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Alignment behaviors of short peptides
provide a roadmap for functional profiling
of metagenomic data
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Abstract

Background: Functional assignments for short-read metagenomic data pose a significant computational challenge
due to perceived unpredictability of alignment behavior and the inability to infer useful functional information from
translated protein-fragments/peptides. To address this problem, we have examined the predictability of short
peptide alignments by systematically studying alignment behavior of large sets of short peptides generated from
well-characterized proteins as well as hypothetical proteins in the KEGG database.

Results: Using test sets of peptides modeling the length and phylogenetic distributions of short-read metagenomic
data, we observed that peptides from well-characterized proteins had indistinguishable alignments to proteins from the
same orthologous family and proteins from different families. Nonetheless, the patterns contained remarkable
phylogenetic and structural signals, with alignments of even very short peptides naturally restricted to their orthologous
family and/or proteins having similar structural folds. In stark contrast, peptides from “hypothetical proteins” had only
sparse hit patterns with low frequencies and much lower identities. By weighting the structure-driven alignments and
filtering peptides with behaviors similar to those derived from “hypothetical proteins”, we demonstrate that the accuracy
of abundance predictions of protein families is dramatically improved.

Conclusions: Evolutionary processes have dispersed protein folds across multiple protein families, precluding accurate
functional assignment to short peptides, whose alignment behavior is non-random and driven by structure. Algorithms
that filter sparse peptides and weight hit patterns of peptides from “known space” dramatically improve quantification of
functions from diverse mixtures of peptides and should substantially improve applications of metagenomic analyses
requiring accurate quantitative measures of functional families.

Background
Faster and economical next-generation DNA sequencing
(NGS) technologies have enabled studies of complex mi-
crobial communities which were experimentally intract-
able in terms of their true microbial diversities only a
decade ago [1–6]. Economy of scale and the availability
of streamlined data processing pipelines have driven the
majority of studies’ estimates of taxonomic and phylo-
genetic content from 16S ribosomal RNA sequencing
and inferences of functional content from reference ge-
nomes of corresponding or related taxa. On the other
hand, whole shotgun sequencing of metagenomic DNA

arguably provides a more robust and unbiased measure-
ment of the taxonomic and functional content of a
microbiome [7, 8], but its use has been limited due to
the necessity of greater sequencing depth (higher cost)
and significant computational challenges. The latter is
particularly acute, especially in non-human systems
where genomic catalogues and reference genomes of
representative species are not readily available. As se-
quencing costs continue to decline, the primary barrier
for broad application of whole shotgun metagenome se-
quencing is largely computational.
In silico functional annotation of proteins exploits

their evolutionary relationships with experimentally
characterized proteins and uses empirically-defined
thresholds of global sequence identity (e.g. > 40 %) to as-
sign proteins to the same Enzyme Commission number

* Correspondence: abenson1@unl.edu
1Department of Food Science and Technology, University of Nebraska, 256
Food Innovation Complex, Lincoln, NE 68588-6205, USA
Full list of author information is available at the end of the article

© 2015 Sinha et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Sinha et al. BMC Genomics  (2015) 16:1080 
DOI 10.1186/s12864-015-2272-z

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-015-2272-z&domain=pdf
mailto:abenson1@unl.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


(function) [9]. In the absence of such relationships,
methods like I-TASSER [10] and COFACTOR [11] col-
lectively annotate some protein sequences by predicting
and comparing their structures with global and local
structural features of well-characterized reference pro-
teins. These powerful techniques, however, have been
developed exclusively for full-length molecules, and use
of similar approaches for peptides predicted from short-
read metagenomic data has generally been avoided due
to the belief that such peptides lack enough evolutionary
or structural information to accurately identify the
orthologous genes from which they originate. These
concerns are underscored by the fact that protein do-
mains are redundantly used to perform diverse biochem-
ical activities [12, 13], leading to the expectation that
short peptides will simply align to all the proteins carry-
ing their “domains of origin”, resulting in a confounded
pattern of functional predictions based on a variety of
reference proteins carrying that domain [14, 15].
The three prominent resources for metagenomic data

processing (MEGAN [16], MG-RAST [17] and HUMAnN
[18]) all work similarly, aligning translated peptides from
the short reads of NGS platforms to databases of well-
annotated reference proteins and using single sets of
sequence similarity measures (SSMs) for functional
prediction. The effectiveness of individual sets of SSMs
used by these protocols was recently questioned by the
finding of the PAUDA study [19], where high variances in
the identity profiles of alignment hits were observed even
within the same KEGG-orthology group (KO) [20]. These
observations resulted in concerns of significant sensitivity
losses in assigning KO-families to short NGS reads on the
basis of individual sets of SSMs. Moreover, recent publica-
tions using these metagenomic data processing methods
also demonstrate absence of any consensus among the
community of users regarding individual significance
thresholds or sets of SSMs elements that can accurately
discriminate between true and false-positive function as-
signments [21–26].
Given the dearth of empirically-derived data on the

alignment behavior of peptides that could even be used
to model thresholds for SSMs, we were motivated to sys-
tematically study the actual alignment behavior of short
protein fragments. Using random peptides extracted
from KO-family members (the “known” protein uni-
verse) and hypothetical uncharacterized proteins (the
“unknown” protein universe) extracted from the M5nr
database [27], we studied their alignment behavior in
bulk using bacterial proteins from the KO-families as a
reference database. We observed remarkable behaviors
that show clear evidence of structural features of local
segments of proteins being evolutionarily constrained.
These structural constraints act as natural barriers to
random alignment of small peptides, restricting peptide

alignments to homologous domains from the domain of
origin and evolutionarily related families in which the
domain has become associated with a new function.
Peptides originating from uncharacterized/hypothetical
proteins (“unknown” protein universe), which typically
represent a significant part of the reads in metagenomic
NGS data, do not display this characteristic alignment
behavior and their parameters can be used as a filter to
eliminate their confounding effects on abundance esti-
mates of known protein families in metagenomic data.

Results
To systematize measurements of alignment behavior, we
developed sets of peptides from two major cross-
sections of proteins that are observed in metagenomic
data, namely, peptides from proteins that can be anno-
tated accurately on the basis of experimentally-
characterized protein families (Type 1 peptides/known
protein universe) and peptides that originate from pro-
teins that share no detectable evolutionary relationship
with known protein families (Type 2 peptides/unknown
protein universe). For Type 1 peptides, eight different
sets of peptides were generated from the KO-families
with each set having a different peptide length (range
11aa to 81aa and termed Type1_11aa-Type1_81aa, re-
spectively), see Methods and Table 2 for the test case
types description. Each set contained 3 randomly-derived
peptides from each of the 6327 KO-families comprising
our reference database. These sets were then aligned
to the entire set of bacterial members of the 6327
KOs. Viewing the alignments as a whole (Additional
file 1: Figure S1–8), the longer query peptides generally
yielded a higher frequency of significant hits. With the
smallest query peptide length tested (11-mers), only
22.1 % found a significant hit when the e-value cutoff was
10 (default BLASTP cutoff). Increasing the peptide length
dramatically increases the frequency of significant hits,
with the highest frequency of significant hits equal to the
length of the query peptide (Additional file 1: Figure S1–
8). Very similar behavior was observed when e-values
were plotted for the different query peptide lengths
(Additional file 1: Figure S9–16).
Because the origin of the query peptides was known, their

alignment behaviors to proteins of the parental KO-family
(the same KO-family from which the peptide originated)
and of the non-parental KO-families (all other KO-families
excluding the parental KO) could be quantified independ-
ently, as depicted in (Fig. 1) for query peptides of length 31
amino acids. When comparing the alignment patterns of the
queries to parental and non-parental KO-families, the be-
haviors were very consistent irrespective of the length of the
query peptides (Type1_11-81aa). To statistically confirm this
phenomenon we performed one way ANOVA over differ-
ences of alignment-identity values, between parental and
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non-parental KOs, of 500 randomly-selected hits from each
peptide length (21–81, length 11 is not considered since
>90 % of the hits were within ~100 % identity range). The
mean p-value (0.1127) over 100 iterations of this procedure
clearly shows that the alignment behavior patterns were in-
dependent of the length of the peptides. We noticed
that alignments with higher percent identity (Add-
itional file 1: Figure S1–8) or lower e-values (Additional
file 1: Figure S9–16) were more frequently observed
among alignments to parental KO-families than non-
parental KO-families. Box and whisker plots of the distri-
butions of percent identity of full-length alignments of
each of the query peptide lengths (Additional file 1: Fig-
ure S17) shows that the majority of alignments to par-
ental KOs consistently occur at a higher range of
identities than alignments to non-parental KOs. How-
ever, a more accurate picture emerges when alignments
of all lengths are considered. In three dimensions
(alignment length, percent identity and frequency)
there is substantial overlap of hits to parental and non-
parental KOs (Fig. 2 and Additional file 1: Figure S18–
23). The overlap of the three-dimensional contours sug-
gests that no single threshold would easily discriminate

between the parental and non-parental KO contours
and hence allow consistent resolution of parental and
non-parental KO-families. These observations were fur-
ther strengthened by the analysis of multiple ROC
curves (Additional file 1: Figure S24) generated for
multiple peptide lengths (31, 51 and 71aa) with varying
range of alignment parameters (alignment coverage and
identity levels). These plots (Additional file 1: Figure
S24) clearly indicate that none of the combinations of
alignment-coverage and identity provided high enough
sensitivity (true positive rate) and specificity (true
negative rate) to accurately assign short peptides to
KO-families.
Though the lengths of the most abundant alignments

were equivalent to the length of the query peptide, we
observed some alignments as long as twice the length of
the query peptide and such behavior was equally preva-
lent among hits to parental as well as to non-parental
KO-families (Additional file 1: Figure S25). Interestingly
the hits to non-parental KO-families show similar align-
ment patterns, hinting that structural and functional
similarity may be shared among alignments to non-
parental KOs and parental KO-families (further explored

Fig. 1 Alignment profiles of short peptides to parental vs non-parental KO-families. Comparison of alignment behavior (Left panel) when
the short peptides align to members of their parent KO-families (Right panel) when short peptides align to members of their non-parent
KO-families. While hits to same KO-family members have high proportion of alignment-identity above 80 %, but a major fraction of hits
still remain in the range of 40–80 % (for both left & right panel) and makes it difficult to discriminate between true and false positive
hits. Hexbin colors within the graph are proportional to their frequency or members within the bin. Member frequency and color
relationship is depicted in the arrow-headed color bar
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below in the section “Why do hits to non-parental KO-
families have competitive alignments”).

Error rate using only the best alignment
Because the alignment behavior of type 1 peptides pre-
cludes a simple discrimination between parental and
non-parental KOs, we estimated the error rate of classi-
fication for peptides when an orthologue from a very
closely related species is not present in the database.
This was estimated by the fraction of peptides (from
Type1_11-81aa set) having their best hits with a protein
from a different (non-parental) KO-family, even when
the members of their own KO-families were present in
the reference database (self-hit is not considered). Table 1
shows that ~91 % of the peptides of each query length
found their best hit among parental KOs (last two
columns), while the remaining 9 % of the peptides
had their best-hits among non-parental KOs. This ra-
tio of true-positive/false-positive was essentially inde-
pendent of query peptide length and suggests that
nearly 10 % of assignments based on best-hits may be
incorrect.

Total number of members within a KO-family influences
the quality of true-positive alignments
Despite the ever-increasing number of diverse microbial
taxa whose genomes have been sequenced and carefully
annotated, even the most carefully curated databases such
as KEGG have unequal representation across taxonomic
and phylogenetic space and consequently have correspond-
ing overrepresentation and voids in functional ontologies.
Given the broad distributions of percent identities,
alignment lengths and e-values for alignments of type 1
peptides, it seems reasonable to expect that biases in
the databases affect these distributions, further confound-
ing assignments based on alignment alone. To model the
effects of database bias, the relationships between the
number of KO-family members in the database and the
median alignment identity of all true positive hits of
peptides were plotted. The plots (Additional file 1:
Figure S26–33) revealed that the range of alignment iden-
tities was quite large for KOs with fewer members, but got
much smaller as the KO size increased, with median align-
ment identity decreasing as KO-family size increases.
Thus, KO-families with higher representation may cover a
larger evolutionary space of proteins but the effect is to

Fig. 2 Three dimensional plot of alignment length, percent identity and hit frequency of type 1 peptides. The plot is colored to differentiate
values for hits to parental KO (red) and non-parental KO-family (blue). Data for the 61-mer peptides is shown
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lower the median score and tighten the distribution of the
identities, while the identities at low KO representation
are much more dispersed with an inflated median. This
trend was independent of query peptide length, although
the rate of decrease in the median identity score increased
with longer peptide length. This is likely because longer
peptides have a higher probability of having medium qual-
ity hits that are long enough to cross the BLAST threshold
score.

Why do hits to non-parental KO-families have competitive
alignments?
Though database representation clearly affects alignment
distributions and confounds the parental KO/non-parental
KO boundary on the alignment behavior landscape, an-
other factor that likely affects the landscape is struc-
tural divergence. Protein fold space is limited [28, 29]
and the same folds are often found in proteins that per-
form quite different biochemical functions [12]. In con-
trast, the reverse (convergence of unique protein folds
to execute the same function and sharing the same EC
number) has occurred in only a small number of cases
(7.5 % of all known EC nodes) [13]. Accordingly, pro-
teins carrying similar EC-numbers (catalyzing similar

reactions) have a high propensity of carrying similar
domains/folds. We therefore hypothesized that the KO-
families within the boundaries of the alignment land-
scapes of parental/non-parental KO-families share the
same or highly related EC hierarchies.
This hypothesis was examined by querying the EC

numbers of the peptides (from Type1_11-81aa) (Table 2)
and the EC numbers of the ‘reference set’ (see Methods
section) proteins to which they align and developing EC
number similarity profiles at each level of the EC hier-
archy. If our hypothesis is true, we would expect the EC
numbers of the alignments to the non-parental KOs to
increasingly match the EC numbers of the parental KOs
at increasing levels of the EC taxonomy. As shown in
Additional file 1: Figure S34, this is indeed the case, as
query and aligning non-parental proteins generally
shared EC hierarchies at frequency rates of ~80 % (1st
level), 67 % (1st & 2nd level), 60 % (1st, 2nd and 3rd
level) and finally 20 % across all four levels. Thus, even
when peptide alignment identities are at the boundaries
between parental and non-parental KOs, the functions
performed by the peptide domains are similar and the
the same was suggested by the alignment behavior of
peptides to parental and non-parental KO-families. For

Table 2 Description of test case notations used in the current study

Test case type Description

Type1_11–81aa Peptides were derived from well characterized proteins. In eight independent test cases lengths of peptides ranged
between 11 to 81 amino-acids.

Type2.1–2.3 Peptides were derived from uncharacterized proteins and test cases were classified on the basis of the degree of
sequence similarity of proteins with well-annotated proteins.

2.1: Coverage <70 % & identity < 70 %

2.2: Coverage <70 % & identity <50 %

2.3: Coverage <70 % & identity <35 %

Type3 Simulated data to test the “Frequency weighted method”

Table 1 Alignment behavior of short-peptides (peptide length 11aa–81aa)

Peptide
Length

Total
peptidesa

Fraction
alignedb

Total number
of blast-hitsc

Total aligned to
same KO (%)d

Total aligned to
different KO (%)e

Total of best-hits aligned
to same KO (%)f

Total of best-hits aligned
to different KO (%)g

11 18,981 4196 (22.1) 57,705 48,677 (84.3) 9028 (15.6) 3964 (94.4) 232 (5.6)

21 18,978 16,482 (86.8) 1,200,295 815,915 (67.9) 384,380 (32.0) 15,366 (93.2) 1116 (6.8)

31 18,960 18,104 (95.4) 2,348,640 1,409,131 (59.9) 939,509 (40.0) 16,449 (90.8) 1655 (9.2)

41 18,900 18,626 (98.5) 3,181,987 1,784,051 (56.0) 1,397,936 (43.9) 16,855 (90.5) 1771 (9.5)

51 18,807 18,728 (99.5) 3,829,200 2,050,119 (53.5) 1,779,081 (46.4) 16,912 (90.3) 1816 (9.7)

61 18,723 18,701 (99.8) 4,266,683 2,199,736 (51.5) 2,066,947 (48.4) 16,986 (90.8) 1715 (9.2)

71 18,564 18,554 (99.9) 4,598,168 2,313,719 (50.0) 2,284,449 (49.6) 16,907 (91.1) 1647 (8.9)

81 18,396 18,391 (99.9) 4,839,697 2,387,627 (49.3) 2,452,070 (50.6) 16,765 (91.1) 1626 (8.9)
aTotal number of short-peptides used in the study
bTotal fraction of peptides having significant alignment with at least one other protein (self-hits are not considered)
cTotal count of significant BLAST hits
dTotal count of significant BLAST hits to the same KO group (percentage)
eTotal count of significant BLAST hits to a different KO group (percentage)
fTotal count of best BLAST hits aligning to the same KO group (percentage)
gTotal count of best BLAST hits aligning to a different KO group (percentage)
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example, aminoacyl-tRNA-synthetase proteins like
aspartyl-tRNA-synthetase (K01876, EC:6.1.1.12) and
lysyl-tRNA-synthetase (K04567, EC:6.1.1.6) have different
KO-family assignments due to different ligand-specificity
of their catalytic-domains but perform similar functions
(similar EC-number profile up to the third level) by shar-
ing the same anticodon binding domain (N-terminal
β-barrel domain) to bind to tRNA [30].
Remarkably, our systematic characterization shows

that despite being short in nature (11 to 81aa), the pri-
mary sequences of these short peptides carry informa-
tion that reflects similarity in protein structure and
function.

Frequency weighted protein count method
The inherent structural constraints of proteins and the
highly selective alignment of peptides to domains which
are homologous to their parental KOs, even when
present in non-parental KOs, means that artificial
thresholding based on SSM constraints may actually
limit the information that could be used for the function
assignment. This is especially true given the effects of
uneven KO representations in the databases. To correct
for the uncertainty in the functional assignments of pep-
tides having many significant alignments, rather than
assigning a peptide to a single protein family we weight
its contribution to total abundance values of all the pro-
tein families having significant alignment with that pep-
tide. The alignment weights can be adjusted relative to
the alignment weights of peptides which are highly spe-
cific to their parental KO-family (Frequency weight of
peptide-X = 1/ Total number of significant alignments of
peptide-X). This “frequency weighted read count” proto-
col provides higher weights to peptides unique to a pro-
tein family, and should improve the accuracy of protein

abundance profiling by decreasing the noise created by
reads with complex alignment patterns.
To test our concept, 31-mer peptides were generated

from all 6327 KO-families, randomly choosing about
10 % of the members from each KO-family, and these
peptides were aligned against the complete ‘Reference
set’ proteins (see Methods, “Test case Type 3” for de-
tails). In our protocol, the BLASTP outputs were first
parsed to calculate and store the weight for each query
peptide; once these weights were computed the abun-
dance of each KO-family was calculated by adding the
frequency-weight of all the peptides aligned to mem-
ber proteins of the corresponding KO-family. The
frequency-weight based read counts (abundance) were
plotted against the true (unweighted) counts from the
same KO-families from which the peptides originated
(Fig. 3). Abundance values based on our “frequency-
weighted read count” method achieve a very high cor-
relation (Pearson correlation coefficient 0.99) with the
true abundance values of all the KO-families present
in our data set (details in Methods section).

Alignment behavior of reads originating from
experimentally uncharacterized proteins (Test case type2)
Even in some of the best studied bacterial species, sig-
nificant proportions of the proteins fall into a category
with no readily detectable evolutionary or structural re-
lationship with experimentally characterized proteins. As
an example of this category, 11 % of the proteins from
E.coli do not show significant similarity with proteins of
known structures, using even the most sophisticated
threading algorithms to detect distant ancestry and pre-
dict functionality [31]. Such proteins have been desig-
nated as “hard” cases to assign structural folds or
functions. Despite the predictable behavior of the full-

Fig. 3 True KO-families abundances are compared with frequency-weighted read counts. Evaluation of performance of ‘Frequency weighted read
count’ method when test case is comprised of peptides originating from those proteins, which have their family members in the ‘Reference set
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length hard case proteins, it is quite possible that short
fragments derived from hard case proteins can achieve
significant alignment with well characterized proteins.
Since a significant proportion of metagenomic data rou-
tinely falls into this hard case category, it is likely that
alignment behavior of peptides from hard case proteins
could confound quantification when using all alignment
information of peptides in conjunction with frequency-
based weighting.
To study this potential confounder, we modeled the

behavior of peptides derived hypothetical proteins using
three different test sets of peptides (Type 2.1, 2.2 and 2.3)
derived from hypothetical proteins of known genomes
(see Methods section for details) that were aligned to the
‘Reference set proteins’. The alignment data (Additional
file 1: Figure S27) showed several unique features that
were not observed in the alignments to type 1 and type 3
peptides. First, only one-third of the type 2 peptides
showed significant alignments (type 2.1 38 %, type 2.2
37 % and type 2.3 35 % compared to 99 % of type 1 and
type 3 peptides). If the fraction of hypothetical proteins
with at least one peptide having a significant hit with a ref-
erence protein is calculated, the numbers essentially dou-
bled to 68, 68 and 67 % for Type 2.1, 2.2 and 2.3 test sets,
respectively. Second, when compared to alignments of
type 3 peptides studied above, type 2.1, 2.2 and 2.3 pep-
tides had substantially fewer hits per peptide (3.74, 2.98
and 1.97, respectively) as compared to 200 hits/peptide for
‘Test set type 3’ peptides. Among the hits that were ob-
tained, the type 2 peptides hit a very large proportion of
the reference set (82.6 % for type 2.1, 79.5 % for type 2.2,
and 72 % of type 2.3), showing the virtually random nature
of these alignments. The randomness was also reflected in
the percent identities of the best hits, which were far lower
for the type 2 than for the type 3 peptides (Fig. 4).
Some ‘Test case type2’ peptides do achieve significant

hits, even in the absence of homologous proteins in the
reference set. It seems likely that that the sheer number
of reads from genes of this category would affect quanti-
fication using our frequency-weighted method as these
proteins are among the most commonly encountered in
metagenomics data sets.
To measure their effect, the BLAST results of the ‘Test

case type3’ dataset were pruned to hits of peptides from
only 4000 randomly selected KO-families, referred to
as the ‘Selected_4K_KO_Hits’. The frequency-weighted
abundance profiles for all 6327 possible KO-families were
then measured from only the ‘Selected_4K_KO_Hits’, or
new sets in which the ‘Selected_4K_KO_Hits’ were
composited with hits from peptides of the Test case type
2.1, 2.2 and 2.3. As expected, the ‘Selected_4K_KO_Hits’
alone showed a very high degree of correlation with their
true abundance profiles (Additional file 1: Figure S36). In
contrast, the massive numbers of hypothetical peptides in

the composited ‘Selected_4K_KO_Hits’ plus type 2 pep-
tides generated a large numbers of low per-peptide hits
from the hypothetical proteins, inflating the abundances
of many proteins substantially from their expected abun-
dances (Fig. 5 and Additional file 1: Figure S37–39). To fil-
ter out the inflation from the random hits of hypothetical
peptides we used two of their unique alignment behav-
iors, namely, their very low per-peptide hits (which
ranges predominantly from 0 to 10 (Additional file 1:
Figure S43–45)) and the low alignment-identity profiles
from their best hits (median identity value of peptides
from Test case 2 was ~55 % (Fig. 4)). Based on these
patterns we revised our ‘Frequency weighted read count
method’ to filter out or ignore the hits from those pep-
tides which have (1) low per-peptide hit counts (<50
hits) and (2) a best hit with alignment identity below
55 %. Applying this new protocol to the sets of
‘Selected_4K_KO_Hits’ alone and the ‘Selected_4K_
KO_Hits’ plus type 2 peptides (Fig. 6 and Additional
file 1: Figure S40–42) shows that the effects of the type
2 peptides are mostly eliminated and the observed and
expected abundances of the different KO-families show
much greater correspondence. Collectively, incorporat-
ing systematic analyses of peptide alignment behavior
into an approach to accurately assign functions results
in more reliable quantification of gene abundances in
metagenomic data sets.

Fig. 4 Comparison of alignment-identity profiles of the best hits of
peptides from known and unknown protein-space. Identity profile of
best hits of peptides from uncharacterized proteins (first three pink
boxplots) is compared with the same of peptides from proteins
having their family members in the reference protein set (green)
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Discussion
Foundational studies of protein structure led to an early
realization that structural information was influenced
substantially by the sequence of the protein [32, 33]. The
alignment behavior of short peptides was examined in
detail by Sander and Schneider [34] and Rost [35] who
showed that segments of proteins having alignment
lengths between 10 and 80 aa are structural homologs
provided the corresponding minimum alignment iden-
tities are 40–80 %. Our interest in further examining this
behavior has been renewed by the capacity to explore
taxonomic and functional content of complex microbial
communities by metagenomic sequencing on short-read

NGS platforms. Remarkably, we find that the alignment-
identity threshold range of the vast majority of hits of
type 1 peptides from the current data set of 1,496,257
million proteins completely overlaps with the threshold
ranges observed historically from much smaller data
sets. The immediate application to metagenomics, of
course, is that short peptides translated from short NGS
reads are actually long enough to carry structural signa-
tures causing them to align to their structural homologs.

Applications to protein discovery
The tendency of short protein fragments to align to their
structural homologs is a confounding factor in functional

Fig. 5 Effect of peptides from “unknown protein-space” on the “frequency-weighted” abundance profiles of proteins from “known space”. Artificial
boost in the abundances of KO-families is elucidated using output of ‘Frequency weighted read count’ method when ‘Test case type2.3’ (peptides
from unknown space) is added to ‘Selected_4K_KO_Hits’. Red line reflects the true correspondence values

Fig. 6 Corrected abundance profiles of KO-families using “Filter-enabled frequency weighted” method. Artificial boost in abundance values of
KO-families due to peptides from “unknown protein space” is corrected by extending our frequency-weighted method and enable it to filter
peptides with characteristics of those from hypothetical proteins. New abundance profile of the same test data used in Fig. 5 is plotted in this
figure (the plot can be compared directly to the plot in Fig. 5). Red line reflects the true correspondence values
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annotation due to the multiplicity of functions of homolo-
gous protein domains (same domain may perform mul-
tiple biochemical functions). However, the strong bias of
type 1 peptide alignments to parental and non-parental
KO-families that share similar EC number profiles leads
to an intriguing idea that small peptides (originating from
full length proteins) could be used as markers for predict-
ing protein function or perhaps EC number profiles. In
such cases, proteins having limited “global sequence simi-
larity” with well characterized proteins (e.g. hard targets
[36]) may nonetheless carry small peptides which can
achieve significant alignments with these peptide markers.
The most likely candidates for these proteins would be
those whose evolutionary constraints are fundamentally
different than what is observed in the known space (e.g.
substitution patterns not evenly distributed but still some-
how constrained).

Applications to microbiome-wide and genome-wide asso-
ciation studies
To accommodate the alignment behaviors of type 1 pep-
tides, we weighted significant hits by the frequency of
hits to allow higher precision measurements of those
peptides for which high-probability assignments could
be made. A second improvement in assignment accuracy
was to threshold peptides with alignment behaviors re-
sembling type 2 peptides from the “unknown” protein
space (e.g. low hit frequency and low percent identity).
Together, these strategies improved quantitative esti-
mates from type 3 data sets by a factor of 10 (see
Methods for details). Because these “hard proteins”
constitute significant proportions of known genomes
(averaging 30 % of genomic content) and typically make
up peptides that are predicted from 30 to 70 % of meta-
genomic reads, the improvements made by our criteria
will have a dramatic effect on metagenomics applications
where highly accurate, quantitative measurements of
taxa and protein functional categories drive success of
the experiments. For example, MWAS and GWAS ex-
periments focused on microbiome traits depend exclu-
sively on accurate measurements [37, 38] to limit type I
and type II errors. The inherent biological noise, com-
bined with sample error in these experiments, requires
significant biological replication to appropriately power
such experiments, and even when appropriately powered,
false discovery rates still remain relatively high [39].
It should be noted that even with our thresholding de-

signed from type 2 peptide behaviors, roughly 10 % of the
proteins from the “hard protein” space were removed
from the set of reference proteins for generating our type
2 peptide data sets because they displayed alignment be-
havior (70 % alignment length and 70 % identity) border-
ing type 1 peptides. These proteins are likely to occur at
similar proportions in most metagenomic data sets. It

seems likely that these proteins represent remote homo-
logues of proteins in our database. They will remain a
challenge for further improvement and refinement of
data filtering and processing. Of the remaining hard
proteins, >95 % of the peptides could be easily filtered
using our criteria (low hit frequency and low percent
identity). As new protein families are discovered, the
alignment landscape will continue to expand, moving
more type 2 peptides into the type 1 category and expand-
ing the continuous landscape of the “known” protein uni-
verse. However, it is clear that the gap between the known
and unknown portions of the universe is not likely to nar-
row substantially in the near future. Until then, removing
the effects of alignments from peptides in this category
has the huge advantage of improving the quantitative ac-
curacy of measuring functions in the “known” universe,
and that alone is cause for implementation.

Conclusions
Our detailed analysis of short peptides shows that their
alignment behavior is non-random and driven by struc-
tural properties. Although alignment patterns are con-
strained to structurally-related folds, these folds have
been dispersed across proteins with a variety of func-
tions by evolutionary processes, impairing accurate func-
tional assignment even when peptides originate from
well-defined proteins. The error-prone nature of func-
tional assignments can, however, be minimized by
weighting abundance predictions by the frequency of
significant hits. In contrast to known protein families,
peptides from hypothetical proteins have very distinct
alignment patterns, allowing them to be easily filtered.
By filtering out peptides originating from the “unknown
protein space” and then appropriately weighting the con-
tributions of remaining peptides, quantification of pep-
tide distributions are much more accurate and will
improve quantitative estimates of functions from meta-
genomic data.

Methods
Reference protein dataset
A list of all “bacterial KEGG entries” was obtained from
the KEGG website (a total of 2910 entries) and corre-
sponding protein sequences along with their annotations
(functions, pathways and KO-families) were fetched
from the M5nr [27] database. It yielded total 1, 496, 257
protein sequences covering 6327 unique KO-families.

Datasets to study the alignment behavior of short
peptides (Test case type1)
To study the alignment behavior of short peptides, we
randomly picked a member protein from each KO-fam-
ily present in our “Reference set” (total 6327 members
were picked), and used it to generate, three equal-length
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and non-identical peptides (total 18,981 peptides/KO-
family). To represent the multiple lengths of NGS reads
(33–250 bp) we generated eight such test cases where
length of peptides ranged from 11 to 81 (Test case
Type1_11aa to Type1_81aa). This set is designed to
represents the behavior of peptides originating from the
“known” protein universe.

Dataset to evaluate the impact of reads from
uncharacterized genes (Test case type2)
To emulate the presence of reads originating from
uncharacterized genes, we selected around 1.1 million
hypothetical proteins (computationally predicted as pro-
teins) with no membership to any KO-family i.e. bio-
logical roles of these proteins are not known (data
source is M5nr database). To remove the redundancy of
the data and computational burden, proteins were clus-
tered with 70 % identity cutoff (using CD-hit [40]),
which yielded 769,053 clusters. Finally we aligned repre-
sentative member of each cluster against the “Reference
set” (using BLASTP), to discard those that were homolo-
gous to “Reference set” proteins and therefore may share
similar fold and function.
Since the quality of homology based fold prediction is

proportional to the degree of sequence identity and
alignment coverage between template and the target
proteins [41], we generated three different test cases
based on the alignment criteria to define the homology.
For the first set (Type2.1), representative hypothetical
proteins finding homologous counterparts (global align-
ment coverage of query protein > =70 % and alignment-
identity > =70 %) within “Reference set” were removed
since these alignment criteria are good enough to assign
structural fold and/or protein family to an unknown
protein, therefore such proteins do not fit the criteria of
uncharacterized protein. For the second (Type2.2) and
third (Type2.3) sets alignment identity criteria was re-
laxed to 50 and 35 % respectively [41]. Total of 6741
proteins were removed in the first set (762,312
remaining), whereas this number is 18,694 and 96,958
for second and third set (750,359 & 672,095 remaining)
respectively. Each of the remaining proteins, within each
test set, were used to generate three constant length
(31aa long), non-identical peptides.
Peptides from our first, second and third sets (total

2,279,736, 2,244,375 and 2,010,159 peptides respectively)
were aligned to “Reference set” proteins and their align-
ment behavior is detailed in the results section. Our
approach was based on the premise that filtering
uncharacterized proteins on the basis of their global se-
quence similarities with the “Reference set” proteins
does not reduce their probability of having small/local
alignments with “Reference set” proteins. Such hits even-
tually can influence the abundance profile calculations.

Large simulated set to test ‘Frequency weighted read
count’ method (Test case type3)
To evaluate our ‘Frequency weighted read count’ proto-
col, we generated around 5 million peptides covering all
6327 KO-families of our “Reference set”. As first step
10 % members of each KO-family were selected (i.e. 20
members from a KO-family with 200 members) and that
resulted into total 180,510 proteins. From each of these
selected proteins we randomly generated 20–40 equal-
length (31amino-acids) and non-identical peptides,
which yielded total 5,412,049 peptides representing real
protein fragments with known KO-families assignments.
To study their alignment behavior, these (5,412,049)

peptides were aligned against “Reference set” proteins
(used BLASTP with default parameters). It had gener-
ated around a hundred million (112,3871715) hits, aver-
aging 207.66 hits per peptide.

Statistical analysis
Alignment behavior of blast-hits of peptide to parental
and non-parental proteins overlaps significantly irre-
spective of the length of the peptides (Test case
type1_11-81aa, Additional file 1: Figure S1-S8). For stat-
istical verification of this phenomenon we performed
one way ANOVA over differences of alignment identity
of random 500 hits to parent and non-parent KO-
families and its repeated 100 and finally average p-value
is calculated.
To quantify the effectiveness of “filter enabled

frequency-weighted method”, the extent of abundance
profile correction was calculated by averaging the abso-
lute differences of calculated read count vs real read
count of all the KO-families. While mean degree of devi-
ation for ‘Selected_4K_KO_Hits’ test case was 9.49 (SD
16.38), the same for its composite with ‘type 2.3’ is
114.57 (SD 199.85, ‘no filtering of unknown peptides’)
and 23.6 (SD 36.6, ‘filter applied’). Therefore we see
around 11 fold (114.57/9.49) degree of deviation from
the original read count when peptides from hypothetical
proteins are introduced and around 10 fold (114.5–23.6/
9.4) correction when the filter-enabled “frequency
weighted read count method” was applied.
Receiver operating characteristic (ROC) curves were

generated to evaluate the ability of multiple combina-
tions of parameters such as alignment coverage and
identity to assign true KOs to short peptides. Three dif-
ferent ROC curves based on peptide lengths (31, 51 and
71aa) were generated. For each individual plot, true-
positive and false-positive rates for combinations of
alignment-coverages (ranging 50–80 % with increments
of 10 %) and alignment-identities (ranging 40–90 % with
increments of 10 %) were plotted. We picked minimum
coverage and identity values (50 and 40 % respectively)
which are significant enough to establish an evolutionary
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relationship between two protein sequences. For each
parameter combinations, 10,000 alignments of Type-1
short peptides were used to calculate the true-positive
(TP /TP + FN) and false-positive (FP/FP + TN) rates.

Availability of supporting data
All the test-cases, alignment output and python scripts
used in this study are hosted at (http://cage.unl.edu/
DataPeptide). A “supplementary information” file carry-
ing Additional file 1: Figure S1–44 and data description
is also provided along with the main manuscript.

Additional file

Additional file 1: An additional file is available along with the
online version of this paper. Additional file 1 not only contains the
Figures S1–45 but also contains a detailed description of the nature of files
and data shared on (http://cage.unl.edu/DataPeptide). (DOCX 14611 kb)
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