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Abstract

Background: Discovering the location of gene duplications and multiple gene duplication episodes is a
fundamental issue in evolutionary molecular biology. The problem introduced by Guigó et al. in 1996 is to map gene
duplication events from a collection of rooted, binary gene family trees onto theirs corresponding rooted binary
species tree in such a way that the total number of multiple gene duplication episodes is minimized. There are several
models in the literature that specify how gene duplications from gene families can be interpreted as one duplication
episode. However, in all duplication episode problems gene trees are rooted. This restriction limits the applicability,
since unrooted gene family trees are frequently inferred by phylogenetic methods.

Results: In this article we show the first solution to the open problem of episode clustering where the input gene
family trees are unrooted. In particular, by using theoretical properties of unrooted reconciliation, we show an efficient
algorithm that reduces this problem into the episode clustering problems defined for rooted trees. We show
theoretical properties of the reduction algorithm and evaluation of empirical datasets.

Conclusions: We provided algorithms and tools that were successfully applied to several empirical datasets. In
particular, our comparative study shows that we can improve known results on genomic duplication inference from
real datasets.
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Background
Genomic duplication plays important role in evolution
of life on Earth. This phenomenon have been extensively
studied in the last decades for plant, bacterial and many
other genomes [1–7]. Duplication events can involve indi-
vidual genes, genomic segments or whole genomes.While
the reconstruction of evolutionary history of individual
genes is generally well established [8–13], still little is
known on the inference of large genomic duplications that
can span through thousands of genes families.
In this approach we propose to use the model of rec-

onciliation in which a gene tree is reconciled with its
species tree. The concept of reconciliation was intro-
duced by Goodman [14] and formalized by Page [8] in
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the context of reconciling potential incongruence between
a rooted gene family tree and its species tree. In this
model, differences between gene and species trees are
explained in terms of evolutionary events such as gene
duplication, gene loss and speciation. Reconciliation can
be interpreted as the embedding of a gene tree into a
species tree where these evolutionary events, located in
the species tree, induce a biologically consistent scenario
[15]. Tree reconciliation has been extensively studied in
recent decades in many theoretical and practical con-
texts including supertree inference, error correction and
HGT detection [16–24]. In the process of reconciliation,
which is relatively simple from computational point of
view, each gene from a single gene family is mapped into
the species tree and it is classified as a single gene dupli-
cation or related to speciation. However, the problem
becomes much more complex, when a gene duplication is
a part of large genomic duplications, called multiple gene
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duplication episode, in which parts of a genome are dupli-
cated. In fact, it is known that a large duplication event is
usually followed by many gene losses and gene rearrange-
ments. In consequence, the reconstruction of large gene
duplication events may be difficult.
The first approach to detect multiple gene duplica-

tion episodes from a collection of rooted gene trees was
proposed by Guigó et al. [10]. In themodel, for a given col-
lection of rooted gene trees and a rooted species tree, the
authors proposed heuristic to aggregate single gene dupli-
cation events into a large gene duplication. This approach
was formalized and refined by Page and Cotton [25]. They
formally defined the problem of episode clustering (EC)
as the problem of locating the minimal number of loca-
tions in the species tree, where all duplications from the
input gene trees can be placed. This model was applied
in the context of the supertree problem by Fellows [26].
Burleigh et al. [27] and Bansal and Eulenstein [28] pro-
posed the first polynomial time solutions for two types of
the multiple gene duplication problems: the episode clus-
tering (EC) and a more general variant of clustering called
minimum episodes (ME). Finally, Luo et al. [29] proposed
linear time and space algorithms to these problems.
While the classical reconciliation model is applicable to

rooted trees only, most standard phylogenetic inference
methods, like maximum likelihood, maximum parsimony
or neighbour joining, infer unrooted gene family trees,
and it is often difficult, to identify credible rootings. For
example, outgroup rooting can result in incorrect rootings
when evolutionary events cause heterogeneity in the gene
trees, and rooting gene trees under the molecular clock
assumption, or similarly by using midpoint rooting, also
can result in error when there is a molecular rate varia-
tion throughout the tree [30, 31]. Tree reconciliation have
been successfully extended to reconcile an unrooted gene
tree with a rooted species tree by seeking a rooting of
the unrooted gene tree that invokes the minimum num-
ber of evolutionary events such as gene duplications (D)
or gene duplications and losses (DL), in the context of a
given species tree [32, 33]. It is known that the rooting
edges with minimal D or DL cost, induce a full subtree,
called plateau, in the unrooted gene tree [34].
In this article we present the first solution to the open

problem [27] of unrooted episode clustering, that is, the
problem of episode clustering where the input consists
of unrooted gene trees. We show that for a given set of
unrooted gene trees and a species tree we can solve the
unrooted episode clustering by reducing it to the rooted
episode clustering problem that has a linear time com-
plexity. Our solutions require a linear time preprocessing
and a creation of at most 1 + 2k collections of rooted
gene trees, that is, instances of rooted EC Problem, where
k is the number of input gene trees having a special
topology located in the plateau of the duplication cost

(formally, the condition requires two stars S2 [32]). Usu-
ally k represents a small fraction of the whole input,
thus, this condition significantly reduces the complexity.
In other words, we show that the problem of unrooted
episode clustering is fixed parameter tractable. Finally, in a
number of empirical computational experiments we show
that despite the exponential worst case complexity our
algorithm is able to resolve instances of the problem after
the verification of at most two rooted datasets. In conse-
quence, our solution can be efficiently applied to locate
duplication clusters in collections of unrooted gene trees.

Results
Basic notation
A species tree is a rooted binary tree with leaves uniquely
labeled by the names of species. Throughout this work,
the species tree is fixed, therefore, we use S to denote it. A
rooted gene tree is a rooted binary tree with leaves labeled
by the names of species. The set of species present in T
is denoted by L(T). The rooted tree (T1,T2) has two sub-
trees T1 and T2 whose roots are children of the tree root.
Additionally, for nodes a and b, a � bmeans that a and b
are on the same path from the root, with b being closer to
the root than a. We write a ≺ b if a � b and a �= b. The
root of a tree T we denote by root(T).
Let T = 〈VT ,ET 〉 be a rooted gene tree such that

L(T) ⊆ L(S). The least common ancestor (lca) map-
ping, MT : VT → VS, is defined as follows. If v is a
leaf in T then MT (v) is the leaf in S labeled by the label
of v. When v is an internal node in T having two chil-
dren a and b, then MT (v) is the least common ancestor
of MT (a) and MT (b) in S. An internal node g ∈ VT is
called a duplication if MT (g) = MT (a) for a child a of
g. The duplication cost, denoted by D(T , S), is the total
number of duplications in T. Each non-duplication node
of T we call a speciation. The total number of gene losses
required to reconcile T and S can be defined by: L(T , S) =
2D(T , S)+∑

g is internal,a,b children of g(‖MT (a),MT (b)‖−2),
where ‖a, b‖ is the number of edges on the path connect-
ing a and b in S. Finally, we can define the duplication-loss
cost of reconciling a rooted gene tree T and a species tree
S as follows: DL(T , S) = D(T , S) + L(T , S) [34]. Examples
of the reconciliation are depicted in Fig. 1.

Unrooted reconciliation
The unrooted gene tree is an undirected acyclic connected
graph in which each node has degree 1 (leaves) or 3 (inter-
nal nodes), and the leaves are labeled by the names of
species. For an unrooted gene tree G = 〈VG,EG〉 and an
edge e ∈ EG, by Ge, we denote the rooting of G obtained
fromG by placing the root on e. Such a rooting induces the
duplication cost D(Ge, S). We call D-minimal, the rooting
or edges having the minimal duplication cost. It follows
from the theory of unrooted reconciliation [32, 34] that
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Fig. 1 Gene and species tree reconciliation. Left: the lca-mapping between a gene tree G and a species tree S shown for internal nodes. The
decoration of nodes indicates gene duplication events. Right: an embedding of G into S. To reconcile these trees 6 gene duplications and 17 gene
losses (not shown) are required, i.e., D(G, S) = 6 and DL(G, S) = 23. See also G4∗ in Fig. 3

the set of D-minimal edges, calledD-plateau, is a full sub-
tree of G. The same property holds for the DL-plateau,
that is, the set of edges with the minimal duplication-loss
cost. We use a similar notation for DL-minimal edges,
rootings and so on. The most important property of these
plateaus is below.

Theorem 1 (From [34]). DL-plateau is a subgraph of
D-plateau.

Without loss of generality we assume that every root of
a gene tree is mapped into the root of S, denoted by �,
and both trees are non-trivial. An edge e = 〈v,w〉 of G
is empty if the root of Ge is a speciation, i.e., MGe(v) �=
� �= MGe(w). We call e double if MGe(v) = � = MGe(w).
Otherwise, e is called single. A single edge e is called v-
incoming or w-outgoing ifMGe(v) �= � = MGe(w).
Let v be an internal node of G, then a star with a center

v consists of three edges, denoted by ea, eb and ec, sharing
v and incident to nodes a, b and c, respectively (see Fig. 2).
The are several types of possible star topologies based on
the above classification of edges: the S1 star has one v-
incoming edge and two v-outgoing edges, the S2 star has
exactly two v-outgoing edges and one empty edge, the S3
star has two v-outgoing edges and one double edge, the
S4 star all 3 edges are double, and the S5 star has one v-
outgoing edge and two double edges. The star topologies
are depicted in Fig. 2.

Theorem 2 (Adopted from [32]). For a given unrooted
gene tree G, we have

• either G has exactly one empty edge or G has at least
one double edge,

• if the DL-plateau of G consists of exactly one edge,
then this edge is either empty or double, and all other
edges are single.

• if the DL-plateau of G has more than one edge, then
it contains all edges present in stars S4 and S5, and all
other edges are single.

Note that if a gene has an empty edge, then it has at most
two stars S2 (see examples in Fig. 3).

Episode clustering problems
To model gene duplication episodes we allow to relo-
cate a gene duplication from its lca-mapping location to
one of its ancestors. In other words, we introduce map-
pings representing evolutionary scenarios that can differ
from the scenario defined by the lca-mapping. Addition-
ally, we require that the total number of gene duplications
is minimal. To ensure biological correctness of such map-
pings, we introduce several conditions, e.g., time order
preservation.
A mapping FG : VG → VS is called valid if the following

conditions are satisfied:

• FG(a) � FG(b) if a � b (time consistency),
• FG(a) = MG(a) for any speciation node a (fixed

speciations),
• FG(a) 
 MG(a) for any duplication node a

(duplication can be raised),
• FG(a) ≺ MG(b) for any speciation node b such that

a ≺ b (fixed number of gene duplications).

It can be shown that every valid mapping uniquely
defines an evolutionary scenario represented by a DLS-
tree [15]. Additionally, every DLS-tree obtained from a

Fig. 2 Types of stars. Star topology with the center v, types of edges and stars
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Fig. 3 An example of unrooted episode clustering. A species tree S and four unrooted gene trees G1, G2, G3, G4 with all D-minimal rootings. For
every gene tree two star topologies are shown: one for the duplication-loss cost (left) and one for the duplications cost (right). Every edge of a gene
tree is decorated with the corresponding cost of rooting. Every duplication node in rootings of gene trees is decorated by all possible locations (i.e.,
valid mappings) of its duplication cluster from optimal solutions of single-UEC. Note that the rooting G4∗ , whose lca-mappings are shown in Fig. 1,
has two duplications at (c, (b, a)) and (h, (f , g)) that are raised (here) to create two duplications clusters. Let {G2,G4} be an instance of UEC Problem.
Then, the �-cluster, that is present in G2∗ , contributes to the optimal solution. In such a case, the solution is induced by one of the two instances of
EC problem: {G2∗ ,G4,1} or {G2∗ ,G4,7}. This property is proved in Theorem 5 and in Lemma 6

valid mapping can be transformed into the optimal evo-
lutionary scenario (i.e., lca-based scenario), by a sequence
of TMOVE (i.e., lowering duplication) transformations.
Please refer to [15] for more details on formal modeling of
evolutionary scenarios. Observe, that the above model is
more general than the model from [28].
We denote by Dup(T), the set of all duplication

nodes in T. Let G1,G2, . . . ,Gn be a collection of rooted
gene trees. Assume that, for every i ∈ {1, 2, . . . , n},
Fi is a valid mapping between Gi and the species
tree S. Every element s ∈ ⋃

i Fi(DupGi) denotes
the location of multiple gene duplication events in
S. Such locations will be called duplication episodes.

A duplication cluster for s is the set of all gene
duplications present in Gi’s that are mapped to s.
By �-cluster we denote the duplication cluster whose
elements are mapped to �.

Problem 1 (Rooted Episode Clustering (EC)). Given
a collection of rooted gene trees G1,G2, . . . ,Gn and a
species tree S. Compute theminimal number of duplication
episodes, denoted by EC(G1,G2, . . . ,Gn, S), in the set of all
valid mappings F1, F2, . . . , Fn such that Fi : VGi → VS.

This problem can be solved in linear-time and space
[29]. In this article we solve the following problem.
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Problem 2 (Unrooted Episode Clustering (UEC)).
Given a collection of unrooted gene trees G1,G2, . . . ,Gn
and a species tree S. Compute the minimal
EC(T1,T2, . . . ,Tn, S) in the set of rooted gene trees
{T1,T2, . . . ,Tn} such that Ti is a rooting obtained from Gi
by placing the root on the edge from the D-plateau.

Observe, that we allow rootings only in the D-plateau.
Otherwise, the total number of gene duplications is not
minimal. By single-UEC we denote the problem UEC for
a single unrooted gene tree, i.e., when n = 1. Every
edge in an unrooted gene tree that induces the opti-
mal solution for single-UEC will be called optimal (for
single-UEC). For convenience, we use EC(T1,T2, . . . ,Tn)
instead of EC(T1,T2, . . . ,Tn, S).

Episodes in a gene tree with an empty edge
In this Section we solve single-UEC problem for the case
when the input gene tree has one empty edge.
Let v be a center of the star that contains the only DL-

plateau edge in a gene tree G. This star induces three
rooted subtrees Ta, Tb and Tc rooted at neighbours a, b
and c, respectively, as indicated in Fig. 2. Let 1 be the
indicator function, that is, 1(p) is 1 if p is satisfied and 0
otherwise.

Lemma 1. Let a0, a1, a2, . . . , an+1 (for n ≥ 0) be the path
of D-plateau nodes connecting v = a0 and an+1 ∈ Ta in
G. Let Gn be the D-minimal rooting induced by the edge
〈an, an+1〉. If e∗ = 〈v, c〉 is empty then

EC(Gn) = EC(T1,T2, . . . ,Tn+1,Tb,Tc)

+ 1(root(Ti) /∈ Dup(Gn) for all i),

where T1,T2, . . . ,Tn+1 are subtrees of Ta such that Ta =
(T1, (T2, . . . , (Tn,Tn+1) . . .)) and the root of Tn+1 is an+1
(see Figs. 2 and 4).

Proof. First we show that v is a speciation node in Gn. It
follows from the fact that v is a center of S2 star and 〈v, b〉
is single. Thus, Mn(v) = �, Mn(c) ≺ � and Mn(b) ≺ �,
where Mn is the lca-mapping for Gn. From the fact that
Mn(v) = � we conclude that all nodes on the path con-
necting the parent of v with the root in Gn are mapped to
�, therefore, they are duplications.
Lets consider the number of duplication clusters in Gn.

We have the �-cluster composed of the duplication nodes
a1, a2, . . . , an, root(Gn) mapped to �. Both Tc and Tb in
Gn are under speciation node v so their clusters are dis-
joint with the �-cluster. Finally, if the root of some Ti
is a duplication then its cluster can be merged with the
�-cluster. Therefore, the �-cluster contributes to EC(Gn)
only if the root of Ti is a speciation for every i. Now, it is
easy to conclude the final formula.

Lemma 2. Under the assumptions from the previous
lemma, we have

EC(Gn) = EC(G∗) + 1(b ∈ Dup(G∗) and root(Ti)

/∈ Dup(G∗) for all i),
where G∗ is the rooting induced the empty edge e∗ = 〈v, c〉
(see Fig. 4).

Proof. Both rootings Gn and G∗ are D-minimal. Hence,
D(G∗, S) = D(Gn, S) and, in consequence, the number of
duplication nodes in A = {a1, a2, . . . , an, v, root(G∗)} in
G∗ and B = {a1, a2, . . . , an, v, root(Gn)} in Gn are equal.
It follows from the properties of star S2, that in Gn node
v is a speciation mapped to �. Hence, all predecessors
of v are duplications in Gn. Thus, we have exactly n + 1
duplications in B. On the other hand, by star S2, root(G∗)
is a speciation, therefore all remaining nodes in A are
duplications.
We conclude thatGn has the�-cluster containing dupli-

cations from A, and G∗ has a cluster (mapped below �)
containing duplications from B, respectively. These two

Fig. 4 Trees from Lemma 1 and 2. A gene tree G (left) and the rootings of G (right) from Lemma 1 and Lemma 2



Paszek and Górecki BMCGenomics 2016, 17(Suppl 1):15 Page 170 of 192

clusters we call high clusters. If the root of one of Ti’s is a
duplication, then it can be merged with the high cluster in
both rootings. Otherwise, if every root of these subtrees
is a speciation then the high cluster is disjoint with clus-
ters from T1,T2, . . . ,Tn+1. Moreover, if b is a duplication
then the high cluster contains b in G∗. However, in Gn the
cluster of b will be disjoint with the �-cluster due to the
speciation node v. Combining the above observations we
obtain our formula.

Lemma 1 and Lemma 2 complete the case of empty
rootings. We proved that rooting on empty edge has the
best EC.

Episodes in a gene tree with a double edge
We start with two technical lemmas on the properties of
the plateaus.

Lemma 3. If the DL-plateau consists of exactly one dou-
ble edge then the D-plateau and the DL-plateau are equal.

Proof. Let 〈v, a〉 be the DL-plateau edge (see Fig. 2). It
follows from the property of star S3 that both v and a are
mapped to � in the DL-minimal rooting and their chil-
dren (if present) are mapped below �. Hence, the root is a
duplication, while v and a are speciation nodes. Now, it is
easy to show that rooting on edge 〈v, b〉 (or 〈v, c〉) induces
one additional gene duplication at v. We conclude that the
only edge with the minimal duplication cost is 〈v, a〉.

We write that a node g from unrooted gene tree G is a
super-duplication, if g is a duplication in every rooting of
G. Please recall, that the plateau is a subtree of a gene tree,
thus a leaf of the D-plateau may refer to an internal node
of a gene tree. For example, in Fig. 3, the D-plateau of G1
has four leaves: one is an internal node of G1 and others,
labeled a, c, e, are leaves of G1.

Lemma 4. If the DL-plateau has a double edge then

• every leaf of the D-plateau is a speciation in every
rooting from the D-plateau,

• and every internal node of the D-plateau is a
super-duplication.

Proof. For the first part of the proof, let us assume that
v is a leaf of the D-plateau. By using the notation from
Fig. 2, let v be a center of a star such that 〈v, a〉 belongs to
the D-plateau. Assume that v is a duplication in every D-
minimal rooting. Then, the D-minimal rooting G〈v,a〉 has
one duplication in v. The edge 〈v, b〉 does not belong to D-
plateau, therefore, the rooting G〈v,b〉 has at least one more
duplication than G〈v,a〉. Hence, G〈v,b〉 has two duplications
in v and in the root. Moreover, the root of G〈v,a〉 is not a

duplication. However, this is possible only when Ta and
Tv are mapped below �, thus the 〈v, a〉 is an empty edge,
which is a contradiction with Theorem 2. This completes
the first part of the proof.
Next, if the DL-plateau consists of exactly one double

edge, then, by Lemma 3 the property holds trivially. Now,
we assume that the DL-plateau has more than one edge.
We show that every internal node v of the DL-plateau
is a super-duplication. From Theorem 2 we know that v
is incident to at least two double edges. Hence, in any
rooting at least one of its children is mapped to �. We
conclude that v is a duplication mapped to �.
Let us consider a path p = v1, v2, . . . , vn (n > 1) con-

necting an internal node v1 from the DL-plateau with a
leaf vn from the D-plateau. We show that the first n −
1 nodes on p are duplications for every rooting placed
on this path. It follows from the first part of this proof
that v1 is a super-duplication mapped to �. Hence, when
rooting at 〈vn−1, vn〉, we have n gene duplications: for
v1, v2, . . . , vn−1 and one for the root. All edges from p
are elements of the D-plateau, thus moving the root to
other edges on p will preserve the total number of gene
duplications.
It should be clear that the same holds when choosing

other root positions. We omit the details.

In the next lemma we show that rootings at edges of the
D-plateau induce the same EC cost.

Lemma 5. If an unrooted gene tree G has no empty edge
then for any D-minimal rooting of G denoted by G∗

EC(G∗) = EC(T1,T2, . . . ,Tn) + 1,

where T1,T2, . . . ,Tn are the rooted subtrees of G obtained
from G by removing all internal nodes of the D-plateau.

Proof. It follows from Lemma 4 and its proof that all
internal nodes of the D-plateau are present in the �-
cluster in the clustering with minimal number of clusters.
This cluster is separated from other duplication clusters
by speciation nodes located on the border of the D-
plateau. Thus, the clusters induced by optimal solution to
EC for G∗ are the clusters induced by optimal solution to
EC of T1,T2, . . . ,Tn plus the �-cluster.

Solutions
Now we present solutions to our unrooted episode clus-
tering problem.

Theorem 3 (Solution to single-UEC). For any gene tree
G, an edge e is optimal for single-UEC, if either e is empty
or e is in the D-plateau and G has a double edge.
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Proof. The first part of the proof follows immediately
from Lemma 2 and the second part from Lemma 5.

Theorem 4. For a collection of unrooted gene trees
G1,G2, . . . ,Gn, if every gene tree has a double edge then
rooting every gene tree on an edge from the D-plateau
yields the optimal solution for UEC.

Proof. Assume that n = 2 and let G′
1 and G′

2 be two
D-plateau rootings of G1 and G2, respectively. It should
be clear that EC(G′

1,G′
2) = EC(T), where T = (G′

1,G′
2).

Next, by Lemma 5, EC(T) is independent on the choice of
rooting of G1 and G2, as long as the rootings are in the D-
plateau. Therefore, we conclude that EC(T) is the solution
to UEC Problem for G1 and G2. This observation can be
easily generalized by induction to any n.

Note that we cannot generalize the property stated in
Theorem 4 to gene trees with empty edges. The example is
shown in Fig. 3. Consider the dataset {G1,G2}. G1 has five
D-minimal rootings, while G2 has exactly one. In G2∗ we
have one �-cluster, therefore G2∗ with G1∗, i.e., the empty
edge rooting of G1, have two duplication clusters. How-
ever, the best clusterings for {G1,G2} having exactly one
cluster are obtained for G1,1, G1,2 or G1,3. On the other
hand, the best clusterings can be also obtained for empty
edge rootings, e.g. {G1,∗,G4,∗} with cost 2 for the input
{G1,G4}. From these examples, we see that the empty
edges have different properties than double edges in the
context of UEC, and we cannot generalize Theorem 4 to
empty edges.

Theorem 5 (Candidate rootings for UEC). For a col-
lection of unrooted gene trees G, the solution to UEC is
induced by a rooting edge e of G ∈ G satisfying:

(U1) if G has a double edge, then e is any D-minimal
edge in G,

(U2) if G has an empty edge, then e is an element of star
S2.

Proof. If some G ∈ G has a double edge then the prop-
erty follows from Theorem 4 and Lemma 5. For gene
trees with an empty edge e∗ we show that any D-minimal
rooting of the edge that is not adjacent to e∗ can be equiv-
alently replaced by a rooting adjacent to e∗. By using the
notation from Fig. 2, let Ta = (Ta′ ,Ta′′) such that a′ and
a′′ are the roots of Ta′ and Ta′′ , respectively. We show that
the rooting G〈v,a〉 denoted by Ga (see Fig. 5) has the same
duplication episodes as the rooting Ga′ obtained for the
edge 〈a, a′〉. In both rootings v is a speciation, therefore
the structure of clusters present in Tb and Tc is the same
in both rootings. The edge 〈v, a〉 is a-incoming, thus the
roots are duplications mapped to �. From the fact that

〈a, a′〉 is in the D-plateau we have that a is a duplication.
Thus, every root and a induce the �-cluster. Finally, if a′′
is a duplication node, then in both rootings it will be a
member of the �-cluster. We proved these two adjacent
rootings have the same structure of clusters. Therefore, it
is sufficient to choose the rooting Ga instead of Ga′ . This
proof can be naturally extended by induction to any edge
from the D-plateau.

We conclude that for a gene tree G we have at most 5
candidates for rootings. For instance, G4 has two stars S2
in the D-plateau, therefore we have 5 candidate rootings:
the empty edge rooting G4,∗ and the rootings of adjacent
edgesG4,1,G4,4,G4,7 andG4,10. Note that the clusters from
G4,1 are equivalent to clusters from G4,2 and G4,3. Similar
property holds for other candidates.
Next, we show that the condition U2 can be improved.

Lemma 6. Under the assumptions from Theorem 5. Let
the set of clusters induced by the solution to UEC contains
�-cluster. Then, the condition (U2) from Theorem 5 can be
refined as follows:

(U2’) if e∗ is the empty edge in G, then e is one among at
most two non-adjacent edges such that e = 〈x, y〉 is
adjacent to e∗ andM∗(x) = M∗(y), whereM∗ is the
lca-mapping for G∗.

Proof. Let G be a gene tree with an empty edge. Let ea
be that edge from (U2’). By using the notation from Fig. 5,
we compare the rootingG∗ andG〈v,a〉, denoted here byGa.
We have the following clusters in G∗: the cluster C that
contains c (if c is a duplication) and the cluster X that con-
tains v (it follows from the proof of Lemma 2 that v is a
duplication node). Thus, X = {v} ∪ A ∪ B where A and
B denote duplications from Ta and Tb, respectively. Note
that C has the same contribution to EC in both rootings,
which follows from the property that valid mappings of
C are the same in both rootings. In Ga, A is a subset of
the �-cluster whose contribution to EC is already incor-
porated (by the assumption). The node v is a duplication
in G∗. Hence, without loss of generality we assume that
M∗(a) = M∗(v), i.e., the rooting edge 〈v, a〉 satisfies the
condition from (U2’).
We have two cases depending on whether B is empty.

If B is empty then Ga has “better” composition of clus-
ters than in G∗, i.e., one cluster less then in G∗ and other
clusters has the same valid mappings. Otherwise, both
rootings are equivalent ifM∗(b) = M∗(v) (B in Ga has the
same valid mappings as X in G∗), or again Ga has a bet-
ter structure of clusters than G∗ if M∗(b) ≺ M∗(v) (valid
mappings of X in G∗ are included in valid mappings of B
in Ga). Similarly, we show that Ga is also better than G〈v,b〉
(see also rootings of G4 in Fig. 3).
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Fig. 5 Trees from Theorem 5 and Lemma 6. The rootings of G from Theorem 5 and Lemma 6. We use the notation Ga instead of G〈v,a〉 . See Fig. 4 for a
legend of the symbols used

We proved that among three rootings from the star S2
we can choose one candidate. The second edge is obtained
from the second star S2 (sharing the empty edge) if it is
present in the gene tree (see Theorem 2).

From the last lemma we have at most two candidates for
any gene tree from the input collection. For example, the
candidate rooting G4,1 has more flexible valid mappings
than G4,4, e.g. the duplication cluster of ((c, b), a) in G4,1
has larger range of possible mappings than the duplication
cluster of ((d, b), a) in G4,4, while the remaining two clus-
ters have the same locations in the species tree. Hence, for
the dataset {G3,G4}, if the �-cluster is present in solution
to UEC, we have two candidates G4,1 and G4,7 (which is
more flexible than G4,10). Note, that the clustering costs 3
is obtained by rootings G3,∗ and G4,1 (or G4,2, G4,3).

Algorithms
Algorithm 1 presents the solution to UEC problem. The
correctness of this algorithm follows from Theorem 5 and
Lemma 6. Algorithm 1 has two phases. In the first phase
for every gene tree a set of candidate rootings is prepared
with respect to the conditions (U1) and (U2’). To find
optimal rootings we use a linear time algorithm (proce-
dure FindOptEdge) based on greedy descent method that
search a double or an empty edge in a gene tree [32].
Based on condition U2’, we divide possible solutions into
two categories depending on the presence of �-cluster in
an optimal clustering. If the �-cluster is not present then
every gene tree has an empty edge (in line 10). Otherwise,
we check every possible variant of rooting candidates.
Note that from Lemma 6, a gene tree has two candi-
dates if and only if the gene tree has two stars S2 that
are included in the D-plateau. Thus, the overall time com-
plexity depends on the presence of such trees in the input.
From this observation we conclude the following result.

Theorem 6. The time complexity of Algorithm 1 is
O(2k(

∑
i |Gi| + |S|)), where k is the number of input

gene trees having two stars S2 that are included in the
D-plateau.

Algorithm 1 Unrooted Episode Clustering 1
1: InputA binary species tree S, a collection of unrooted

gene trees G1,G2, . . . ,Gn.
2: Output Minimal EC(T1,T2, . . . ,Tn, S) in the set of all

rootings Ti of Gi such that Ti is a rooting obtained
from Gi by placing the root on the edge from the D-
plateau.

3: For every i compute the set of candidate rooting edges
Ri:

4: e∗:=FindOptEdge(Gi)
5: If e∗ is double: Ri := {e∗}
6: If e∗ is empty then for x ∈ e∗ such that x is not a leaf.
7: Let c be a child of x in G∗ such that 〈x, c〉 is D-

minimal and not adjacent to any edge from Ri and
M∗(c) = M∗(x)

8: Ri := Ri ∪ {〈x, c〉}.
9: If every Gi has an empty edge then α :=

EC(T1,T2, . . . ,Tn), where Ti is the empty edge rooting
of Gi else α := +∞.

10: β = minei∈Ri EC(Ge1 ,Ge2 , . . . ,Gen).
11: Returnmin{α,β}.
12: Function FindOptEdge(G)
13: Letmx,y = MG〈x,y〉(x) // can be computed in O(|G|)

steps [32].
14: Let v be a node fromVG and let� by the lca-mapping

of some rooting of G.
15: While there exists a node w adjacent with v such that

mw,v = � �= mv,w
16: do: set v := w (star S1).
17: Return 〈v,w〉 such that 〈v,w〉 an empty or double

edge i.e.,mv,w = � = mw,v ormv,w �= � �= mw,v.

Thus, from theoretical point of view UEC is fixed
parameter tractable. Later we show that k usually repre-
sents a small fraction (up to 5 %) of the whole input. For
the cases when 2k is still too large for efficient compu-
tation, we propose Algorithm 2, in which we first solve
the instance of UEC for the collection of gene trees that
have a unique candidate. Clearly, if there are rootings
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Algorithm 2 Unrooted Episode Clustering 2
1: Input/output The same as in Algorithm 1.
2: Let δ = EC(G′

1,G′
2, . . . ,G′

n′) computed by
Algorithm 1, such that {G′

1,G′
2, . . . ,G′

n′ } is the set of
all input gene trees having a unique candidate rooting
edge (i.e., |Ri| = 1).

3: If δ = α Return α, where α is from the 9th line of
Algorithm 1 computed for the whole input.

4: For every e1 ∈ R1, e2 ∈ R2, . . . , en ∈ Rn (i.e. candidate
rootings of the whole input)

5: If EC(Ge1 ,Ge2 , . . . ,Gen) = δ then Return δ.
6: Return the minimal EC value computed in lines 3

and 6.

of the whole input that have the same cost, then this
cost is optimal. The overall complexity of Algorithm 2 is
the same as Algorithm 1, however, for large datasets this
strategy appeared to be successful after checking just one
additional candidate set (in lines 2–4).

Experiments
We performed several computational experiments on
three empirical datasets.
Guigó dataset consists of 53 rooted gene trees from 16

Eukaryotes from [10]. This dataset was evaluated with 71
species trees from [35], known to have the total minimal
duplication cost. Génolevures is a dataset of 4144 gene
trees [33] from nine yeast genomes [36] and two species
trees: one from [37] and the second one having the low-
est duplication-loss cost computed by Fasturec [38]. The
third datasetTreeFam, spanning 25mostly animal species,
consists of 1274 curated gene family trees from TreeFam
v7.0 [39]. The species tree for TreeFam is based on NCBI
taxonomy.
We implemented our algorithms and the algorithms for

the rooted variant of EC Problem (based on [29]). In our
experiments the rooting candidates were used to com-
pare the results for UEC with the model of mappings (for
rooted gene trees) proposed in [28].
We performed two series of 74 computational exper-

iments, one for our model and one with the model
described in [28]. The total running time of our pro-
gram was about 7 minutes on a standard PC workstation.
For every dataset we were able to find solutions to UEC

by testing at most two rooted instances of input gene
trees (see Algorithm 2). The summary of experiments is
depicted in Table 1.
For the Guigó dataset we found four duplication clus-

ters, while for the rooted model from [28] we located five
clusters. The difference can be explained by the proper-
ties of our model that is more flexible: the input trees
are unrooted and the model of valid mappings is more
generic. Observe that this dataset has unique rooting
candidates (k = 0).
Génolevures is the most complex dataset due to its size

and potentially large parameter k. Despite these prop-
erties, Algorithm 2 located 17 clusters for the filtered
input with all unique rooting candidates. In other words,
in this filtered dataset a duplication cluster is present in
every node of the species tree. Obviously, the whole input
dataset has the same property. The same holds for the
model from [28].
In TreeFamwe located 45 clusters for the filtered dataset

with unique rooting candidates. Then, Algorithm 2 found
the solution having the same cost for the whole dataset
(see Fig. 6). The same result was obtained for the model
from [28] (see Table 1).

Conclusions
In this article we presented the first solution to the open
problem of the duplication episode clustering for case
when the input collection is composed of unrooted gene
trees. By using theoretical properties of the unrooted
reconciliation we proved that the problem has nice math-
ematical and computational properties. From practical
point of view, we were able to provide efficient algo-
rithms and tools that were successfully applied to locate
duplication clusters in real datasets.
From the computational point of view the complexity

of our algorithms depends on the parameter k, i.e., in
the worst case EC Problem has to be solved 2k times in
order to find a solution to UEC. Even if k usually repre-
sents a small fraction of the whole input it can be still
large, e.g. k > 100 for the yeast dataset, which may
prohibit computation of all possible variants. Here we
proposed a solution, that is based on the observation that
the clustering induced from the input gene trees having
unique candidates (that is, without k gene trees with non-
unique variants), usually represents an optimal solution

Table 1 Experimental results

Set # Species trees # Leaves # Gene trees k
Our model Model [28]

EC % Locations EC % Locations

Guigó 71 16 53 0 4 12,9 % 5 16,1 %

Génolevures
1 [37] 9 4144 55 17 100 % 17 100 %

1 [38] 9 4144 156 17 100 % 17 100 %

TreeFam 1 28 1274 67 45 81,8 % 45 81,8 %
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A B

Fig. 6 Duplication clusters in empirical datasets. Duplication clusters (marked by red circles) inferred from experiments. a Guigó species tree (chosen
from 71 species trees from [35] as the most biologically reasonable [40]). b TreeFam species tree based on NCBI taxonomy

for the whole input. Thus, the strategy that we applied
in Algorithm 2, i.e., first cluster easy part and then try
to incorportate the hard one by using already identified
clusters, appeared to be successful even for potentially
complex datasets.
Our computational experiments show that the dupli-

cation clusters are usually located in large parts of the
species tree especially when the input dataset consists
of thousands of gene trees. To provide more detailed
information on the duplication clusters, we plan to study
minimal episode problem (ME) which is a natural exten-
sion of the episode clustering problem. In the future we
plan to extend the episode clustering problem by using
other types of valid mappings.
Our software for solving unrooted episode clustering

problem is publicly available at http://www.mimuw.edu.
pl/jpaszek/uec.php.
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