopentenyl diphosphate
biosynthetic process

0.00033 Male biased

GO:0019287 Isopentenyl diphosphate
biosynthetic process,
mevalonate pathway

0.00033 Male biased

GO:0006412 Translation 9.80E-29 Female biased

GO:0044249 Cellular biosynthetic process 5.81E-21 Female biased

GO:1901576 Organic substance
biosynthetic process

2.21E-20 Female biased

GO:0009058 Biosynthetic process 9.88E-19 Female biased

GO:0044710 Single-organism metabolic
process

6.71E-18 Female biased

Fig. 4 Testis-specific genes. M, DNA marker DL2000; T, testis; O, ovary. TS are the series numbers for testis-specific genes from bioinformatics analysis
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Table 5 Summary of RT-PCR results for male-biased DEGs

Sequence ID Bioinformatic
analysis

Fold
change

Semi-quantitative
PCR validation

RQ (T/O) qPCR
validation
(T-Test)

Annotation

Unigene916_All TB 9.65 / 18.28 ** –

Unigene13080_All TB 4.06 / 7.56 ** Solute carrier organic anion transporter family member 4C1

Unigene8661_All TB 11.95 / 97.07 ** –

Unigene1205_All TB 2.20 / 2.44 ** Neuron navigator 2

Unigene14488_All TB 8.11 / 58.95 ** –

Unigene8480_All TB 13.20 / 53.21 ** Transforming growth factor-beta-induced protein ig-h3

Unigene6291_All TB 46.10 / 64.34 ** Receptor-type tyrosine-protein phosphatase T

Unigene2551_All TB 11.69 / 59.28 ** Melanization interacting? protein

Unigene19396_All TB 24.32 / 200.74 ** –

Unigene2838_All TB 5.53 / 21.29 ** Intracellular fatty acid binding protein

CL911.Contig2_All TB 47.53 / 342.15 ** –

Unigene6879_All TB 56.75 / 84.84 ** Scylla paramamosain amino acids transporter

Unigene1920_All TB 34.02 / 186.80 ** PREDICTED: 4-coumarate–CoA ligase-like

Unigene6062_All TB 79.59 / 194.74 ** –

Unigene511_All TB 25.83 / 102.59 ** Beta,beta-carotene 15,15′-monooxygenase

Unigene15520_All TB 12.40 / 67.25 ** Cytochrome c oxidase subunit III

Unigene9139_All TB 11.49 / 196.53 ** NADH dehydrogenase subunit 4

Unigene5297_All TB 64.72 / 248.07 ** PREDICTED: metallothionein-1 F-like

Unigene6055_All TB 11.66 / 56.41 ** Neuroparsin 1 precursor

CL756.Contig1_All TB 16.05 / 19.52 ** Heme-binding protein 2

Unigene11959_All TB 948.78 / 1415.06 ** –

CL550.Contig2_All TB 27.87 / −5.60 ** Alpha-I tubulin

Unigene15830_All TB 825.49 / 3967.48 ** Histone H1-beta, late embryonic

Unigene7663_All TB 22.26 / 54.81 ** PREDICTED: DNA excision repair protein haywire

Unigene16117_All TB 4618.69 / 64216.17 ** Argonaute-3

CL2601.Contig2_All TB 11.15 / 28.15 ** Homo sapiens X BAC RP11-1051 N9

CL535.Contig2_All TB 133.51 / 33.55 ** Histone-lysine N-methyltransferase PRDM9

Unigene11824_All TB 9.23 / 12.89 ** Ankyrin repeat domain-containing protein 13B

CL2710.Contig1_All TB 10.35 / 13.38 ** Zinc finger protein on ecdysone puffs

Unigene3364_All TB 5.50 / 3.10 ** Iodide transporter-like protein

Unigene46_All TB 12.33 / 6.09 ** DNA ligase 4

CL730.Contig2_All TB 10.32 / 19.81 ** PREDICTED: HIG1 domain family member 1C

Unigene15329_All TB 18.22 / 21.07 ** Stromal antigen-like protein, copy A

Unigene15690_All TB 3.78 / 8994.17 ** –

Unigene15762_All TB 4.57 / 371865.46 ** –

Unigene20560_All TB 114.97 / 1014.87 ** –

CL951.Contig2_All TS / Not specific?? 947.72 ** –

CL1031.Contig1_All TS / Not specific 19779.35 ** Probable serine/threonine-protein kinase fhkB

CL273.Contig1_All TS / Not specific 39469.77 ** Eukaryotic translation initiation factor 4 gamma, putative

Unigene1966_All TS / Not specific 35.96 ** Tyrosine aminotransferase

Unigene16106_All TS / Not specific 148.83 ** –

Unigene23134_All TS / Specific / / –

Unigene29005_All TS / Specific / / Casein kinase I
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exact role of these genes in sex determination of L. van-
namei remains to be examined.

Identification of genes involved in germline
determination and development
Gonadal tissue is composed of germ cells and somatic
cells. Germ cells are the only cells that can undergo both
meiosis and mitosis, and finally differentiate into gam-
etes (spermatozoon and oocyte); and sperm-oocyte bind-
ing in sexually reproducing organisms constitutes the
beginning of the next generation. To maintain germ cell
fate and regulate its development and differentiation,
gene expression patterns in germ cells need to be
regulated at the transcriptional and post-transcriptional
levels. Moreover, it is also important to maintain the
niche formed by somatic cells so as to maintain the
characteristics of germ cells. Transcriptional regulation
of gene expression is widely used in early differentiation
stages of germ cells. In mouse, interaction of blimp1 (B-
lymphocyte-induced maturation protein 1) with Prmt
(histone methyltransferase) represses chromatin tran-
scription and prevents trans-differentiation from germ
cells to somatic cells. In the blimp1-knockout mouse,

germ cells cannot form [69–72]. In the present study, a
blimp1 (Unigene15201_All), three Prmt (PRMT2: Unige-
ne7507_All, PRMT3: CL2301.Contig2_All, CL2301.Con-
tig1_All, PRMT6: Unigene14757_All), and a chromatin
target of Prmt1 protein genes (Unigene4147_All) were
identified, indicating a similar regulation of germ cell
fate at the transcriptional level in shrimp.
The regulation of RNA translation, however, is more

common and important in germ cells. A battery of
evolutionally conserved RNAs is essential for germ cell
proliferation, survival and differentiation; some of these
genes are called germ cell markers, because they exist
throughout the germ cell life cycle. Vasa, first isolated in
Drosophila, is expressed throughout germ cell develop-
mental stages in many invertebrates and vertebrates
species [73, 74]. As a molecular marker, vasa was used
to track germ cell specification, migration and differenti-
ation [75–77]; and loss of function of vasa led to germ
cell specification failure and defects in germ cell devel-
opment in Drosophila, mouse and nematode [78–81].
Vasa were hypothesized to function by inhibiting expres-
sion of genes that are responsible for somatic differenti-
ation in germ cells [82]. This hypothesis was further

Table 5 Summary of RT-PCR results for male-biased DEGs (Continued)

Unigene29287_All TS / Specific / / DNA-directed RNA polymerase II subunit RPB2

Unigene28792_All TS / Specific / / –

Unigene28151_All TS / Specific / / Dual specificity testis-specific protein kinase 2

CL737.Contig2_All TS / Specific / / Penaeus monodon clone TUZX4-6:48 microsatellite sequence

TB testis biased, TS testis specific, RQ relative expression level
Asterisks indicate significant difference between ovary and testis expression of the gene by QPCR test ( *P<0.05, **P<0.01)

Fig. 5 Ovary-specific genes. M, DNA marker DL2000; T, testis; O, ovary. OS are the series numbers for ovary-specific genes from bioinformatics analysis
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Table 6 Summary of RT-PCR results for female-biased DEGs

Sequence ID Bioinformatic
analysis

Fold
change

Semi-quantitative
PCR validation

RQ (O/T) qPCR
validation
(T-test)

Annotation

Unigene15643_All OB 2.05 / −2.32 ** SUMO-activating enzyme subunit 1

Unigene13333_All OB 40.71 / −1.75 N Hypothetical protein

Unigene13199_All OB 13.27 / −1.72 * Facilitated trehalose transporter Tret1

Unigene4124_All OB 2.2 / −1.62 ** DNA ligase 1

Unigene3159_All OB 8.44 / −1.44 ** –

Unigene5760_All OB 4.17 / −1.32 N Tail muscle elongation factor 1 gamma

Unigene9807_All OB 52.44 / −1.3 * –

CL1556.Contig1_All OB 6.53 / −1.11 N Hemolymph clottable protein

Unigene4414_All OB 3.61 / −1.01 N DNA replication complex GINS protein

Unigene13906_All OB 2.81 / 1.12 N NADH dehydrogenase [ubiquinone] 1 alpha subcomplex
subunit 8

Unigene12464_All OB 3.49 / 1.37 ** Vitelline membrane protein

CL1780.Contig2_All OB 4.55 / 1.76 ** Cytosolic MnSOD

Unigene4283_All OB 6.66 / 1.8 ** Ubiquitin carboxyl-terminal hydrolase isozyme L5

Unigene5769_All OB 5.67 / 2.17 ** Mannose-P-dolichol utilization defect 1 protein homolog

Unigene2752_All OB 3.21 / 2.83 ** 39S ribosomal protein L27, mitochondrial

CL1767.Contig3_All OB 36.82 / 3.76 ** Vitellogenin

Unigene10823_All OB 3.77 / 4.49 ** GJ22360 [Drosophila virilis]

Unigene7488_All OB 10.38 / 6 ** Megaderma lyra mitochondrial aldehyde dehydrogenase 2
(Aldh2) gene

CL745.Contig1_All OB 73.15 / 10.4 ** JHE-like carboxylesterase 1

CL1422.Contig1_All OB 35.44 / 21.85 ** Penaeus (Litopenaeus) vannamei microsatellite
TUMXLv8.67 sequence

CL355.Contig1_All OB 41.48 / 23.46 ** Metallothionein

Unigene12371_All OB 67.42 / 30.75 ** Serine protease-like protein

Unigene2772_All OB 129.19 / 52.27 ** Crustacyanin-A2 subunit

Unigene10728_All OB 187.39 / 57.32 ** Putative microtubule-associated protein

CL160.Contig1_All OB 274.18 / 58.75 ** Mucin-19

Unigene9289_All OB 188.85 / 62.16 ** ATP binding cassette transmembrane transporter

CL1757.Contig1_All OB 6.5 / 68.51 ** Pol-like protein

Unigene944_All OB 232.28 / 78.45 ** –

Unigene2582_All OB 82.88 / 83.62 ** Peroxidase

Unigene15565_All OB 561 / 165.67 ** PREDICTED: hypothetical protein

Unigene15673_All OB 230.04 / 180.28 ** Hypothetical protein UY3_06274

CL1544.Contig3_All OB 2.35 / 279.59 ** Toll protein

Unigene7394_All OB 186.3 / 309.91 ** Penaeus monodon progestin membrane receptor
component 1 (PGMRC1)

CL92.Contig2_All OB 99.85 / 743.69 ** Penaeus monodon polehole-like protein Mrna

Unigene10229_All OB 64.19 / 754.82 ** –

Unigene11618_All OB 1070.04 / 938.62 ** –

CL92.Contig3_All OB 103.95 / 1017.81 ** Polehole-like protein

Unigene2102_All OB 695.22 / 2497.98 ** Vitellogenin receptor

CL989.Contig2_All OB 992.51 / 3232.49 ** Thrombospondin protein

CL2390.Contig2_All OB 226.25 / 3345.08 ** Cyclin B
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supported by studies of nanos, a target of vasa, which
can act together with pumilio to repress mitosis, tran-
scription and translation during the development of the
germline [83–85]. The DAZ (Deleted in Azoospermia)
family is another well-known gene family that consists
of three genes specifically expressed in germ cells:
BOULE, DAZ-Like (DAZL) and DAZ. DAZ and DAZL
are expressed throughout almost the entire life cycles of
germ cells, and are essential for germ cell determination,
differentiation and maturation; while BOULE is mainly
involved in germ cell meiosis [86–89]. In the present study,
vasa (Unigene1169_All), nanos (Unigene22266_All), pumi-
lio (CL285.Contig16_All), boule (Unigene1947_All) and
three DAZ-associated protein (daz interacting protein 1,
Unigene13632_All; DAZ-associated protein 1-like, Unige-
ne20_All; DAZ-associated protein 2, Unigene4428_All)
were identified, offering abundant genetic information for
further study of germline determination and development.
miRNAs are also involved in RNA regulation of germ

cells. Knockout of the Dicer gene prevented splicing of
miRNAs–the regulator of germ cell-specific genes– lead-
ing to the termination of germ cell development [90]. Add-
itionally, the PIWI-mediated piRNA pathway regulates the
expression of germ cell determination genes, such as vasa
and oskar. The PIWI-null mutant fly (Drosophila) and
mouse exhibited a deficiency in germ cell formation
and differentiation [91, 92]. The existence of Dicer

(Unigene17990_All) and two piwi (piwi 1, Unigene399_All;
piwi 2, Unigene21063_All) in our transcriptome made
miRNA-mediated regulation in L. vannamei possible.
The gonadal cell niche surrounding germ cells is also

important for the preservation of germ cell fate [93]. For
example, Notch signaling and its downstream genes in
nematode [94], BMPs (bone morphogenetic proteins) in
Drosophila [95] and GDNF (glial cell line-derived neuro-
trophic factor, GDNF) in mammals are produced by go-
nadal somatic cells [96] such as Sertoli cells, and are the
known pathway or factors that might control meiotic
timing and germ cell numbers. We retrieved two notch
genes (Notch, Unigene14535_All; Notch2, Unigene14705_
All); two BMP genes (BMP1, Unigene14770_All; BMP7,
Unigene12011_All); and two GDNF associated genes
(GDNF-inducible zinc finger protein 1, Unigene4392_All;
GDNF family receptor alpha-3, Unigene7144_All) in the
gonadal transcriptome of L. vannamei. Moreover, 101 se-
quences for genes in the Wnt signaling pathway were also
obtained. This information will further benefit the study of
the mechanisms of interaction between germ cells and
somatic cells in L. vannamei.

Sex-biased genes involved in spermatogenesis and
oogenesis are identified
Except for similar cell lines in both male and female go-
nads, there are remarkable differences between the ovary

Table 6 Summary of RT-PCR results for female-biased DEGs (Continued)

Unigene9017_All OB 215.42 / 3401.83 ** Cyclin B

CL2487.Contig2_All OB 1015.41 / 7095.22 ** Thrombospondin

CL1646.Contig1_All OB 1025.74 / 11552.92 ** Thrombospondin-type laminin G domain and EAR
repeat-containing protein

Unigene905_All OS / Not specific 6.07 ** Zebrafish DNA sequence from clone CH211-150 K4 in
linkage group 1

CL496.Contig2_All OS / Not specific 23.23 ** Glutamate receptor ionotropic, NMDA 3A

Unigene7304_All OS / Not specific 72.23 ** X-linked retinitis pigmentosa GTPase regulator
[Tupaia chinensis]

Unigene12972_All OS / Not specific 117.13 ** Peroxidasin

CL1169.Contig2_All OS / Not specific 315.15 ** PREDICTED: uncharacterized protein

Unigene12309_All OS / Specific / / Dual oxidase maturation factor 1

Unigene8249_All OS / Specific / / PREDICTED: guanine nucleotide-binding protein G(q)
subunit alpha-like

Unigene21442_All OS / Specific / / –

Unigene9242_All OS / Specific / / PREDICTED: MD-2-related lipid-recognition protein-like

Unigene1049_All OS / Specific / / Amyloid beta A4 protein

CL57.Contig2_All OS / Specific / / Gamma-interferon-inducible lysosomal thiol reductase

CL711.Contig1_All OS / Specific / / Mucin-5 AC (Fragments)

Unigene4288_All OS / Specific / / –

Unigene859_All OS / Specific / / –

OB ovary biased, OS ovary specific, RQ relative expression level
Asterisks indicate significant difference between ovary and testis expression of the gene by QPCR test ( *P<0.05, **P<0.01)

Peng et al. BMC Genomics  (2015) 16:1006 Page 13 of 18



and testis that involve morphology, cell types and bio-
logic processes; and also gene expression patterns and
molecular regulatory mechanisms. A large number of
gonadal differentially expressed genes have been identi-
fied in the present transcriptome, and many more genes
were over-expressed in the testis (19,279) compared to
the ovary (3,529). This male-biased gene expression pattern
in the gonads has been observed in Drosophila [97, 98],
Caenorhabditis elegans [99], fishes [100, 101] and mam-
mals [102], as well as in the green mud crab (Scylla para-
mamosain) [36], a crustacean species. This phenomenon
may be explained by the previous assumption that male
development is regulated by activating a series of testis-
specific genes and/or by repressing genes vital for ovarian
development [103, 104].
The most important biologic processes in the testis

and ovary are spermatogenesis and oogenesis, respect-
ively. As expected, testis-specific and differentially
expressed genes include members with functions pertin-
ent to spermatogenic stages. For example, the male-

biased gene spermatogonial stem-cell renewal factor
(CL2114.Contig2_All), MLH1 (CL2662.Contig1_All, CL2662.
Contig2_All) and RHAU (Unigene22544_All) are essential
for early stages of spermatogenesis, including spermato-
gonial maintenance and differentiation; and knockout of
RHAU orMLH1 resulted in deficiencies in spermatogonial
or spermatocytic differentiation in the mouse [105–107].
Genes involved in later stages of spermatogenesis include
Spermatogenesis-associated proteins (Spata2, Unigene
8309_All; Spata5 (CL1808.Contig1_All, CL1808.Contig
2_All); Spata20, Unigene9757_All), spermatogenesis regu-
lator (Unigene14897_All); sperm associated antigens cil-
iary and flagellar proteins such as Sperm-associated
antigen (Spag2, Unigene7744_All; Spag7, Unigene482_All);
Sperm-specific protein PHI-2B/PHI-3 (Unigene12515_All);
Sperm protamine P2 (Unigene20056_All); Spermatid-
specific protein T1 (Unigene12459_All, Unigene17251_All);
Round spermatid basic protein 1 (Unigene6458_AlL); major
sperm protein (Unigene9914_All); and Motile sperm do-
main-containing protein 2 (Unigene9914_All). In addition,

Fig. 6 Distribution of putative SSRs in the transcriptome of the L. vannamei gonad. X-axis, distribution of SSR types; Y-axis, number of different SSR types
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the testis-biased genes testis-specific serine proteases
(TESSP) (Unigene17312_All, Unigene2408_All, Unige-
ne25019_All) are involved in germ cell survival during
meiosis [108, 109], and T-complex testis-specific protein
1(t-complex 11) (Unigene4999_All) might function in in-
semination processes so as to stimulate sperm capacita-
tion and inhibit the acrosome reaction [110].
Among the female-biased sequences, we focused on

genes involved in oogenic processes. Vitellogenesis is the
central process in oogenesis. In crustaceans, vitello-
genin–the precursor of yolk protein–is synthesized in
the hepatopancreas and ovary [111, 112]. The synthesis
of vitellogenin in oviparous vertebrates is regulated by
the E2-ER-Hsp90-Vtg pathway, in which estrogen recep-
tor (ER) and heat shock protein 90 (Hsp90) mediate the
enhancement of vitellogenin transcription by estrogen or
estrogen-like hormones [113, 114]. In our transcriptomic
data, we identified vitellogenin (CL1767.Contig3_All),
vitellogenin receptor (VgR) (Unigene2102_All), estrogen
receptor (CL2390.Contig2_All, Unigene9144_All), estro-
gen receptor-binding protein (Unigene2782_All) and
HSP90 (Unigene15703_All) genes, indicating that an E2-
ER-Hsp90-Vtg pathway exists in crustaceans. Further
experiments should focus on whether and how E2, ER and
Hsp90 regulate the synthesis of vitellogenin in shrimp.
The second meiotic division and oocyte maturation

constitute another vital process in oogenesis. MPF (mat-
uration-promoting factor), mainly composed of CDK1
(encoded product of the Cdc2 gene) and Cyclin B pro-
teins, is a primary regulator of this process. MPF can be
activated by G2 to reach the M phase transition, and the
active MPF promotes rapid maturation of oocytes [115].
In the present study, we identified G2/mitotic-specific
cyclin-A (Unigene10629_All), cyclin-B (Unigene4127_All,
Unigene1805_All), cyclin-B3 (CL352.Contig2_All), cyc-
lin-F (Unigene11044_All); and the components of MPF,
Cdc2 (Unigene3813_All) and Cyclin B (CL2390.Conti-
g3_All). The identification of these genes will facilitate
further study on the artificial induction of oocyte matur-
ation in L. vannamei. In addition, oocyte quality is hy-
pothesized to be improved by high levels of the expression
of superoxide dismutase genes, which could neutralize re-
active oxygen species and protect the embryo during its
development [116]. Herein, we found four superoxide dis-
mutase homologs (Unigene14142_All, Unigene419_All,
Unigene6388_All, Unigene8984_All) that are predomin-
antly expressed in the ovary, indicating a similar maternal
protection of offspring by shrimp; and antioxidant defense
techniques may be useful in improving the overall quality
of shrimp larvae.

Verification of sex-biased genes
Among 104 differentially expressed gonadal unigenes, 9
genes specifically expressed in ovary and 6 specifically

expressed in testis were verified by semi-quantitative
RT-PCR; while of the remaining DEGs tested, 45 testis-
predominant unigenes and 39 ovary-predominant uni-
genes were verified by quantitative real-time PCR
analysis. These gonadal specific and differentially ex-
pressed genes must play important roles in certain
parts of gonadal development in L. vannamei. How-
ever, there are some differences observed between
transcriptomic analysis and qRT-PCR data concerning
fold-changes in gene expression in testis and ovary,
and one male-biased DEG showed ovarian up-regulated
expression and 5 female-biased DEGs showed testis-
predominant expression. This is most likely due to the
differences that often existing between the bioinformatics
analysis of next-generation sequencing technology and the
actual experimental analysis [117]; and biologic replicates
(which are more valuable and accurate for detecting
differently expressed genes), were not available during the
course of the present study [118].

Discovery of SSR markers
Simple sequence repeats (SSRs) are single-locus markers
with high allelic variation and are widely applicable to
molecular genetics studies, including research involving
genetic diversity assessment, comparative genomics,
gene flow characterization, and genetic linkage mapping
[119]. In L.vannamei, a number of microsatellite se-
quences have been reported for genetic map construction
and quantitative trait locus (QTL) detection [120–122],
and next-generation sequencing has facilitated the discov-
ery of a relatively large set of SSRs in the hepatopancreas
of the shrimp by the present team [53, 123]. The SSRs
identified in this study can serve as genetic markers for
quantifying genetic diversity of germplasm within breed-
ing and imported populations, identifying paternity of the
breeding families and managing broodstocks, which are
the major issues for the selectively breeding and farming
of introduced species. They can also be used in QTL map-
ping and marker-assisted select ion (MAS) in L. vannamei
and other phylogenetically similar shrimp species. This
may promote genetic gain to traits of interest for aquacul-
ture, such as reproduction, sex determination, growth,
and tolerance against environmental stress.

Conclusions
The present study encompasses the first large-scale
RNA sequencing of shrimp gonads. We have identified
many important sex-related functional genes, GO terms
and pathways, all of which will facilitate future research
into the reproductive biology of shrimp. The SSRs de-
tected in this study can be used as genetic markers
for germplasm evaluation of breeding and imported
populations.
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