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Abstract

Background: Whole transcriptome sequencing (RNA-seq) represents a powerful approach for whole transcriptome
gene expression analysis. However, RNA-seq carries a few limitations, e.g., the requirement of a significant amount of
input RNA and complications led by non-specific mapping of short reads. The lon AmpliSeq™ Transcriptome Human
Gene Expression Kit (AmpliSeq) was recently introduced by Life Technologies as a whole-transcriptome, targeted gene
quantification kit to overcome these limitations of RNA-seq. To assess the performance of this new methodology, we
performed a comprehensive comparison of AmpliSeq with RNA-seq using two well-established next-generation
sequencing platforms (Illumina HiSeq and lon Torrent Proton). We analyzed standard reference RNA samples and RNA
samples obtained from human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs).

Results: Using published data from two standard RNA reference samples, we observed a strong concordance of log2
fold change for all genes when comparing AmpliSeq to lllumina HiSeq (Pearson’s r=0.92) and lon Torrent Proton
(Pearson’s r=0.92). We used ROC, Matthew’s correlation coefficient and RMSD to determine the overall performance
characteristics. All three statistical methods demonstrate AmpliSeq as a highly accurate method for differential gene
expression analysis. Additionally, for genes with high abundance, AmpliSeq outperforms the two RNA-seq methods.
When analyzing four closely related hiPSC-CM lines, we show that both AmpliSeq and RNA-seq capture similar global
gene expression patterns consistent with known sources of variations.

Conclusions: Our study indicates that AmpliSeq excels in the limiting areas of RNA-seq for gene expression
quantification analysis. Thus, AmpliSeq stands as a very sensitive and cost-effective approach for very large scale gene
expression analysis and mRNA marker screening with high accuracy.
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Background gene-network interactions [1-3]. In the past decade, mi-
Transcriptome analysis has enhanced our understanding  croarrays and RT-qPCR have been the primary tools for
of the molecular constituents of cells and tissues. As one  analyzing gene expression changes. Microarray is a
of the most widely used tools for transcriptome profil-  hybridization-based approach which typically involves in-
ing, quantification of differential gene expression has cubation of fluorescence-labeled cDNA with custom-
played a pivotal role in the identification of pathway and = made microarrays or commercially available high-density
oligo microarrays [3]. Some specialized microarrays can
be used to detect and quantify splice forms [4], and gen-
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for large genomes with very high resolution [5-7]. Even
though these array-based methods are high-throughput,
they are physically limited by probe density and suffer
from noisy signals resulting from background noise due to
cross hybridization and signal saturation [3, 8-10]. RT-
qPCR has been considered the gold-standard for gene ex-
pression quantification with high accuracy and sensitivity
[11]. This method can be used to measure the abundance
of a single transcript by measuring fluorescent signal in-
tensity through a real-time PCR system. Though accepted
as the gold-standard for measuring gene expression, this
method is lower throughput and not amenable to perform
global expression analyses. Further, substantial amount of
RNA may be required if a large number of genes need to
be tested. This imposes some major hurdles for the high-
throughput usage of RT-qPCR.

Whole-transcriptome sequencing (RNA-seq) technol-
ogy has emerged as a revolutionary platform for
genome-wide quantification of mRNA transcripts. This
technique enables the sequencing of all RNA molecules
in a high-throughput manner. Short sequence reads are
generated by either single-end or paired-end sequencing.
The number of sequencing reads that map to each tran-
script is used to infer the abundance of mRNA mole-
cules. RNA-seq offers several advantages over
microarrays or RT-qPCR for detecting differentially
expressed genes (DEGs). These include a wide coverage
of transcripts, high sensitivity, the ability to detect allele-
specific differential expression and the identification of
novel transcripts [12—14]. However, in certain situations
RNA-seq may not be a practical choice. For example,
since RNA-seq requires a significant amount of starting
material, it will not be applicable when only small
amount of RNA is available [10]. Further, resolution at a
single-base level enabled by RNA-seq may not be neces-
sary if the main goal of a study is to simply assess ex-
pression changes on a gene level. For large scale DEG
experiments that involve hundreds or even thousands of
samples, the bioinformatics analysis as well as data stor-
age needs of RNA-seq become formidable. Further, the
complex data sets produced by RNA-seq might limit its
use in molecular diagnostic testing, which requires a
quick turn-around time for high-quality assessment for
DEGs. In these and other situations, a targeted, quantita-
tive RNA-sequencing method with high accuracy and re-
producibility can offer a better approach.

Taking advantage of high-throughput sequencing tech-
nology in combination with multiplexed enrichment or
amplification methods, a few targeted RNA expression
kits have recently been developed. For example, Illumina
developed TruSeq targeted gene expression kit. This kit
enables the testing of 10-100 assays for targeted genes
(http://www.illumina.com/products/truseq-targeted-rna-
expression-kits.html). Similarly, Thermo Fisher Scientitic
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developed AmpliSeq-RNA panels for the study of a
small number of pre-defined gene sets (between 150 to
900 genes). Based on a number of studies that used a
targeted sequencing approach, there is strong evidence
that gene expression quantification using targeted se-
quencing method is reliable and accurate [10, 15]. In
light of these findings, a targeted whole transcriptome
kit was recently developed (AmpliSeq, Life Technologies
AmpliSeq™ technology). This kit is designed for tar-
geted amplification of over 20,000 distinct human RNA
targets simultaneously in a single primer pool. A short
amplicon (~150 bp) is amplified for each targeted gene
[16]. This targeted, high-throughput strategy gives
AmpliSeq the advantages of a short turn-around time
and a much smaller amount of raw reads required for
accurate gene expression quantification than traditional
whole transcriptome RNA sequencing.

Here, we performed a comprehensive performance
comparison of the AmpliSeq panel using two well-
established RNA-seq methods for genome-wide DEG
analysis. Our performance assessment for AmpliSeq was
conducted on two different sets of RNA samples. First,
we tested two commonly used, commercially available
reference RNA samples. This allowed us to take advan-
tage of established expression data from various analysis
platforms. Our analysis consistently suggests that Ampli-
Seq performs as well as RNA-seq for gene expression
quantification. Second, we provide further assessment of
AmpliSeq using RNA samples from human induced
pluripotent stem cell derived cardiomyocytes (hiPSC-
CMs). In comparison to the reference samples, these
lines exhibit a spectrum of expression patterns, which
can be expected in typical expression studies. Notably,
hiPSC-based cell lines are gaining popularity as signifi-
cant tools for disease modeling and comprehensive func-
tional analysis, e.g., the analysis of gene expression
influenced by human genome variation and validation of
functional impact of a causal variant. In addition to cor-
relating the fold-change in expression, we also used clus-
tering and principal component analysis to compare the
overall performance of AmpliSeq to RNA-seq in identi-
fying distinct global expression patterns according to
known source of variations. AmpliSeq offers comparable
resolution to RNA-seq by clustering cell lines based on
their origin, phenotypic and disease status. Our study
strongly suggests that AmpliSeq is a highly reliable tool
for gene expression quantification as demonstrated by
the analysis of both reference libraries and real life sam-
ples such as iPSC disease models.

Methods

Library preparation methods

For the three gene expression quantification methods we
compared in this study, three library preparation methods
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are used: poly-A enrichment for Illumina RNA-seq, ribo-
somal RNA depletion for Proton RNA-seq, and genome-
wide, targeted amplicon amplification for AmpliSeq. For
the library preparation, both Illumina and Proton RNA-
seq are similar: RNA is subjected to fragmentation prior
to random amplification and down-stream high-
throughput next-generation sequencing. Both methods
have a certain percentage of reads mapped to intronic re-
gions [17].

The major difference between AmpliSeq and the two
whole transcriptome RNA sequencing methods is that
AmpliSeq is designed to profile over 20,000 distinct hu-
man RNA targets using a highly multiplexed amplifica-
tion method. Each amplicon represents a unique
targeted gene. The average size of each amplicon is
~150 bp. Because of the targeted nature and small
amplicon size, the total number of raw reads needed for
DEG analysis for each library prepared with AmpliSeq is
much smaller than typical whole-transcriptome RNA se-
quencing. For library preparation, a barcoded cDNA li-
brary is first generated with SuperScript® VILO™ ¢cDNA
Synthesis kit from 10 ng of total RNA. Then cDNA is
amplified using lon AmpliSeq™ technology to accurately
maintain expression levels of all targeted genes. Ampli-
fied ¢cDNA Libraries were evaluated for quality and
quantified using Agilent Bioanalyzer High sensitivity
chip. Libraries were then diluted to 100pM and pooled
equally, with eight individual samples per pool. Pooled
libraries were amplified using emulsion PCR on Ion Tor-
rent OneTouch2 instruments (OT2) and enriched fol-
lowing manufactures instructions. Templated libraries
were then sequenced on Ion Torrent Proton™ sequen-
cing system, using Ion PI kit and chip V2.

Sequencing methods

Two established next-generation sequencing platforms
were involved in this study: Illumina RNA-seq and Pro-
ton RNA-seq. Both the Proton RNA-seq and AmpliSeq
rely on Ion Proton for the sequencing step, though each
uses different RNA library preparation protocols (as
mentioned above). Illumina RNA-seq and Proton RNA-
seq use two next-generation sequencing technologies.
[lumina RNA-seq uses the technology of sequencing by
synthesis, which requires fluorescence and signal scan-
ning. For this method, prepared libraries are denatured
to single strands by linearization. The four nucleotides
(GCAT) are coupled to a cleavable fluorescent dye and a
removable blocking group, which complements the tem-
plate one base at a time, yielding a signal to be captured
by a charge-coupled device [18]. Proton RNA-seq is
based on semiconductor sequencing technology with
emulsion PCR amplified libraries bound to Ion spheres.
The template spheres are loaded on a sequencing chip
and run on the Proton instrument. The sequencing is
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then performed by flushing nucleotides individually over
the surface of the library-loaded chip. Reads are pro-
duced by detecting the change in pH as each nucleotide
is incorporated [18, 19]. In this study, raw reads from
[llumina RNA-seq are pair-ended and those from Proton
RNA-seq are single-ended.

Reference RNA samples

For initial performance analysis, we used two commer-
cially available reference RNA samples. The Agilent Uni-
versal Human Reference RNA (UHRR) (reference rna
cat. #: #740000) was a pooled sample from 10 cancer cell
lines; and the Ambion FirstChoice® Human Brain Refer-
ence Total RNA (HBRR) was generated from multiple
brain regions from 23 donors [20] (reference rna cat. #:
#6050). UHRR and HBRR have been previously used for
accuracy assessment of various platforms, including
microarray, targeted RNA-sequencing using multiplex-
PCR amplicons [15] and RNA-seq [17, 20, 21]. In
addition, these samples have also been used for evaluat-
ing various analytical methods for DEG analysis [22]. In
this study we performed AmpliSeq on both UHRR and
HBRR samples. Illumina RNA-seq data for UHRR and
HBRR was obtained through published data [22] (GEO
accession number: GSE49712). Proton RNA-seq data for
these two reference RNA samples were obtained from
the Association of Biomolecular Resource Facilities next-
generation sequencing (ABRF-NGS) study on RNA-seq
[17] (GEO accession number: GSE46876). Further, we
utilized these RNA-seq datasets to measure the specifi-
city and sensitivity of each gene quantification method
examined in this study. All analyses were conducted on
three replicates of each sample.

We performed AmpliSeq on both UHRR and HBRR
samples. For quality control, ten External RNA Controls
Consortium (ERCC) [23] reference materials (Life Tech-
nologies) were added to each RNA sample in both the
UHRR and HBRR RNA samples prior to library con-
struction. The ERCC spike-in controls used in this study
are comprised of 10 synthetic polyadenylated oligonucle-
otides, with lengths varying from 250 to 2000 bp and in-
put concentrations ranging from 0.45 to 1875 attomoles/
ul (which translates to a log2 concentration of —1.12 to
11.87).

RNA samples obtained from hiPSC-CMs

We assessed the performance of AmpliSeq in comparison
to Proton RNA-Seq using four biologically related RNA
samples. We selected RNA from two patient-specific
hiPSC-CM lines. These two lines are selected from partici-
pants in the NHLBI HyperGen cohort [24, 25]. This study
has been approved by the review boards of all participat-
ing institutions (University of Alabama at Birmingham’s
Institutional Review Board for Human Use, University of
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Utah'’s Institutional Review Board, and Medical College of
Wisconsin’s Institutional Review Board). All human sub-
jects in this study gave informed consent.

These two cell lines differ genetically as well as pheno-
typically in various echocardiographic measurements
such as left ventricular mass and ejection fraction. The
hiPSC lines were generated from white blood cells using
episomal reprogramming [26]. hiPSC-CMs were ob-
tained from a single batch of cells. These hiPSC-CMs
are highly pure (>95 % purity) cardiomyocytes with
functional properties resembling adult human CMs [27].
The hiPSC-CMs were maintained in iCell Maintenance
Medium (iCMM) (Cellular Dynamics International,
Madison, WI, US). The hiPSC-CMs were stimulated
with endothelin-1 (ET-1) to induce a hypertrophic re-
sponse following our established CM hypertrophy proto-
col [28]. Cardiomyocytes were harvested at bothl8 h
post stimulation and before stimulation with Total RNA
Purification 96-Well Kit (Norgen Biotek Corp.). Total
RNA was extracted per manufacturer’s recommenda-
tions, and re-suspended in nuclease-free water. The
RNA used for library preparation was then further con-
centrated using Qiagen RNeasy MinElute Cleanup Kit
(Qiagen) and quantified by UV spectrophotometry
(NanoDrop™ 2000, Thermo Scientific). Hypertrophy was
confirmed by analysis of several cardiac hypertrophy
markers, including NPPB. For this study, we performed
both AmpliSeq and RNA-seq on the Ion Proton plat-
form for both stimulated and unstimulated hiPSC-CMs.

Read alignment and differential gene expression analysis
Raw reads from all whole transcriptome RNA-seq librar-
ies were aligned using a two-step alignment approach.
First, TopHat (v.2.0.3) [29] was used with the following
settings: -r 70 —mate-std-dec 90" for paired-end reads
from Illumina RNA-seq; and “-r 200’ for single-end reads
from Proton RNA-seq. Second, unmapped reads from
step one were realigned with Bowtie2 [30] using the “—
very-sensitive-local” method. The genome annotation
(GTF) file generated by the UCSC genome browser was
used as reference. Genes shorter than 150 bp were ex-
cluded from the GTF file. Raw reads shorter than 50 bps
were excluded from the alignment process. RNA-seq
reads aligned using the two-step approach include pub-
lished Illumina and Proton RNA-seq data for UHRR and
HBRR samples, and Proton RNA-seq data for in-house
hiPSC-CM samples. Raw read counts for each gene were
obtained using HTSeq (v0.6) [31]. Combined (Tophat +
bowtie2) sequence alignment generated by the two-step
alignment approach served as input file for HT Seq.
Primary analysis for AmpliSeq sequencing data of all
samples was performed using the ampliSeqRNA plugin
available for Ion Torrent™ sequencing platforms. This
plugin uses the Torrent Mapping Alignment Program
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(TMAP). TMAP is optimized for Ion Torrent™ sequen-
cing data for aligning the raw sequencing reads against a
custom reference sequence set containing all transcripts
targeted by the AmpliSeq kit. To maintain specificity
and sensitivity, TMAP implements a two-stage mapping
approach. First, four alignment algorithms, BWA-short
[32], BWA-long [33], SSAHA [34], and Super-maximal
Exact Matching [35] we employed to identify a list of
Candidate Mapping Locations (CMLs). A further align-
ing process is performed using the Smith Waterman al-
gorithm [36] to find the final best mapping [37]. As part
of the ampliSeqRNA plugin, raw read counts of the tar-
geted genes is performed using samtools (samtools view
—c —=F 4 —L bed_file bam_file).

DEG analysis was performed using R/Bioconductor
package DESeq2 [1] with raw read counts from RNA-
Seq and AmpliSeq. Read count normalization was per-
formed using the regularized logarithm (rlog) method
provided in DESeq2. Genes with less than ten normal-
ized read counts were excluded from further analysis.
DEGs were determined by p-value and the log2 fold
change (log2FC) by DESeq2.

Performance assessment using RT-qPCR validated gene
sets as gold-standard

Two published RT-qPCR datasets for DEGs between the
UHRR and HBRR library were used as gold standard to
assess the overall performance of each method. One
dataset is comprised of TagMan assays for 843 genes
from the MAQC-I study (MAQC) (GSE5350) [20]. The
other dataset uses PrimePCR to quantify 20,801 genes as
part of the ABRF-NGS consortium [21]. All PrimePCR
assays have been validated extensively [17]. The Ct value
of each target was normalized by subtracting the average
Cr of endogenous control from the Ct of each RT-
qPCR target.

The overall concordance between each of the inter-
ested method and RT-qPCR was measured by calculat-
ing the Pearson’s r on individual gene’s log2FC values.
To measure the similarity of each method in ordering
the expression of genes, we calculated Spearman’s
ranked r between each method using log2 transformed
read counts. Three statistical analyses were used to com-
pare transcript FC detected by each of the three
methods to the gold-standard qPCR data: root-mean-
square deviation (RMSD) for genes with at least two FC
in expression, Receiver Operator Characteristic curves
(ROC curve) with their associated Area Under the Curve
(AUC) value, and Matthew’s correlation coefficient
(MCQ).

Using the ABRF gene set as the gold-standard, we cal-
culated the RMSD for genes with at least two FC in ex-
pression. This statistical analysis provided a quantitative
measure of the difference in the identified FC of each
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method to RT-qPCR standard [22]. We set a FC cutoff
of two for this analysis. To further assess the potential
influence of transcript abundance, we calculated the
RMSD values for gene sets grouped by normalized read
counts. Transcripts were grouped starting at 15 normal-
ized read counts as determined by DESeq2 with incre-
ments of 20. This analysis is based on the read counts
measured by the Illumina RNA-seq data.

We used AUC and MCC to measure the overall speci-
ficity and sensitivity of each method. Higher AUC values
indicate better overall accuracy. It is perceivable that
transcript abundance influences the ROC characteristics.
Therefore, we assessed the impact of transcript abun-
dance by categorizing transcript levels into quartiles
based on Illumina RNA-seq data. ROC analysis was per-
formed in comparison to the ABRF PrimePCR dataset.
Similar to the study of Li et al. [17], we calculate the
AUC of the ROC curve for each quartile. The ROC
metric from Python scikit-learn [38] was used to con-
struct ROC curves and calculate associated AUC values.
Additionally, we used MCC as another method for
measuring overall accuracy. Based on Illumina RNA-seq
data, we determined the significance level of differential
gene expression by DESeq2. Using the same p-value cut-
offs as described by Li et al. (2014), transcripts were then
grouped by p-values at 0.05, 0.01 and 0.001. Only tran-
scripts with at least two-fold change were included in
the analysis.

Comparison between AmpliSeq and Proton RNA-Seq
using hiPSC-CM lines

In addition to the standard reference libraries, we also
analyzed four RNA samples taken from two patient-
specific, hiPSC-derived CM lines. Both cell lines were
stimulated with ET-1 to induce a hypertrophic pheno-
type [28]. The stimulated as well as unstimulated RNA
samples from each cell line were prepared and se-
quenced using both the AmpliSeq and Proton RNA-seq
on the Ion Torrent Proton. DEGs after stimulation were
filtered by at least 10 normalized read counts and an FC
cutoff of two. For these genes, Pearson’s r was calculated
between log2FC measured by Proton RNA-seq and
AmpliSeq. Only annotated features common in both
platforms were included for further analysis. Hierarchical
clustering and principal component (PCA) analyses were
used to study the performance of AmpliSeq and Proton
RNA-seq in identifying distinct global expression pat-
terns between the cell lines and the impact of the experi-
mental conditions. To remove any batch effects due to
the substantial sequencing depth differences between the
RNA-Seq and AmpliSeq libraries, we used the remove-
BatchEffect function from the R/Bioconductor package
limma [39]. The batch effect removal was performed on
the regularized logarithm transformed read counts for
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all the hiPSC libraries. Hierarchical clustering was per-
formed using the hclust functions in R. Spearman correl-
ation (cor function in R) matrix based dissimilarity (1 —
correlation) was provided as the distance metric. PCA
was performed using all genes common to both Proton
RNA-seq and AmpliSeq.

Results

Technical reproducibility and consistency of AmpliSeq runs
When preparing the libraries for AmpliSeq, ten ERCC
transcripts with known concentrations were spiked in
for each technical run before library preparation of
UHRR and HBRR samples. These transcripts have a
nearly 2000 fold difference regarding transcript abun-
dance. The detected abundance of ERCC transcripts
helped us evaluate the quality of the sequenced UHRR
and HBRR libraries. Values of Pearson’s r were calcu-
lated for the following: (1) The overall concordance be-
tween detected read-counts and known concentrations
of each ERCC transcript using log2 transfromed data;
and (2) the overall concordance of read-counts of all
genes between replicates using logl0 transformed raw
read-counts.

The values of Pearson’ r between the log2 transformed
known concentration and detected read-counts are > =
0.98 (Fig. la), indicating high-quality sequencing. We
observed minimal technical variations among the tech-
nical replicates of each sample. Pearson’ r of log10 trans-
formed raw read-counts of all genes between the three
technical replicates of UHRR and HBRR are =0.99, indi-
cating very consistent performance between technical
replicates (Fig. 1b).

General performance summary for AmpliSeq, lllumina
RNA-seq and Proton RNA-seq

For the published RNA-seq data, 40 million reads per
sample were obtained for both Illumina RNA-seq and
Proton RNA-seq. Due to its targeted nature and short
length of each targeted amplicon, an average of nine mil-
lion reads was obtained for each sample with each
AmpliSeq run (GEO accession #: GSE74760). Vast ma-
jority of the reads (>=93.2 %) were on target for each
run (Additional file 1: Table S1).

Using DESeq2 normalized transcript read counts
(normalization procedure described in methods) from
[llumina RNA-Seq, we observe a nearly equal distribu-
tion in each quartile of transcript abundance for genes
with at least two FC in expression (Additional file 1:
Figure S1). AmpliSeq, Illumina RNA-seq and Proton
RNA-seq respectively identified 12081, 14,222, and
12,205 genes with FC > =1.5; and 9287, 11,954 and 9220
genes with FC > =2. With FC = 1.5 as the cutoff, Ampli-
Seq identified 68 % and 72 % of the genes identified by
[llumina RNA-seq and Proton RNA-seq respectively.
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With FC =2 as the cutoff, AmpliSeq identified 65 % of
the genes identified by Illumina RNA-seq and 69 % by
Proton RNA-seq.

For our hiPSC-CM samples, Proton RNA-seq gener-
ated an average of 44 million reads for each sample.
Out of all the reads generated, 14.9 % to 17.5 % of
the reads are due to duplicated reads (GEO accession
#: GSE74760). Using Gencode gtf as the reference,
the mapping rate for each sample is between 93.2 %
and 94.6 % (Additional file 1: Table S2). For each
AmpliSeq run, an average of 10 million reads was
generated for each sample. For each sample, >=94 %

of the reads are on target (Additional file 1: Table
S3).

Using logl0 transformed normalized read counts for
RNA reference samples, we calculated Spearman ranked
correlation in the pairwise comparison of the three
methods. The strong Spearman’s r values indicate similar
ability of each method in ordering the expression genes
(values of Spearman ranked r > =0.80) (Additional file 1:
Figure S2A and B). We further calculated the correlation
of 1og2FC between both RNA-seq methods and Ampli-
Seq of all genes for RNA reference samples. The Pear-
son’s r values are 0.92 for both Illumina RNA-seq vs.
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AmpliSeq (Fig. 2, top panel) and Proton RNA-seq vs.
AmpliSeq (Fig. 2, bottom panel). For our hiPSC-CMs
samples, we observed significant correlation between
Proton RNA-seq and Ampliseq using log10 transformed
read-counts and (Additional file 1: Figure S3) log2FC for
all genes (Additional file 1: Figure S4). These correlation
analyses indicate highly significant correlation between
AmpliSeq and the two RNA-seq methods. However, cor-
relation values do not indicate overall accuracy of the
methods compared in this study.

AmpliSeq has comparable accuracy to lllumina RNA-seq
and Proton RNA-seq for DEGs between UHRR and HBRR
Overall, all three methods show excellent correlation
against the RT-qPCR results for all genes in terms of
log2FC. Using the MAQC dataset as the standard, we
observe Pearson’s r values of 0.95 between the log2FC
determined by AmpliSeq and the two RNA-seq
methods. For the ABRF PrimePCR dataset, the Pearson’s
values were > =0.89 (Additional file 1: Figure S5).

RMSD values of the three methods are highly compar-
able for genes with at least two FC (Fig. 3). For all the
analyzed transcripts, the average RMSD values are highly
similar (1.16 £ 0.05 (AmpliSeq, mean *s.e.), 1.1 +0.05
(Proton RNA-seq, mean +s.e.) and 1.05 + 0.05 (Illumina
RNA-seq, mean t s.e.)). This suggests that AmpliSeq ex-
hibits an equal ability to detect and measure expression
levels of DEGs in comparison to the two RNA-seq
methods.

Using the MAQC dataset as the gold-standard, MCC
values are in close range with each other indicating that
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all three methods are comparable in terms of accuracy
for each of the three p-value cutoffs (0.05, 0.01 and
0.001) (Fig. 4). To further assess how transcript abun-
dance affects the ability of each method to identify truly
differentially expressed genes, we used the ABRF Pri-
mePCR as the standard. We divided the genes into four
subgroups based on three quartile points of normalized
read-counts as determined by the Illumina RNA-seq
data. Subsequently, we calculated the AUC values for
each quartile. For genes in the two bottom quartiles,
AmpliSeq performs comparably to the two RNA-seq
methods. The average AUC values for AmpliSeq, Illu-
mina RNA-seq and Proton RNA-seq are 0.95, 0.96 and
0.95 respectively. For genes in the top two quartiles,
AmpliSeq performed better than the two RNA-seq
methods (Fig. 5) with an average AUC value of 0.95; Illu-
mina and Proton RNA-seq have a average AUC of 0.81
and 0.84 respectively. In summary, all the analysis per-
formed in this study indicated that that AmpliSeq is very
robust in identifying significantly differentially expressed
genes between UHRR and HBRR, and it has a better
performance for transcripts that fall into the upper-half
abundance spectrum.

AmpliSeq yields similar resolution as Proton RNA-seq for
RNA samples obtained from hiPSC-CMs

Analysis using UHRR and HBRR provided valuable in-
sights about the performance of AmpliSeq. However,
UHRR and HBRR are pooled samples from multiple
sources. Therefore, the differential gene expression pro-
file may not represent the typical RNA samples in a
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research or clinical setting. Consequently, we extended
our analysis and analyzed four biologically relevant sam-
ples. These samples were obtained from two different
hiPSC-CM lines allowing us to further assess the per-
formance of AmpliSeq in comparison to the Proton
RNA-Seq. Since the two individuals, from which the
hiPSC-CMs were derived, differ in genetic as well as
phenotypic features, we expect to detect different, cell-
line specific gene expression profiles.

As expected, different set of DEGs were identified for
samples 1156 and 1104. 67 % of all DEGs identified in
sample 1156 were shared by sample 1104, and 24 % of
DEGs identified in sample 1104 were shared by sample
1156. Though a largely different set of genes showed sig-
nificant differential expression for each sample, we ob-
served strong correlation of the log2FC between
AmpliSeq and Proton RNA-seq for both CM lines (Pear-
son’s r=0.96 for genes with FC>=2; and Pearson’r >
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Fig. 4 Using the MAQC dataset as the gold-standard, MCC values from lllumina RNA-seq, Proton RNA-seq and Ampliseq are in close range with
each other for the three p-value cutoffs (0.05, 0.01 and 0.001) used
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=0.90 for genes with FC>=1.5). Thus, AmpliSeq has
very consistent performance compared to Proton RNA-
seq in identifying differentially expressed genes when
closely related RNA samples were used.

Furthermore, we used both clustering and PCA ana-
lysis to assess the performance of AmpliSeq and Proton
RNA-seq in identifying distinct global expression pat-
terns based on known source of variations between the
cell lines. We expect to observe three distinct sources of
variations in our experimental design: (1) differences due
to the genetic makeup of hiPSC donors; (2) differences
based on hypertrophy phenotypes, non-hypertrophic
(unstimulated) vs. hypertrophic (stimulated) cells, and
(3) differences associated with the library preparation
methods: targeted amplification for AmpliSeq and ran-
dom amplification of ribo-depleted RNA library for Pro-
ton RNA-seq. As can be seen in the dendrogram in
Fig. 6, AmpliSeq offers the same ability as Proton RNA-
seq in capturing these variations at global gene expres-
sion level. As expected, all samples clustered into two
groups based on the origin of hiPSCs (Groups A and B),
indicating the biggest source of variation in expression
difference is introduced by the cell line itself, reflecting
the impact of genetic variation. Within each group, sam-
ples separate into the stimulated and unstimulated sub-
groups (Al and A2; Bl and B2). Further, the samples
also separate based on the respective sequencing
methods used (AS and RS). As an independent method,
PCA analysis shows the same pattern as clustering

analysis. Principal component 1 (PC1) represents the dif-
ferences between the donors of hiPSC lines as the largest
source of variation. Principal component 2 (PC2) repre-
sents the variation due to stimulation (Fig. 7). Import-
antly, these results are consistent and can be observed in
both clustering and PCA analyses.

Discussion

AmpliSeq transcriptome offers a robust method for large-
scale genome-wide differential gene expression analysis
Whole transcriptome sequencing has emerged as a
new standard for high-throughput transcriptomic
studies [17, 21, 40]. This powerful method is robust and
versatile for quantitative measurements of gene expres-
sion, identification of splice variants, single nucleotide
polymorphisms (SNPs), and discovery of novel protein-
coding genes by de novo assembly. However, for research
focused on studying differential expression of known
genes, sequence information at single-base level may not
be required, thus motivating the development of alterna-
tive methods for high-throughput, yet highly accurate
quantification of gene expression. Further, there are few
well-recognized limitations for the application of whole-
transcriptome RNA-seq. At the time of our analysis,
whole-transcriptome sequencing methods require a sig-
nificant amount of input material. To ensure sufficient
statistical power, studies of functional consequences of dif-
ferential gene expression generally entail large scale of co-
horts and multiple replicates of each sample. Such



Li et al. BMC Genomics (2015) 16:1069 Page 10 of 13

Hierarchical Clustering Plot batch removed

2 | B
o | A
I A2 B1 B2
sd 1 T T
° @ @ & z 2 @ & 2
hclust (%, "ward.D27)
AS: AmpliSeq U: Unstimulated
RS: whole transcriptome RNA-seq E: Endothelin stimulated

Fig. 6 AmpliSeq offers the same ability as Proton RNA-seq in capturing global gene expression patterns that is consistent with known source of
variations. All samples clustered into two groups based on the origin of hiPSCs (Groups a and b), reflecting the impact of genetic variation. Within
each group, samples separate into the stimulated and unstimulated subgroups (A7 and A2; BT and B2). Further, the samples separate based on
the respective sequencing methods used. AS for AmpliSeq, RS for RNA-seq, unstim for unstimulated, ET-1 for Endothelin 1 stimulated

requirement can easily lead to formidable sequencing specific in highly repetitive regions [41]. Such non-
cost and significant efforts for downstream analysis.  specific read-mapping can cause complications in
After sequencing, conventional work-flow of RNA-seq transcript quantification.

involves mapping short reads to genomic reference, AmpliSeq, as a whole-transcriptome, targeted gene
which unavoidably involves the mapping of non- quantification kit, seems to excel in all these limiting
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areas of RNA-seq. With 10 ng of total RNA, minimal
prep time and the requirement of fewer sequencing
reads compared to RNA-seq, AmpliSeq displayed very
robust performance without losing specificity and sensi-
tivity. First, results from ERCC spike-in controls in our
AmpliSeq run of UHRR and HBRR indicated that
AmpliSeq is highly consistent and yields high-quality
transcript quantification. Despite the wide range in de-
fined transcript abundance (in a range of 2000 fold) for
the ERCC spike-in controls, detected read-counts and
known concentrations of each ERCC transcript are
highly correlated, reflecting great sequencing quality of
AmpliSeq. By comparing the raw read-counts of all
genes between replicates, we observed a very consistent
performance between technical replicates. Second, our
analysis using the DEGs between two reference libraries
indicated that the performance of AmpliSeq closely re-
sembles established RNA-seq methods in terms of over-
all specificity and sensitivity as indicated by the values of
RMSD, AUC and MCC. Notably, AmpliSeq displayed
excellent accuracy for genes in bottom two quartiles and
outperforms the two RNA-seq methods for genes with
high abundance. Third, even though AmpliSeq does not
have capacity in isoform-level quantification or reso-
lution at single-base level, sequencing-based, targeted
quantification gives AmpliSeq methodology an advan-
tage in handling off-target amplification. By only consid-
ering reads matching to defined target regions,
AmpliSeq reduces the complexity and could avoid issues
related to non-specific mapping [10].

As a new method for sequence-based, genome-scale
gene expression quantification, AmpliSeq stands as a
very versatile and cost-effective approach for large-scale
gene expression analysis with high accuracy. These
merits enable AmpliSeq as a highly attractive method
for very large-scale studies including replication analysis
or other studies that require a very large number of sam-
ples to increase statistical power.

AmpliSeq is competent at capturing global gene
expression patterns in hiPSC-CM RNA samples based on
defined source of variation

One concern of using the standard RNA samples for qual-
ity assessment from various platforms for DEG analysis
has been the distinct gene expression profile between the
two reference RNA samples. Both UHRR and HBRR sam-
ples are pooled samples either from different cancer cell
lines or from several regions of the brain from multiple
donors. Additionally, more than 50 % the genes in human
brain have brain-specific expression, which makes HBRR
drastically different from UHRR [20, 42, 43]. Thus, the
uniquely expressed genes in each sample did not rep-
resent the expression profiles in a typical biological
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experiment involving physiologically relevant RNA
samples [42].

In order to gain insights into the performance of
AmpliSeq to an established RNA-seq method, we used
samples which represent expression patterns more com-
monly observed in a typical experiment. We performed
AmpliSeq on four RNA samples obtained from an
in vitro model of cardiac hypertrophy [28]. The hiPSC-
based in vitro cellular model is gaining prominence in
the fields of drug screening and disease modeling. Such
a model enables in vitro generation of human tissue
types, which allows patient-specific assays for functional
interrogation of genetic variants or expression profiling
of disease relevant genes. We have previously shown that
the expression pattern of hiPSC-CMs resembles the ex-
pression patterns observed in human myocardial biop-
sies [28].

Comparing Proton RNA-seq and AmpliSeq results for
the four RNA samples, we observe nearly the same clus-
tering pattern between the two platforms. Out of the
three levels of variations predefined by our experiments,
we expect hiPSC-donors to be the largest variation,
followed by hypertrophy phenotype and with library
preparation methods being the least variation that con-
tribute to global gene expression pattern. As expected,
AmpliSeq, just like RNA-seq, is able to capture these
variations shown in the clustering analysis. Both
methods first differentiate the patient-specific cell lines,
and then subsequently separate them based on their
hypertrophy phenotype. Most importantly, AmpliSeq
achieves the same resolution as RNA-seq with much less
number of reads. An independent method, PCA, also re-
vealed the same conclusion. Combined with our findings
from UHRR and HBRR samples, our results strongly
support that AmpliSeq is a very sensitive and competent
approach for very large-scale mRNA-marker screening
in hiPSC-based cellular models.

The need for the establishment of gold-standard RNA
dataset from more diversified conditions

Our understanding of the complexity and diversity of
the human transcriptome is far from being comprehen-
sive. Hence, there is a clear need to develop more com-
plex RNA samples with well-validated RNA content that
are from a wide range of physiological conditions. Create
and analyze a very comprehensive RNA dataset requires
major effort like MAQC III [44, 45] and GEUVADIS
[46]. The establishment of complex, standard RNA sam-
ples/datasets and their associated RNA content verifica-
tion will undoubtedly help the maturity of new
technologies and statistical metric for transcript quantifi-
cation. Amplification based methods such as the Ampli-
Seq method clearly can have a significant contribution
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in this overarching goal based on the performance we
have observed in this study.

Conclusions

AmpliSeq, as a whole-transcriptome, targeted gene
quantification method, clearly stands as a highly robust
approach for large-scale, genome-wide differential gene
expression analysis. Further, AmpliSeq is a very sensitive
and competent approach for very large-scale mRNA-
marker screening in cellular models.

Availability of supporting data

The data sets supporting the results of this article are
available in the NCBI Gene Expression Omnibus (GEO)
repository, GSE74760. This includes AmpliSeq raw read
counts on both RNA reference samples and hiPSC-CM
samples, and Proton RNA-seq raw read counts on hiPSC-
CM samples.
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Additional file 1: Figure S1. Genes with at least two-fold change in
expression between UHRR and HBRR have a nearly even distribution in
four quartiles in terms of transcript abundance based on normalized
transcript read-counts from lllumina RNA-seq. Figure S2. a) Spearman’s
ranked r for all genes using log10 transformed read-counts. AmpliSeq
showed a strong correlation to the two whole transcriptome RNA-seq
methods as determined by Spearman’s ranked r. b.) Dotplots of gene
expression between different sequencing platforms. Figure S3. Significant
correlation (p < Te-6) of gene expression (using log10 transformed
read-counts) between AmpliSeq and Proton RNA-seq for the following
samples: hiPSC-CM 1104 at stimulated condition, hiPSC-CM 1104 at
unstimulated condition, hiPSC-CM 1156 at stimulated condition and
hiPSC-CM 1156 at unstimulated condition (E: Endothelin 1 stimulated, U:
unstimulated). Figure S4. Significant correlation (p < 1e-6) of log2FC
between AmpliSeq and Proton RNA-seq for samples hiPSC-CM 1156 (ET vs.
unstim, n=10,183) and hiPSC-CM 1104 (ET. vs. unstim, n=10,226).
Figure S5. All three methods show strong correlation against the
RT-qPCR results in terms of log2FC. Using the MAQC dataset as the
standard, we observe Pearson’s r values of 0.95 between the log2FC
determined by AmpliSeq and the two RNA-seq methods (n=674).
For the ABRF PrimePCR dataset, the Pearson’s values were > =0.89
(n=13,747). (ZIP 295 kb)
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