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Abstract

Background: The identification of inversions of DNA segments shorter than read length (e.g., 100 bp), defined as
micro-inversions (MIs), remains challenging for next-generation sequencing reads. It is acknowledged that MIs are
important genomic variation and may play roles in causing genetic disease. However, current alignment methods
are generally insensitive to detect MIs. Here we develop a novel tool, MID (Micro-Inversion Detector), to identify MIs
in human genomes using next-generation sequencing reads.

Results: The algorithm of MID is designed based on a dynamic programming path-finding approach. What makes
MID different from other variant detection tools is that MID can handle small MIs and multiple breakpoints within
an unmapped read. Moreover, MID improves reliability in low coverage data by integrating multiple samples. Our
evaluation demonstrated that MID outperforms Gustaf, which can currently detect inversions from 30 bp to 500 bp.

Conclusions: To our knowledge, MID is the first method that can efficiently and reliably identify MIs from unmapped
short next-generation sequencing reads. MID is reliable on low coverage data, which is suitable for large-scale projects
such as the 1000 Genomes Project (1KGP). MID identified previously unknown MIs from the 1KGP that overlap with
genes and regulatory elements in the human genome. We also identified MIs in cancer cell lines from Cancer Cell Line
Encyclopedia (CCLE). Therefore our tool is expected to be useful to improve the study of MIs as a type of genetic
variant in the human genome. The source code can be downloaded from: http://cqb.pku.edu.cn/ZhuLab/MID.
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Background
Genomic structural variations (SVs), including insertion,
deletion, rearrangement, and duplication are important
sources of human genetic diversity and may be responsible
for human diseases [1–4]. With the rapid development of
high-throughput sequencing technologies, computational
tools have been developed to utilize next-generation
sequencing data to identify SVs, such as BreakDancer [5],
Pindel [6], PRISM [7], DELLY [8], CNVnator [9] and
Gustaf [10]. It has been noted that small inversions may
provide important insights into genome evolution and

disease mechanisms [4, 11]. Previous studies have reported
the discovery of small inversions by comparing the human
genome with other mammalian genomes [12, 13]. How-
ever, despite the progress of computational tools using
NGS data to identify SVs, our understanding and strategies
for characterizing small inversions remain limited [14]. In
this work, we focus on micro-inversions (MIs), defined as
small inversions shorter than 100 bp, which are mostly
ignored by existing methods.
Computational tools for SV detection mostly rely on

read mapping. However, we found that reads with potential
MIs, which cannot be mapped to the reference genome
initially, are usually discarded as “unmapped reads” by
existing alignment tools. As no mapping information is
available for the initially unmapped reads, most existing
tools are incapable to detect MIs shorter than the read
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length. Generally speaking, existing methods use features
such as read depth, read pair information, and split reads
to identify SVs [15]. Yet there are still several challenges to
use these features to detect MIs. The small size of MIs
makes the identification difficult. The approaches used in
methods based on read depth, e.g., CNVnator, would per-
form poorly with the small size of MIs without locating the
breakpoints. The strategies in utilizing read pairs (e.g.,
BreakDancer, DELLY) and split reads (e.g., Pindel, PRISM,
Gustaf) are also not appropriate to identify MIs less than
100 bp, because the size of SVs detected by these tools is
dependent on insert size of paired-end reads and insensi-
tive to variants as small as MIs. Additionally, to increase
the applicability of the method, it is important to handle
datasets with low coverage. For large-scale projects such as
the 1000 Genomes Project (1KGP), there is increasing
number of low coverage data [16]. For example, the sample
NA12878, provided by 1KGP from two paired-end libraries
with 15X coverage, has been frequently selected by variant
detection tools for performance comparisons (642 dele-
tions, 271 duplications and 30 insertions) [17]. However,
most of the human individual genomes were generated
with a low coverage of 2–4X in 1KGP so far. Finally, it is
also challenging to identify MIs in a read with multiple
variants, as other types of variants (e.g., single nucleotide
variations (SNVs), small indels and other rearrangements),
may also occur in nearby regions of the MI.
In this paper, we focus on MI identification from

unmapped NGS short reads. Our algorithm, named MID
(Micro-Inversion Detector), specifically detects MIs shorter
than the read length. Moreover, MID can be applied to very
low coverage samples. What makes MID different from
other variant detection tools is that it is sensitive to very
small size MIs, and capable of detecting MIs with multiple
breakpoints in one read. Moreover, MID proves reliability
in low coverage data by integrating multiple samples. The
simulation results showed that MID can detect MIs effi-
ciently and reliably using unmapped NGS short reads with
low false positives. By applying MID to 1KGP data, we iden-
tified 721 MIs, 349 of which are intergenic, 342 MIs are
intronic, and 30 MIs are exonic. We also applied MID to
the Lung Squamous Cell Carcinoma whole exome sequen-
cing (WXS) data from CCLE, where we identified 12 MIs.

Results
Performance of MI detection on simulated data
Until recently, few attempts have been made for MI de-
tection using NGS data. To the best of our knowledge,
only a recent tool called Gustaf [10], can detect inver-
sions from 30 bp to 500 bp, which in principle can
recognize MIs shorter than the read length. Gustaf is a
tool based on a split-read approach, which records the
local alignments provided by other tools and draws a
split-read graph to use standard graph algorithms to

evaluate relationships of the alignments. In addition, it
should be noted that no suitable real datasets with
confident annotation are available as a benchmark. We
therefore used simulated datasets to evaluate the per-
formance of MID. Two different types of simulated data-
sets were generated in the current work: one with 1,000
MIs only (Dataset 1), and the other one with 1,000 MIs
surrounded by other types of variants (Dataset 2). For
Dataset 1, we simulated 1,000 MIs ranging from 15 bp
to 40 bp, following a normal distribution for MI size,
randomly on the whole chr10 (135 Mb) from the human
genome assembly hg19 [18]. For Dataset 2, we simulated
1,000 MIs surrounded by 4,000 other structural variants
(including SNVs, deletions, insertions, and duplications)
following a normal distribution for MI size randomly on
chr10, with a size range of 15–40 bp. We also simulated
Illumina paired-end short reads (in 76 bp; same as what
the sample NA19213 from the 1KGP has) using Maq
[19] with an error rate 0.02. Both simulated datasets had
10 different sub-datasets with coverage varying from 2X
to 60X (see Table 1). We then ran the Burrows-Wheeler
alignment (BWA) tool [20] in the same way as in the
1KGP to get unmapped short reads.
To have a clear view of our evaluation results, we de-

fine several metrics. If at least one simulated read gener-
ated from the reference sequence cover the MI, we call
the MI as “detectable MI”. If 80 % of both the detected
MI and the original MI overlap, we call the MI as
“correctly detected MI” [10]. We then calculate the sen-
sitivity (SN) as the ratio of correctly detected MIs over
all detectable MIs and positive predictive value (PPV) as
the ratio of correctly detected MIs over all detected MIs.
As mentioned above, unmapped short reads have not

been well studied by most existing tools including
Gustaf. However, it is very important for the analysis of

Table 1 Sensitivity (SN), Positive Predictive Value (PPV) and
Standard Deviation (SD) for MIs simulated onto chr10

Dataset 1 Dataset 2

Coverage MID Gustaf MID Gustaf

SN PPV SN PPV SN PPV SN PPV

2 0.692 0.900 0.423 0.688 0.741 0.976 0.333 0.783

4 0.732 0.911 0.339 0.760 0.840 0.932 0.506 0.872

6 0.782 0.871 0.359 0.718 0.782 0.935 0.427 0.810

8 0.870 0.918 0.403 0.689 0.784 0.916 0.302 0.824

10 0.771 0.857 0.239 0.703 0.877 0.932 0.351 0.800

20 0.767 0.904 0.233 0.667 0.849 0.914 0.267 0.705

30 0.859 0.886 0.188 0.514 0.821 0.912 0.254 0.627

40 0.781 0.860 0.250 0.588 0.820 0.907 0.230 0.603

50 0.781 0.856 0.211 0.654 0.837 0.906 0.266 0.616

60 0.835 0.857 0.264 0.563 0.863 0.900 0.231 0.509

SD 0.052 0.023 0.079 0.072 0.039 0.021 0.086 0.114
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personalized NGS data to study unmapped short reads
so that we can exploit more SV information especially
for MIs. Therefore, preprocessing of unmapped reads is
needed. After running BWA to get unmapped short
reads, we aligned unmapped reads to chr10 the same as
what we did in MID, and then recorded the anchored
alignment results for Gustaf, including the re-aligned
reads and the corresponding reference sequence on
chr10. Afterwards the target regions from both re-
aligned read and reference were used as the input for
Gustaf single-end detecting. For MID, we can directly
run the whole pipeline with unmapped short reads dis-
carded by BWA.
Table 1 shows the comparison between MID and Gus-

taf. Note that the sub-datasets in 2X and 4X coverage
are most similar to the real data we got from the 1KGP.
The high SN and high PPV of MID in both Dataset 1
and Dataset 2 demonstrates high accuracy of MID in de-
tecting MIs, even with different variants around. Gustaf
demonstrates significantly lower SN and PPV in the sim-
ulated data. Furthermore, lower standard deviation (SD)
of MID compared with Gustaf in simulated data shows
stable performance of MID. Overall, MID outperforms
Gustaf in identifying MIs.

Identifying MIs in 1000 genomes project data
The 1KGP provides large number of individual human
genomes data with NGS reads [16]. At present, 1KGP
data has been widely used for SV detection by existing
tools [5, 8, 16]. However, analysis on MIs is still lacking.
To detect MIs, MID was applied on population-scale se-
quencing data from the 1KGP based on publicly released
unmapped BAM files [16]. By running MID with refer-
ence human genome assembly hg19, MID reports the
detailed alignment of each read containing MIs and a list
of unique MIs detected. For a typical sample with a total
number of 13.5 M unmapped short reads (NA19917), it
takes 12 min to run MID with 16 CPU threads.
Generally speaking, low coverage raises problems for

MI detection since less support from reads may lead to
unreliable results. However, many datasets from large-
scale projects (e.g., the 1KGP) are in low coverage.
Therefore, it is very useful to develop methods for iden-
tifying MIs reliably and efficiently based on multiple
low-coverage samples. It has been suggested that inte-
grated analysis using multiple samples can be helpful in
improving the reliability of SV detection [11]. We
assessed the performance of MID on a total of 770 Illu-
mina samples from the 1KGP [16], which have been cat-
egorized by different populations, and then integrated
the results at the population level for more reliable and
informative results. We eventually focused on 638 sam-
ples (full sample list in sample list of Additional file 1),
in which MID reported at least one MI.

We calculated the number of unique MIs and the
number of reads supporting each MI first. In the follow-
ing analysis, if not specified, the number of MIs is equal
to the number of unique MIs, either in one particular
sample or in one population. Moreover, if one MI is sup-
ported by multiple reads, we calculate the number of
reads containing the same MI as its “occurrence”.
Altogether, MID reported 2,413 occurrences of 721 MIs
in 638 samples (full list of MIs and annotations refer to
Additional file 1: Table S1). Of the 721 detected MIs,
349 are intergenic, 342 MIs are intronic, and 30 MIs are
exonic, including five MIs overlapping with CDS re-
gions, seven MIs overlapping with UTR regions, two
MIs overlapping with both CDS and UTR regions, and
the rest overlapping with miRNA, Mt_rRNA etc. (more
details can be found in Additional file 1: Table S1), an-
notated by GENCODE [21]. Using ENCODE annota-
tions [22], we identified 13 MIs overlapping with
proximal transcription factor binding sites (TFBS), and
48 MIs overlapping with distal TFBS following ChIP
peaks of transcription factors. As many regulatory ele-
ments are in intronic regions [22, 23], plus the effect of
MIs extends beyond the inverted regions [24], thus 342
MIs found overlapping with introns, as well as 19 MIs
found locate within the 2,000 bp upstream genomic re-
gions of genes can also be informative for further
analysis.
Furthermore, the individual samples used by MID are

categorized by populations, and populations are grouped
by the predominant component of ancestry as follows:
East Asia (CDX, CHB, CHS, JPT, and KHV), South Asia
(GIH), Europe (CEU, FIN, GBR, IBS, and TSI), America
(CLM, MXL, PEL, and PUR), and Africa (YRI, LWK,
ASW, and ACB) [16]. Overall MID reported 206 MIs in
Americas Group, 262 MIs in East Asia Group, 22 MIs in
South Asia Group, 223 MIs in Europe Group, and 284
MIs in Africa Group. Table 2 presents the overview
of MIs detected in 638 individual samples, illustrating
an average of 1.48 individual samples supporting one
MI, ~24 % of MIs supported by at least two samples
in the same population, and approximately 24 % of
MIs are supported by different populations in the
same ancestry category. Herein the results of MIs
supported by multiple reads, individual samples, and
populations suggest that our method is probably inform-
ative and reliable with an integrated view of individual
samples. In addition, Additional file 1: Figure S2 shows
that the length of MIs detected in 1KGP data is from
15 bp to 43 bp (mean length is 24 bp). As the majority of
MIs concentrate within the size range from 18 bp to
31 bp, we assume that the incidence of MI would be
higher in this size, which might be helpful for understand-
ing the mechanism of MI. Furthermore, Additional file 1:
Figure S3 shows the distribution of number of MIs across
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the human chromosomes, where the number of MIs gen-
erally has positive correlation with the length of chromo-
somes except chr11.
To focus on the exonic MIs detected, we checked 30

MIs overlapping with exons annotated by GENCODE. For
instance, in Fig. 1a, an MI overlaps with the 3’ UTR of
gene PREPL and gene SLC3A1, which both have strong
correlation with Hypotonia-Cystinuria Syndrome [25, 26].
This MI is supported by 46 individual samples across dif-
ferent populations, including two samples in East Asian
group, 10 samples in European group, 12 samples in
Americas group, and 22 samples in African group (Fig. 1b).
The chimpanzee sequence in this location is almost iden-
tical to the sequence of Neanderthal (Vi33.25 Sequence
Reads) and the MI we found, which suggests that the

reference human genome is inverted in this region as
compared to the most recent common ancestor of the hu-
man population. However, this MI was reported as mul-
tiple nucleotide variation (GenBank:rs71416108) due to
the poor understanding of MI [27]. Thus our identifica-
tion of MI can be helpful for understanding genomic vari-
ants. Another MI changes 6 amino acids in the CDS
region of gene OR51I1 (Fig. 1c). These amino acids are lo-
cated on the fourth transmembrane domain facing the less
conserved extracellular side comparing to the intracellular
side, which might cause severe influence.

Application to CCLE lung squamous cell carcinoma data
In addition to the 1KGP data, cancer genome sequen-
cing data are widely available. A full understanding of

Table 2 Overview of MIs detected in 638 individual samples from 1KGP

population sam-num MI-num MI-occ mul-sup read-num occ/num mul-sup/num read/num

MXL 48 79 153 23 175 1.94 29.11 % 2.22

PUR 48 117 167 26 185 1.43 22.22 % 1.58

CLM 26 60 83 14 91 1.38 23.33 % 1.52

PEL 20 40 58 12 63 1.45 30.00 % 1.58

Total America 142 206 296 55 514 1.44 26.70 % 2.50

CDX 40 40 65 11 71 1.63 27.50 % 1.78

CHB 26 42 52 7 57 1.24 16.67 % 1.36

CHS 41 56 72 10 79 1.29 17.86 % 1.41

JPT 58 160 325 55 356 2.03 34.38 % 2.23

KHV 31 51 81 14 96 1.59 27.45 % 1.88

Total East Asia 196 262 349 53 659 1.33 20.23 % 2.52

GIH 11 22 29 6 34 1.32 27.27 % 1.55

Total South Asia 11 22 22 0 34 1.00 0.00 % 1.55

CEU 21 67 82 10 94 1.22 14.93 % 1.40

FIN 41 72 87 6 93 1.21 8.33 % 1.29

GBR 35 80 104 16 114 1.30 20.00 % 1.43

IBS 24 56 80 14 86 1.43 25.00 % 1.54

TSI 9 28 34 5 37 1.21 17.86 % 1.32

Total Europe 130 223 303 39 424 1.36 17.49 % 1.90

YRI 42 156 239 41 255 1.53 26.28 % 1.63

LWK 54 113 180 28 193 1.59 24.78 % 1.71

ACB 14 35 46 9 48 1.31 25.71 % 1.37

ASW 49 127 262 49 286 2.06 38.58 % 2.25

Total Africa 159 284 431 90 782 1.52 31.69 % 2.75

The “sam-num” column illustrates the number of samples for each category (either population or population group); the “MI-num” column illustrates the number
of different MIs detected in each population or population group; the “MI-occ” column illustrates the sum of occurrences of MIs in each population or population
group; the “read-num” column illustrates the number of reads supporting MIs. For the population lines, the “mul-sup” column illustrates the number of MIs
supported by at least two individual samples (named “multiple samples supported MIs”) in one population, the “ooc/num” column illustrates the ratio of MI
occurrence over MI number, which indicates the average number of individual samples supporting one MI in the same population, and the “mul-sup/num”
column illustrates the ratio of multiple samples supported MIs over the number of all MIs. For the population group lines (which started with “Total”), the “mul-sup”
column illustrates the number of MIs supported by at least two populations (named “multiple populations supported MIs”) in the same population group, the “ooc/
num” column illustrates the ratio of MI occurrence over MI number, which indicates the average number of populations supporting one MI in the same population
group, and the “mul-sup/num” column illustrates the ratio of multiple populations supported MIs over the total number of MIs. The last “read/num” column illustrates
the ratio of the number of reads containing MIs over the number of MIs, which indicates the average number of reads supporting each MI

He et al. BMC Genomics 2016, 17(Suppl 1):4 Page 144 of 192



somatic alterations in cancer genomes is important to
better understand the genetic basis for cancer develop-
ment [28, 29]. Of the whole CCLE data, Lung Squamous
Cell Carcinoma is a typical kind of lung cancer, which is
a leading cause of death among all cancer patients [30].
In this work, we selected 14 WXS datasets of Lung
Squamous Cell Carcinoma from CCLE to provide a
proof-of-concept demonstration of the applicability of
MID to cancer sequencing data (full sample list in
Additional file 1).
We found 12 MIs overlapping with 15 genes

(Additional file 1: Table S2). To be more specific, seven
MIs overlap with CDS regions, one MI overlaps with
one gene in CDS regions and another gene in UTR re-
gions, and the rest locate in the CDS nearby regions,
which are annotated by GENCODE. Moreover, three
MIs overlap with the proximal transcription factor bind-
ing sites (TFBS) annotated by ENCODE following ChIP
peaks of transcription factors (more details can be found
in Additional file 1: Table S2). We also found one MI
within the 2,000 bp upstream region of gene VPS54. In
Fig. 2a, we show that an MI breaks the edge of CDS

region and changes three amino acids of gene PSRC1,
which encodes a proline-rich protein that is a target for
regulation by the tumor suppressor protein p53. In
addition, Fig. 2b presents an MI changing five amino
acids of gene JMJD4 and overlapping with 5’UTR of
gene SNAP47. While JMJD4 is a member of JmjC-
domain-only family, which only contains the JmjC do-
main, and plays an important role in demethylation and
involves in cancer diagnosis [31]. The variants and ex-
pression bias of genes in this family are related to cancer
regulations, thus the change made by MI in the JMJD4
gene may help enrich the study of JMJD4 and related
cancer diagnosis.

Discussion and conclusions
As presented above, upon test of the simulated data,
MID has a steady performance of PPV for both low
coverage and high coverage data, varying from 2X to
60X. Significantly, MID demonstrates high PPV in simu-
lated dataset with low coverage 2–4X, which is the same
as the coverage range used by low coverage samples
from the 1KGP. In fact, the reason of our method
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showing stable performance on low coverage data is that
the identification process is designed based on the target
regions of read and reference sequence, regardless of
read depth. Thus coverage bias has little influence in our
method. By contrast, most existing tools require enough
coverage to detect breakpoints, and only optimize good
performance with high coverage data [4–10]. However,
during our anchoring approach, in which the Bowtie
program was called to make anchored alignment as pre-
processing, higher coverage data can provide more de-
tectable reads before identification process. Therefore
we will have more reads containing possible MIs to be
detected during identification, which means our strategy
will benefit from higher coverage data. Therefore, al-
though MID performs well in low coverage data, it can
also benefit from data with higher coverage.
In fact, the pipeline of MID contains preprocessing

and sequence mapping process. During the preprocess-
ing of MID, we did anchored alignment by calling Bow-
tie. The reason we chose Bowtie [32] instead of the
latest Bowtie2 [33] is that the length of paired-end reads
(anchors) is shorter than 50 bp in ~100 bp NGS short
reads, and Bowtie outperforms Bowtie2 in this size
range, which is proved by our test and also claimed
clearly in the tool clarification [33]. For sequence map-
ping, MID can handle small size MIs and MIs with mul-
tiple breakpoints, owing to the flexible segment mapping
and scoring system during path finding. In existing tools
such as BWA tool, although a number of discontinuous
gaps and SNVs might be detected, it is extremely diffi-
cult to identify more complex SVs including inversions
and duplications. In addition, more complicated sce-
nario, i.e., MIs with multiple breakpoints within the
read, would hardly be taken into consideration by these

tools. MID uses flexible segment mapping on both
strands based on k-mers, which is more suitable for MI
detection, especially for dealing with small MIs and MIs
with multiple breakpoints around. The scoring process
also helps confirm the final path and distinguish incor-
rect matches, including palindromic sequences, and MIs
as well.
In summary, we have developed a novel computational

tool MID to identify MIs by mapping initially unmapped
short reads back onto human genome sequence. What
makes MID different from other SV detecting tools is
that our approach is sensitive to very small size MIs, and
capable of detecting MIs with multiple breakpoints in
one read due to flexible segment mapping process, as
well as scoring system in distinguishing MIs from palin-
dromic sequence and other incorrect matches. The pipe-
line of MID can start from unmapped BAM files and
find the optimum solution automatically rather than par-
ameter changing. To our knowledge, MID is the first
method that can efficiently and reliably identify MIs
from unmapped short NGS reads. Moreover, MID is
reliable on low coverage data, which is suitable for
large-scale projects such as the 1KGP. We realize that
the mechanism and the function of MI, as a kind of
SV (as both germline and somatic alterations), are still
poorly understood. Nevertheless, we expect that our tool
would be useful to better understand MIs and their roles
in genetic diversity and diseases. In conclusion, MID is
suitable for large-scale short reads produced by present
high-throughput sequencing technologies (e.g., Illumina),
especially for low coverage data, and MID might have
positive impact on identifying key genetic variants in hu-
man diseases with the further development of sequencing
technologies.
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Fig. 2 MI examples in Lung Squamous Cell Carcinoma WXS data from CCLE. a shows one MI breaking the edge of CDS region and changing 3
amino acids of gene PSRC1, as well as an insertion next to the MI; b shows one MI changing 5 amino acids of gene JMJD4 and overlapping with
5’UTR of gene SNAP47
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Methods
With an input of a BAM file containing unmapped short
reads, MID takes three steps to report the output of a
list of MIs, as well as detailed alignment information for
each MI. The three main steps for identifying MIs are:
(1) Create anchored alignment, which determines the
corresponding region on the reference genome for the
reads that might harbor MI. (2) Perform detailed align-
ment between the read and the genomic region identi-
fied in Step (1). (3) Report a list of MIs with additional
information on how the MI-containing reads can be
aligned. The workflow of MID is shown in Fig. 3.

Anchoring and k-mer mapping
Anchoring
We provide an option of cutting size (0 bp as default)
for both head and tail regions, which might be more
error-prone, of each unmapped short read, and then se-
lect the new head and tail regions after cutting as
“anchors”. As for short reads of ~100 bp, we set no cut-
ting of two ends and select the head and tail regions of
each unmapped short read as “anchors” (18 bp as
default), afterwards we map the two anchors onto the
reference genome as two ends of one paired-end read

with a length of 18 bp using Bowtie [32] to find potential
MI regions in the read (Fig. 4a). Moreover, for longer
short reads (e.g., ~200 bp), we recommend choosing cut-
ting size according to sequencing quality before selecting
anchors. One mismatch on the anchors generated from
a short read is allowed during mapping. Take the short
read data of individual sample NA19213 as an example.
The length of short reads in NA19213 is 76 bp, so the
original distance between two anchors in the same read
is 40 bp. Owing to the possible combination of variants
including unbalanced variants such as small indels, in-
sertions, deletions and duplications, we set the range of
distance between two anchors to be in a range from
15 bp to 65 bp, which is denoted as the insert size for
the paired-end read in Bowtie. If the distance is shorter
than 15 bp caused by a possible deletion, then there is
no need to consider the read since our algorithm aims
to detect MIs longer than 15 bp. If the distance is longer
than 65 bp caused by a possible insertion, we suppose
this match could be redundant since we focus on MI de-
tection and the inversion length in this read can be
40 bp at most. The length of anchors can be adjusted by
users. However, we suggest a minimum of 10 bp set;
otherwise the pair of anchors might not have unique
alignment result in this step. This process significantly
reduces the potential search space for MID.

Seeding
A k-mer extracted from the read is called a seed (14 bp
as default). In addition to the head and tail anchors of a
read, the middle part of the read is called “target region”
(Fig. 4a). We then select target region of the read and
extract consecutive seeds (step size 1 bp as default). We
also extract consecutive seeds (step size 1 bp as default)
from the reverse complement of the target region. These
two groups of seeds are stored and operated separately
for following steps.

Seed matching
The matching process is performed on the target regions
both of the read and the reference sequence. After the
anchoring process, we get the exact location of un-
mapped short read onto the reference sequence. We
then select the target region of the initial read and its
corresponding target region on the reference sequence.
This seed-matching process can tolerate MIs with indels
around the inversion breakpoints. We allow a maximum
of i (2 as default) mismatches in a seed. In other words,
if more than i mismatches occur within an interval of k,
this k-mer (seed) will not be aligned. During seed match-
ing, we compare each seed in the read target region to
the reference target region and store all possible loca-
tions for each seed on the reference. To reduce the effect
of a particular type of palindromic sequence tandem

Fig. 3 The workflow of the MID program
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repeats (such as “AT”s or “GC”s) when matching the
seed in the reverse complement to detect inversions, we
discard the seeds with greater and equal to n (n = L/4,
where L is the length of the substring sequence) “AT”s
or “GC”s.

Path finding and MI identification
This step aims to obtain the best path of k-mer align-
ment. MI within a read will correspond to a reversed
sub-path.

Merging consecutive seeds
One seed can be matched to multiple locations on the
reference sequence due to its short length. If the number
of collinear consecutive seeds on the reference is larger

than a threshold (5 as default), we consider this set of
seeds as a “matching segment” (MS) and the “matching
segment pair” (MSP) between the read and the refer-
ence. We might get different constructs of MSPs con-
taining the same seeds, or one MS in the read that can
be matched to different locations on the reference se-
quence, resulting in multiple MSPs for the same MS.
The information of every possible MSP is recorded and
will be further evaluated in the following steps.

Merging neighboring MSPs
While we set the threshold of i (2 as default) mismatches
in one seed, if the SNVs occur at the edges of MSPs and
a k-mer covering the SNVs reach the threshold of i mis-
matches, then this k-mer fails to be aligned. To
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a

Fig. 4 Methods overview of MID. a shows the construction of alignment regions. Head (A) and tail (G) substrings of read serve as a pair of
anchors. Segment C in reference sequence denotes a deletion in read, segment D denotes an inversion in read and segment F denotes a
translocation. A set of segment (B, C, D, E, F) in the reference sequence, as well as a set of segment (B, −D, F’, E) in the read sequence, form
the target regions. b shows how to use a partition and recombine strategy to transfer the pair of overlapping MSs (A, B) to a set of non-overlapping
MSs {(A, b), (a, B), (a, b)}. Segment A and B have overlapping region c, and segment a and b are generated by cutting region c off the original segment
A and B. c shows the max-score path approach. The path starting with MSP[1] and ending with MSP[4] denotes a short read to be detected, and the
path in red is the max-score path. MSP[1], MSP[2], MSP[3], MSP[4] are on the forward strand, and MSP[−3] is on the reverse strand. MID starts with MSP[1]
and extends the path to MSP[2], then if MSP[3] and MSP[−3] can both be matched, MID records both path candidates and ends with MSP[4], therefore
we have two path candidates {1, 2, 3, 4} and {1, 2, −3, 4}, then {1, 2, 3, 4} instead of {1, 2, −3, 4} will be chosen after scoring due to the reverse penalty
for MSP[−3] on the reverse strand. Otherwise if only MSP[−3] is successfully matched, we have path candidates {1, 2, 4} and {1, 2, −3, 4}, after
scoring {1, 2, −3, 4} would be chosen owing to the gap penalty, since path candidate {1, 2, 4} contains much more gaps. Therefore MSP[−3]
would be reported as detected MI
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overcome the problem caused by mismatches that is
possibly caused by SNVs, we merge MSPs if the neigh-
boring MSPs are in the same orientation and within the
same given distance (3 bp as default) both on the read
and on the reference sequence.

Identifying non-overlapping MSPs
MSPs may overlap with each other. Since we want to
find paths constructed from non-overlapping MSPs, we
take a partition-and-recombine strategy to make sure all
the information carried by the MSPs is well kept
(Fig. 4b). Before this step, MSPs in different orientations
are stored and operated separately. We then put two
separate sets of MSPs together and sort them by their
locations on the reference sequence. Next, we find out
each pair of overlapping MSPs and partition the overlap-
ping subsequence to get a new set of non-overlapping
MSPs pairs. We then recombine the overlapping subse-
quence with either MSP or neither of them. In Fig. 4b,
for a pair of overlapping MSs (A, B) on the read, which
has overlapping subsequence c, we partition A into a
and c, and partition B into b and c, then we recombine
the MSs as {(A, b), (a, B), (a, b)}. In this way, we change
the former overlapping MS (A, B) into a set of non-
overlapping MSs {(A, b), (a, B), (a, b)}. For overlapping
MSPs, we use the partition-and-recombination strategy
to check overlapping MSs on both read and reference
sequence to get non-overlapping MSP set. This proced-
ure guarantees the transformation of MSP is lossless,
because we keep all the possible combinations in the
non-overlapping MSP set. The resulting non-overlapping
MSPs will be used in the subsequent path finding step.

Maximum-score path finding
We generate all combinations of non-overlapping MSPs
as path candidates (Fig. 4c) and calculate the alignment
score of each candidate to find the path with the max-
imum score by dynamic programming (see definitions of
variables below). In dynamic programming, we define
two kinds of score. One is for the MSP itself, which in-
cludes the score for matches and mismatches. The other
is for the gap penalty between two neighboring MSPs in
the path. We record the maximum score T[i] of every
path ending with MSP[i] based on the maximum score of
any sum of T[j] and GS[j,i] (1 < j < i). The complexity of
our algorithm is O(n2), where n is the number of MSPs.
In practice, ~85 % of n is smaller than 10. We consider
match, mismatch, and gap in the similarity score [34].
Furthermore, for segments matched to the reverse
strand, we use a penalty R[i] for the potential inversion,
which aims to reduce false positives caused by palin-
dromic sequence and other incorrect matches. In fact,
MSP[i] of palindromic sequence can be matched to both
strands and the one on the reverse strand would be

added the penalty R[i], which results in lower F[i] com-
pared with the same segment matched on the forward
strand. Thus the final path finding based on maximum
alignment score would select the match on the forward
strand and avoid the influence of palindromic sequence.
The variables we used include:

n: The number of MSPs.
M[i]: The number of matches in MSP[i].
MS[i]: The number of mismatches in MSP[i].
G[i,j]: The number of gaps between MSP[i] and MSP[j].
R[i]: The empirical reverse penalty for MSP based on
our simulation, where one segment is the reverse
complement of the other.
F[i]: The score for MSP[i].
G[i,j]: The score for the gap penalty of MSP[i] and
MSP[j]. GS[0,i] refers to the penalty of gaps from the
first base of the sequence to the start of MSP[i], and
GS[i,0] refers to the penalty of gaps from the end of
MSP[i] to the last base of the sequence.
GS[j,i]: The score for the gap penalty of MSP[j] and
MSP[i].
T[i]: The maximum score of every path ending with
MSP[i].

We define:

R i½ � ¼ 3 M i½ � þMS i½ �
� �2

F i½ � ¼ 100M i½ �− 100MS i½ � MSP i½ � on the forward strand
� �

100M i½ �− 100MS i½ �−R i½ � MSP i½ � on the reverse strand
� ��

GS i;j½ � ¼ 0 no gap between MSP i½ � and MSP j½ �
� �

− 400− 30G i;j½ � elseð Þ
�

T i½ � ¼ GS 0;1½ � þ F 1½ � i ¼ 1ð Þ
max GS 0;i½ �;T 1½ � þ GS 1;i½ �;…;T i−1½ � þ GS i−1;i½ � þ F i½ �

� �
1 < i≤nð Þ

�

Finally we select the maximum alignment score:

max T i½ � þ GS i;0½ �
� �

; 1≤i≤nð Þ
As in Fig. 4c, the path starting with MSP[1] and ending

with MSP[4] denotes a short read to be detected, and the
path in red is the max-score path. MSP[1], MSP[2],
MSP[3], MSP[4] are on the forward strand, and MSP[−3] is
on the reverse strand. MID starts with MSP[1] and ex-
tends the path to MSP[2], then if MSP[3] and MSP[−3] can
both be matched, MID records both path candidates and
ends with MSP[4]. Therefore we have two path candi-
dates as follows: {1, 2, 3, 4} and {1, 2, −3, 4}. After scor-
ing, path candidate {1, 2, 3, 4} will be chosen due to the
reverse penalty for MSP[−3] on the reverse strand, which

He et al. BMC Genomics 2016, 17(Suppl 1):4 Page 149 of 192



helps distinguish palindromic sequences. Otherwise if
only MSP[−3] is successfully matched, we have path can-
didates {1, 2, 4} and {1, 2, −3, 4}, after scoring {1, 2, −3, 4}
would be chosen owing to the gap penalty, since path can-
didate {1, 2, 4} contains much more gaps. Therefore
MSP[−3] would be reported as detected MI.
In summary, MID is generated based on flexible seg-

ment mapping, including non-overlapping MSPs identi-
fication, which is capable of identifying very small size
MIs, regardless of multiple breakpoints in one read, and
scoring system which can distinguish false positives
caused by palindromic sequence and other incorrect
matches. In addition, although the parameter values are
provided optionally, our test shows that the default op-
tion appears to generate the best overall performance for
our algorithm.

Additional file

Additional file 1: Supplementary figures, sample lists used by MID
and tables containing detailed information of MIs detected by MID
as well as their annotations. (PDF 1727 kb)

Abbreviations
1KGP: 1000 Genomes project; CCLE: Cancer cell line encyclopedia;
CDS: Coding sequence; MI: Micro-inversion; MID: Micro-inversion detector;
MS: Matching segment; MSP: Matching segment pair; NGS: Next-generation
sequencing; PPV: Positive predictive value; SD: Standard deviation;
SN: Sensitivity; SNV: Single nucleotide variation; SV: Structural variation;
TFBS: Transcription factor binding site; UTR: Untranslated region.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
JM, FFH and HQZ conceived the study. FFH developed the code and
performed data analysis with help from YL and YHT. FFH, HQZ, and JM
wrote the manuscript. All authors read and approved the final manuscript.

Acknowledgments
The publication costs for this article were funded by the National Key
Technology Research and Design Program of China [2012BAI06B02 to HQZ].
This work was supported in part by the National Key Technology Research
and Design Program of China [2012BAI06B02 to HQZ] and the National
Nature Science Fund of China [91231119 and 61131003 to HQZ]; the
National Institutes of Health [HG007352 and CA182360 to JM] and the
National Science Foundation [1054309 and 1262575 to JM]; and the
Foundation of the China Scholarship Council (CSC) to FFH.

Author details
1State Key Laboratory for Turbulence and Complex Systems and Department
of Biomedical Engineering, and Center for Quantitative Biology, Peking
University, Beijing 100871, China. 2Department of Bioengineering, University
of Illinois, Urbana, IL 61801, USA. 3Carl R. Woese Institute for Genomic
Biology, University of Illinois, Urbana, IL 61801, USA. 4Division of Applied
Mathematics, Brown University, Providence, RI 02912, USA.

Published: 11 January 2016

References
1. Baker M. Structural variation: the genome’s hidden architecture. Nat

Methods. 2012;9(2):133–7.

2. Botstein D, Risch N. Discovering genotypes underlying human phenotypes:
past successes for mendelian disease, future approaches for complex
disease. Nat Genet. 2003;33:228–37.

3. Braun EL, Kimball RT, Han K, Iuhaszvelez NR, Bonilla AJ, Chojnowski JL, et al.
Homoplastic microinversions and the avian tree of life. BMC Evol Biol.
2011;11:141.

4. Medvedev P, Stanciu M, Brudno M. Computational methods for discovering
structural variation with next-generation sequencing. Nat Methods.
2009;6(11 Suppl):S13–20.

5. Chen K, Wallis JW, McLellan MD, Larson DE, Kalicki JM, Pohi CS, et al.
BreakDancer: an algorithm for high-resolution mapping of genomic
structural variation. Nat Methods. 2009;6(9):677–81.

6. Ye K, Schulz MH, Long Q, Apweiler R, Ning Z. Pindel: a pattern growth
approach to detect break points of large deletions and medium sized
insertions from paired-end short reads. Bioinformatics. 2009;25(21):2865–71.

7. Jiang Y, Wang Y, Brudno M. PRISM: pair-read informed splitread mapping
for base-pair level detection of insertion, deletion and structural variants.
Bioinformatics. 2012;28(20):2576–83.

8. Rausch T, Zichner T, Schlattl A, Stütz AM, Benes V, Korbel JO. DELLY:
structural variant discovery by integrated paired-end and split-read analysis.
Bioinformatics. 2012;28(18):i333–9.

9. Abyzov A, Urban AE, Snyder M, Gerstein M. CNVnator: An approach to
discover, genotype, and characterize typical and atypical CNVs from family
and population genome sequencing. Genome Res. 2011;21:974–84.

10. Trappe K, Emde AK, Ehrlich HC, Reinert K. Gustaf: detecting and correctly
classifying SVs in the NGS twilight zone. Bioinformatics. 2014;30(24):3484–90.

11. Lin K, Smit S, Bonnema G, Sanchez-Perez G, de Ridder D. Making the
difference: integrating structural variation detection tools. Brief Bioinform.
2015;16(5):852–64.

12. Chaisson MJ, Raphael BJ, Pevzner PA. Microinversions in mammalian
evolution. PNAS. 2006;103(52):19824–9.

13. Ma J, Zhang L, Suh BB, Raney BJ, Burhans RC, Kent WJ, et al. Reconstructing
contiguous regions of an ancestral genome. Genome Res. 2006;16(12):1557–65.

14. Feuk L. Inversion variants in the human genome: role in disease and
genome architecture. Genome Medicine. 2010;2:11.

15. Abel HJ, Duncavage EJ. Detection of structural DNA variation from next
generation sequencing data: a review of informatics approaches. Cancer
Genet. 2013;206:432–40.

16. The 1000 Genomes Project Consortium, Abecasis GR, Auton A, Brooks LD,
DePristo MA, Durbin RM. An integrated map of genetic variation from 1,092
human genomes. Nature. 2012;491(7422):56–65.

17. Wang J, Mullighan CG, Easton J, Roberts S, Heatley SL, Ma J, et al. CREST
maps somatic structural variation in cancer genomes with base-pair
resolution. Nat Methods. 2011;8(8):652–4.

18. Suzuki S, Yasuda T, Shiraishi Y, Miyano S, Nagasaki M. ClipCrop: a tool for
detecting structural variations with single-base resolution using soft-clipping
information. BMC Bioinformatics. 2001;12 Suppl 14:S7.

19. Li H, Ruan J, Durbin R. Mapping short DNA sequencing reads and calling
variants using mapping quality scores. Genome Res. 2008;18(11):1851–8.

20. Li H, Durbin R. Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics. 2009;25(14):1754–60.

21. Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, et al.
GENCODE: The reference human genome annotation for The ENCODE Project.
Genome Res. 2012;22(9):1760–74.

22. ENCODE Project Consortium. An integrated encyclopedia of DNA elements
in the human genome. Nature. 2012;489:57–74.

23. Siggens L, Ekwall K. Epigenetics, chromatin and genome organization:
recent advances from the ENCODE project. J Intern Med. 2014;276(3):201–14.

24. Puig M, Casillas S, Villatoro S, Caceres M. Human inversions and their
functional consequences. Brief Funct Genomics. 2015;14(5):369–79.

25. Jaeken J, Martens K, Francois I, Eyskens F, Lecointre C, Derua R, et al.
Deletion of PREPL, a Gene Encoding a Putative Serine Oligopeptidase, in
Patients with Hypotonia-Cystinuria Syndrome. Am J Hum Genet.
2006;78(1):38–51.

26. Chabrol B, Martens K, Meulemans S, Cano A, Jaeken J, Creemers GMWM.
Deletion of c2orf34, prepl and slc3a1 causes atypical hypotonia–cystinuria
syndrome. J Med Genet. 2008;45(5):314–8.

27. Lew S, Sutton G, Ng PC, Feuk L, Halpern AL, Walenz BP, et al. The diploid
genome sequence of an individual human. PLoS Biol. 2007;5(10), e254.

28. Mardis ER, Wilson RK. Cancer genome sequencing: a review. Hum Mol
Genet. 2009;18(R2):R163–8.

He et al. BMC Genomics 2016, 17(Suppl 1):4 Page 150 of 192

dx.doi.org/10.1186/s12864-015-2305-7


29. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, et al.
The CancerCell Line Encyclopedia enables predictive modelling of
anticancer drug sensitivity. Nature. 2012;483:603–7.

30. Shen C, Hui-Zhao, Wang D, Jiang G, Wang J, Zhang G. Molecular cloning,
identification and analysis of lung squamous cell carcinoma-related genes.
Lung Cancer. 2012;38(3):235–41.

31. Klose RJ, Kallin EM, Zhang Y. JmjC-domain-containing proteins and histone
demethylation. Nat Rev Genet. 2006;7(9):715–27.

32. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient
alignment of short DNA sequences to the human genome. Genome Biol.
2009;10:R25.

33. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat
Methods. 2012;9:357–9.

34. Harris RS. Improved pairwise alignment of genomic DNA. Ph.D. Thesis. The
Pennsylvania State University, College of Engineering; 2007.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

He et al. BMC Genomics 2016, 17(Suppl 1):4 Page 151 of 192


	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Performance of MI detection on simulated data
	Identifying MIs in 1000 genomes project data
	Application to CCLE lung squamous cell carcinoma data

	Discussion and conclusions
	Methods
	Anchoring and k-mer mapping
	Anchoring
	Seeding
	Seed matching

	Path finding and MI identification
	Merging consecutive seeds
	Merging neighboring MSPs
	Identifying non-overlapping MSPs
	Maximum-score path finding


	Additional file
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgments
	Author details
	References



