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Abstract

Background: Roberts syndrome (RBS) is a human developmental disorder caused by mutations in the cohesin
acetyltransferase ESCO2. We previously reported that mTORCT signaling was depressed and overall translation was
reduced in RBS cells and zebrafish models for RBS. Treatment of RBS cells and zebrafish RBS models with L-leucine
partially rescued mTOR function and protein synthesis, correlating with increased cell division and improved
development.

Results: In this study, we use RBS cells to model mTORC1 repression and analyze transcription and translation with
ribosome profiling to determine gene-level effects of L-leucine. L-leucine treatment partially rescued translational
efficiency of ribosomal subunits, translation initiation factors, snoRNA production, and mitochondrial function in RBS
cells, consistent with these processes being mTORC1 controlled. In contrast, other genes are differentially expressed
independent of L-leucine treatment, including imprinted genes such as H719 and GTL2, miRNAs regulated by GTL2,
HOX genes, and genes in nucleolar associated domains.

Conclusions: Our study distinguishes between gene expression changes in RBS cells that are TOR dependent and
those that are independent. Some of the TOR independent gene expression changes likely reflect the architectural

role of cohesin in chromatin looping and gene expression. This study reveals the dramatic rescue effects of L-
leucine stimulation of mTORCT in RBS cells and supports that normal gene expression and translation requires

ESCO2 function.
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Background

Cohesinopathies are a group of developmental disorders,
including Roberts syndrome (RBS) and Cornelia de Lange
syndrome (CdLS), caused by loss of function mutations in
the cohesin complex or its regulators. The cohesin
complex is a structural component of chromosomes and
helps to facilitate many different chromosomal processes
such as genome organization, chromosome segregation,
double-strand break repair, and gene expression. The de-
velopmental defects associated with the cohesinopathies
include slow growth and small size, hirsutism, mental re-
tardation, craniofacial anomalies, limb malformations, and
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heart, gastrointestinal, and auditory problems. While the
molecular etiology of these developmental disorders is un-
clear, one working model is that the loss of cohesin func-
tion results in changes in gene expression during
embryogenesis [1-5]. These changes in gene expression
could occur via several mechanisms including altered
gene looping or genome architecture [6-10].

RBS is an autosomal recessive, multi-system develop-
mental syndrome caused by loss of function mutation in
a gene that encodes a cohesin acetyltransferase, ESCO2
[11]. A hallmark of chromosomes from RBS cells is het-
erochromatic repulsion, observed in metaphase spreads,
possibly indicating a lack of cohesion at these regions
[12]. Two genes, ESCO1 and ESCO2, both encode ace-
tyltransferases that acetylate the SMC3 subunit of cohe-
sin during DNA replication to lock the cohesin ring
onto DNA. A mutation in yeast ECOI, which is a yeast

© 2015 Xu et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-015-2354-y&domain=pdf
mailto:jeg@stowers.org
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Xu et al. BMC Genomics (2016) 17:25

homolog of human ESCO1/2, was recently shown to dis-
rupt cohesion, replication, transcription, and looping at
the ribosomal DNA (rDNA) repeats [13, 14]. Mutations
that disrupt the acetyltransferase activity of Ecol/ESCO2
also disrupt nucleolar architecture, impair ribosomal
RNA (rRNA) production and ribosome biogenesis, and
reduce protein biosynthesis in budding yeast and human
RBS cells [14-16]. Cohesin binds to the rDNA in every
organism studied [17], giving cohesin the potential to
affect the structure and function of the nucleolus which is
essential for both ribosome biogenesis and organization of
the genome.

We recently reported that mTOR (mammalian target
of rapamycin) signaling was strongly downregulated in
human RBS patient cells, accompanied by p53 activation
[16]. Amino acids, and in particular L-leucine (L-Leu),
have been shown to stimulate mTORCI. In zebrafish
models for RBS and CdLS, L-Leu boosted cell prolifera-
tion, protein synthesis, and development [16, 18]. The
dramatic rescue effect of L-Leu at the cellular and or-
ganismal level suggests that cohesinopathies are caused
in part by translational defects [19]. Since the mTOR
pathway is a critical regulator of protein translation and
ribosome function, and p53 is an indicator of nucleolar
stress, translational impairment may contribute to differ-
ential gene expression in RBS. Therefore, we have used
RBS as a disease model to address mTOR-associated
transcription and translation dysfunction. A number of
reports have shown that mTOR kinase signaling controls
mRNA translation by two branches. The first is through
phosphorylation of 4EBP1 (Eukaryotic translation initi-
ation factor 4E-binding protein 1) [20, 21]. The unpho-
sphorylated form of 4EBP1 is a translational repressor
that directly binds to eIF4E (eukaryotic translation initi-
ation factor 4E), a limiting component for translation
initiation for 40S. Phosphorylation of 4EBP1 releases
elFAE for translation initiation. mTOR also controls
translation via phosphorylation of RPS6 by RPS6 kinase
(S6K1) which activates ribosomal protein S6 to promote
its 40S ribosome function. The depression of mTOR ob-
served in RBS cells affects both branches of the pathway
which converge on 40S function.

In addition to its role in promoting nucleolar function,
cohesin plays a role throughout the genome in forming
chromatin loops that can affect gene expression. For in-
stance, cohesin promotes the formation of loops at the
imprinted loci IGF2-H19 [22, 23], Myc [24, 25], and pluri-
potency factors [6]. The misregulation of any of these
master regulators can have grave consequences for cell-
type specification and cellular function. The cohesin-
dependent control of chromosome organization is another
mechanism, in addition to changes in mTOR signaling,
that is predicted to underpin the gene expression changes
associated with the cohesinopathies.
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The rescue provided by L-Leu in animal and tissue
culture models for the cohesinopathies strongly sug-
gested that many of the critical transcriptional
changes were ameliorated by boosting translation. To
address L-Leu dependent transcription and translation
at a gene-by-gene level, we examined translation initi-
ation complexes and performed ribosome profiling in
RBS cells. We found that L-Leu partially rescued transla-
tion initiation, translational efficiency of ribosomal sub-
units and translation factors, and mitochondrial function
in RBS cells. However, other differentially expressed genes
do not respond to L-Leu, suggesting they are misex-
pressed independent of the TOR pathway. These include
the imprinted genes and HOX genes which are known to
be regulated by cohesin-dependent looping events. This is
consistent with our previous observation that L-Leu stim-
ulates mTORC]1 without rescuing the architectural defects
in the nucleolus observed in RBS cells. Our results suggest
targeting mTORCI1 with L-Leu rescues a significant frac-
tion of the differential gene expression associated with
RBS. L-Leu could be a promising therapeutic strategy for
human diseases associated with poor translation.

Results

40S and 60S ribosome subunits are present at lower
levels in RBS cells

Our previous studies demonstrated ribosome biogenesis
and protein synthesis were defective in RBS cells. For our
analysis, we used normal human fibroblasts, RBS fibro-
blasts (homozygous mutation 877_878 delAG in exon 4 of
ESCO2), and RBS fibroblasts in which a wild-type copy of
the ESCO2 gene has been added back (corrected cells)
[12]. We also used two other RBS cell lines (GM21873
and GM21872), which were (1) untransformed amniotic
fluid-derived, and (2) a fetal skin fibroblast cell line. For
untransformed primary fibroblasts, the donor subject was
homozygous for a 5 bp deletion at nucleotide 307 in exon
3 of the ESCO2 gene (c.307_311delAGAAA) resulting in a
frameshift that leads to a truncated protein (p.I1102fsX1).
For untransformed amniocytes, the donor subject was a
compound heterozygote. One allele has a 1 bp deletion at
nucleotide 752 in exon 3 of the ESCO2 gene (c.752delA),
and the second allele has an A > G substitution in intron 6
[cIVS6-7A > G (c.1132-7A > G)]. Both the immortalized
RBS fibroblasts and the two untransformed RBS cell lines
had similar depression of the mTORCI signaling pathway,
an aberrant cell cycle pattern, and reduced protein transla-
tion. Moreover, L-Leu treatment partially rescued cell pro-
liferation and survival, ribosome biogenesis, and protein
biosynthesis similarly in all three RBS lines [16]. We se-
lected the transformed RBS fibroblasts for use in our
current study because the corrected version provides an
excellent control.
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We decided to examine expression of individual ribo-
somal proteins in the WT, RBS mutant, and corrected
cell lines. Western blotting analysis revealed lower levels
of both 40S small subunit and 60S large subunit ribo-
some proteins including RPS7, RPS19, RPL5, RPL23,
and RPL24 in the mutant relative to WT and corrected
cells (Fig. 1a, Additional file 1: Figure Sla). Since L-Leu
is able to improve protein biosynthesis in RBS cells, we
examined the effect of L-Leu on ribosomal proteins.
Since D-leucine (D-Leu) is not used as an amino acid,
we used D-Leu treatment as a negative control. The
levels of both RPS7 and RPL24 were partially rescued by
L-Leu supplement but not the bioinactive D-Leu (Fig. 1b,
Additional file 1: Figure S1b). In addition, elF2a phos-
phorylation was elevated in RBS cells, suggesting a state
of translational repression similar to nutrition starvation.
Interestingly, we found the phospho-elF2a level in RBS
cells declined with L-Leu supplementation. The data
suggested that defective ribosome biogenesis in RBS
includes lower levels of ribosomal proteins that can be
rescued with L-Leu. Furthermore, the elF2a phosphoryl-
ation suggests the possibility of an integrated stress re-
sponse [26] that includes defective translation initiation
that can be relieved with L-Leu.

Low levels of translation initiation complexes in RBS cells
are partially rescued by L-Leu

To further investigate translation initiation, we used pull
downs to examine the formation of translation initiation
complexes. 4EBP1 is a protein that prevents translation
initiation when its unphosphorylated form interacts with
elF4E. Since L-Leu improved 4EBP1 phosphorylation in
RBS cells (Fig. 1c, d), we further examined the 5cap
mRNA translation initiation complex using an m7GTP
binding assay. m7GTP beads pull down more 4EBP1
protein in RBS cells compared to corrected cells (Fig. 1c).
4EBP1 binding to eIF4E inhibits the eIF4E-elF4G inter-
action, blocking translation initiation. Consistently,
elFAG protein displayed less binding to m7GTP in RBS
cells. The addition of L-Leu partially reduced 4EBP1
levels in m7GTP fraction, and restored elF4G binding
for RBS cells.

To further evaluate translation initiation complexes,
we immunoprecipitated elF4E and examined interacting
proteins (Fig. 1d). We observed an enrichment of 4EBP1
in the eIF4E pull down in RBS cell lysates, and a marked
reduction in eIlF4G1. L-Leu treatment rescued elF4G1-
elF4E association, and released the 4EBP1 inhibitory
interaction. Finally, we pulled down eIF3B to assess
elF3B-elF4E-eIF4G assembly of the 43S pre-initiation
complex. The elF4G1 and elF4E proteins were present
at lower levels in immunoprecipitations from RBS cells
(Fig. 1e), but their levels were efficiently rescued by the
addition of L-Leu. We also found that L-Leu partly
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rescued low levels of phospho-S6K1 in RBS fibroblasts
(Fig. 1e). Collectively, the results clearly indicated that
RBS fibroblasts have fewer translation initiation compe-
tent complexes. Their formation could be partially res-
cued by L-Leu supplement.

L-Leu relieved translational efficiency for several gene
classes in RBS

To systematically determine the translational efficiency
of each mRNA in RBS fibroblasts, we used ribosome
profiling and RNA deep sequencing. Wild-type, mutant,
and corrected fibroblasts were treated with D-Leu (bioi-
nactive form) or L-Leu. Ribosome profiling monitors
translational efficiency by measuring ribosome-protected
mRNA fragments (ribosome footprints) relative to the
number of mRNAs [27]. We collected cells treated for
3 h to assess mRNAs with immediate translational
changes in response to L-Leu. We also collected cells
treated for 24 h to examine the long term effects of L-
Leu on RBS cells. We detected exon-mapped ribosome
footprints that corresponded to actively translated
RefSeq mRNAs. Numbers of total reads per sample
ranged from 5.0e + 06 to 3.0e + 07. The number of ribo-
some footprints that map to each mRNA divided by the
number of total mRNA reads (gene-specific reads per
million total exon-mapped reads, or RPKM) reflects the
proportion of ribosomes engaged in the translation of
that transcript. In our ribosome profiling and RNA seq
analysis, the patterns between wild-type and ESCO2-cor-
rected cells were similar, although not identical, at the
transcriptional and translational levels (Additional file 1:
Figure S2). The differences between the WT cells and
the corrected cells could be due to the differences in
genetic background as well as slight overexpression of
ESCO2 in the corrected cells [12]. Given that the
ESCO2-corrected cells mostly resembled WT cells, we
decided to focus our analysis on the comparison of the
mutant and corrected cells since they have the identical
genetic backgrounds.

Two recent studies have examined translational
efficiency in the presence of mTOR chemical inhibitors
[20, 21]. The translation of genes with 5' terminal oligo-
pyrimidine (5" TOP) motifs, which includes many ribo-
somal protein genes and a number of translation
initiation and elongation factors, is particularly ineffi-
cient in the presence of these compounds [20, 21]. Strik-
ingly, almost all 5° TOP genes showed poor translational
efficiency in RBS cells (Fig. 2a). This efficiency was par-
tially rescued with L-Leu at both 3 and 24 h treatment,
consistent with our Western blotting results for individ-
ual ribosomal protein subunits. Furthermore, the 5 TOP
genes were likely de novo translational targets of
mTORCI stimulation because they responded strongly
at 3 h L-Leu treatment.
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(See figure on previous page.)

L-Leu supplement

Fig. 1 Ribosomal components and translation initiation complexes were present at low levels in RBS cells. a Western blotting showed that 40S
small ribosome proteins RPS7 and RPS19, and 60S large ribosome proteins RPLS, RPL23, and RPL24 were decreased in £SCO2 mutant (M)
compared to WT fibroblasts (WT) or corrected fibroblasts (C). b L-Leu supplement, but not D-Leu, partially rescued RPS7 and RPL24 protein levels,
and reversed the elevation of elF2a phosphorylation in RBS cells. a-Tubulin and eiF2a serve as loading controls. € m7-GTP coupled beads were
used to pull down translation initiation complexes from whole cell lysates. 4EBP1 protein was strongly enriched in RBS cells, accompanied by less
binding of elF4G1, but this trend was partially reversed in RBS cells treated with L-Leu. elF4E levels were not affected. d Antibodies to elF4E were
used to pull down translation initiation complexes. 4EBP1 was present at high levels in RBS cells, correlating with less elF4G1 and the inhibition of
translation initiation. L-Leu supplement promoted the assembly of the translation competent elF4E complex. e Antibodies to elF3B were used to
pull down translation initiation complexes. elF4E and elF4G1 were present at lower levels in RBS cells, but this trend was partially reversed by

Hsieh et al. reported a second group of genes with a
pyrimidine-rich translational element (PRTE) that were
hyperdependent on mTOR-controlled translation [20].
Similar to the 5'terminal oligopyrimidine (5"TOP) genes,
almost 90 % of these genes were poorly translated in
RBS cells, but their translational efficiency improved
dramatically with both 3 and 24 h of L-Leu supplemen-
tation (Fig. 2b). These genes function in various cellular
processes such as glycogen storage (PGM1), cytokinesis
(MYH14), mRNA metabolism (PABPC1), nuclear import
(IPO7), protein transport (AP2A1l), osteogenesis
(CRTAP), nucleosome assembly (NAPI1L1), and heat
shock (HSPAS8). Moreover, the PRTE genes, like the
5TOP genes, were likely de novo translational targets of
mTORCI signaling because they responded strongly to
3 h treatment.

Previous analysis by another group using a bioinformat-
ics approach known as Babel analysis identified genes with
significantly reduced translation associated with impeded
mTOR activity [28]. In addition to the PRTE and 5 TOP
genes, this group of genes includes subunits of the elF3
complex, and multiple Rab family Ras-related GTPases in-
volved in endocytic trafficking. More than 60 % of these
genes showed poor translational efficiency in RBS cells
that was partially rescued with both 3 and 24 h L-Leu
treatment (Fig. 2¢; Additional file 2: Table S1). The mRNA
levels of the 5"TOP, PRTE, and Babel gene groups were
not significantly affected in mutant versus corrected cells,
nor were they affected by L-leucine treatment (Additional
file 1: Figure S3), strongly arguing for a translation-based
rescue.

These results demonstrate that the gene groups that
show exceptionally poor translation in response to
pharmacological inhibition of mTORC1 also show poor
translational activity in RBS cells. Furthermore, the
translation of these same gene groups was partly im-
proved by L-Leu treatment. For these gene groups, the
effects of 3 and 24 h treatments were similar, suggesting
that these gene groups contain many direct targets of
the mTORC1 pathway. Taken together, these results are
consistent with the conclusion that L-Leu activates
mTORCI1 function in RBS fibroblasts.

In addition to using predefined gene lists, we identified
all genes whose translational efficiency was increased
with L-Leu treatment in RBS cells. We used different
methods to identify genes with improved translation effi-
ciency: 1) Babel analysis, 2) fold change in translational
efficiency greater than two and a minimum of 20 reads.
For both methods, the gene ontology (GO) term analysis
was very similar and included enrichment for ribosome
components, translation initiation and elongation fac-
tors, protein targeting/sorting genes (co-translational
process, and post-translational translocation), and RNA
metabolism genes (Tables S2, S3, S4). We found that L-
Leu improved the translational efficiency of more genes
at the long timepoint (561 genes at 24 h vs 299 genes at
3 h). These results suggest that improved translational
efficiency of direct mTORCI targets at the short time-
point improved the translational efficiency of more
genes following longer term treatment.

We used MEME to discover new motifs associated
with genes with 2 fold or greater improved translational
efficiency at 3 h [29]. Motif analysis identified 5 TOP
and PRTE sequences, as expected, but also identified a
new motif “CCAGGCTGGTCT” (Additional file I:
Figure S4). This motif does not correspond to any
known transcription factor binding site. GO term ana-
lysis for genes with the new motif included translational
elongation and translational termination, but also more
surprisingly, protein localization to the endoplasmic
reticulum, and mRNA catabolic processes (Additional file
1: Figure S4; Additional file 2: Table S5). mRNAs with the
motif may represent newly discovered targets of mTORC1
dependent translation (Additional file 2: Table S6).

Loss of mTORC2 function has been shown to in-
hibit translation of many cell cycle proteins, including
cohesin and condensin subunits such as SMCS3,
STAG1, NIPBL, SMC2 and SMC4 [30]. We wondered
whether L-Leu stimulation would affect transcription
or translation of these mTORC2 targets. While the
transcription and translation of many of these genes
is altered in the mutant as compared to corrected
cells, they did not show a coherent response to L-Leu
(Additional file 1: Figure S5; Additional file 2: Table
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Fig. 2 L-Leu increased translation of genes with poor translational efficiency in RBS cells. The corrected (cor) and RBS mutant (mut) cells were
treated with either D-Leu or L-Leu for 3 h or 24 h. Cells were collected for ribosome profiling. a The boxplot shows the translational efficiency for
genes with a 5" TOP sequence. These mRNAs showed poor translational efficiency in RBS cells, which was partly rescued by L-Leu treatment.
Corrected cells with D-Leu 24 h versus Mutant cells with D-Leu 24 h, P=6.9e-22; Mutant cells with L-Leu 24 h versus Mutant cells with D-Leu

24 h, P=4.4e-14; Corrected cells with D-Leu 3 h versus Mutant cells with D-Leu 3 h, P=8.8e-16; Mutant cells with L-Leu 3 h versus Mutant cells
with D-Leu 3 h, P=1.9e-16. b The boxplot shows the translational efficiency for genes with a PRTE sequence. These mRNAs showed poor
translational efficiency in RBS cells that was partially improved by L-Leu. Corrected cells with D-Leu 24 h versus Mutant cells with D-Leu 24 h,
P=7.1e-14; Mutant cells with L-Leu 24 h versus Mutant cells with D-Leu 24 h, P=8.5e-9; Corrected cells with D-Leu 3 h versus Mutant cells with
D-Leu 3 h, P=2.8e-14; Mutant cells with L-Leu 3 h versus Mutant cells with D-Leu 3 h, P=5.3e-15. ¢ The boxplot shows the translational efficiency
for genes previously defined to be hypersensitive to mTOR inhibition via Babel analysis [28]. These mRNAs showed poor translational efficiency in
RBS cells that was partially improved by L-Leu. Corrected cells with D-Leu 24 h versus Mutant cells with D-Leu 24 h, P=0.0002; Mutant cells with
L-Leu 24 h versus Mutant cells with D-Leu 24 h, P=0.14; Corrected cells with D-Leu 3 h versus Mutant cells with D-Leu 3 h, P = 3.5e-8; Mutant

cells with L-Leu 3 h versus Mutant cells with D-Leu 3 h, P=2.1e-6

S7), helping to confirm that L-Leu specifically boosted
mTORC1-dependent translation.

Poor mitochondrial function in RBS is partially improved
by L-Leu

It has been reported that mTORC1 inhibition reduces
mitochondrial biogenesis and activity via a 4EBP1
dependent mechanism [31]. We examined the behavior
of 868 human genes annotated with cellular component
“mitochondrial part.” We found that most of these genes
are differentially expressed in the RBS cells compared to
corrected cells (heatmap, Fig. 3a; Additional file 2: Table
S8), and remain differentially expressed upon L-Leu
treatment. However, about ~30 % of these genes are leu-
cine responsive at both timepoints (green bar). The GO
terms associated with the leucine responsive cluster are
ATP synthesis (biological process), cytochrome C oxi-
dase activity and NADH dehydrogenase activity (mo-
lecular function), and respiratory chain complex I
(cellular compartment) (Additional file 2: Table S9).

We also examined the translational efficiency of the
same 868 genes. We found that the translational effi-
ciency of 32 genes showed improvement at 3 h and 96
genes at 24 h with L-Leu (Additional file 2: Table S8).
GO terms associated with the genes that respond at 3 h
were mitochondrial ribosome and respiratory chain,
followed with mitochondrial membrane and metabolic
processes related to the production of ATP, NADH, and
cytochrome C at 24 h (Additional file 2: Table S10).
Overall it appears that for a subset of genes with mito-
chondrial function, L-Leu treatment improved gene ex-
pression, and this occurred in conjunction with an effect
on translational efficiency for a smaller group of genes
in the RBS cells. The expression and translation of a
subset of genes with mitochondrial function may be re-
sponsive to mTORC1 signaling. The genes with in-
creased translational efficiency at 24 h in L-Leu are less
likely to be direct targets of mTORC]1 signaling, in con-
trast to the 5’TOP, PRTE, and Babel genes.

To further study whether the improved transcription
and translation of mitochondrial genes with L-Leu mani-
fested in improved mitochondrial function, we measured
cellular ATP levels (Fig. 3b) and cytochrome c oxidase
activity (Fig. 3c). These measures of mitochondrial activ-
ity in RBS cells were low compared to controls. Low
ATP levels are associated with upregulation of the
AMP-activated protein kinase (AMPK) signaling [32],
and, consistently, we previously reported an increase in
AMPK signaling in RBS [16]. Additionally, the dysfunc-
tion of cytochrome C oxidase activity elevates intracellu-
lar reactive oxygen species production [33, 34], a finding
that correlates well with the previously reported in-
creased ROS in RBS cells [16]. Both ATP levels and
cytochrome C oxidase activity were partly rescued by
stimulation of mTORCI function with L-Leu. Collect-
ively, our results indicate impaired mitochondrial gene
expression, translation, and function are associated with
RBS, and these defects can be partially restored by L-
Leu supplementation, suggesting the defects may be due
in part to low mTORCI signaling.

snoRNAs are differentially expressed in RBS cells
snoRNAs guide chemical modification of ribosomal
RNAs, transfer RNAs, small nuclear RNAs, and mRNAs
[35, 36]. C/D box snoRNAs guide methylation and H/
ACA box snoRNAs guide pseudouridylation. These
modifications can affect the stability of RNAs and their
ability to interact with other RNAs and proteins. We ex-
amined the expression of snoRNAs in RBS cells. Many
snoRNAs of both types were elevated in the RBS patient
cells (Fig. 4a; Additional file 2: Table S11). L-Leu supple-
ment significantly affected snoRNA levels in both the
RBS and corrected cells, but had a bigger effect and par-
tially reversed the increased levels of snoRNAs in RBS
cells, suggesting that this gene group may be responsive
to mTORCI signaling.

Many snoRNA genes are hosted by ribosomal protein
genes. We found a positive correlation (0.76) between
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Fig. 3 L-Leu treatment partially rescued mitochondrial function in RBS cells. a The heatmap shows that genes with mitochondrial function are
differentially expressed in RBS cells. The yellow and purple bars indicate gene groups that are downregulated or upregulated, respectively, in the
mutant cells, and are unresponsive to leucine. The subgroup that is affected by L-leucine treatment in the RBS cells is indicated by the green bar. See
Additional file 2: Table S9 for GO terms for the leucine responsive cluster. b Intracellular ATP concentration was low in RBS cells but significantly
improved by L-Leu treatment for 24 h. ¢ Cytochrome ¢ oxidase activity was impaired in RBS cells but significantly improved by L-Leu supplement for
24 h. For b and c error bars represent standard deviation of three biological replicates and the p value was calculated from a t-test

snoRNA levels and the expression of their host gene for
the ESCO2-mutant cells (Fig. 4b). However, host genes
were relatively unaffected with L-Leu (Fig. 4c); the cor-
relation between host genes and snoRNAs with L-Leu
treatment was 0.07 (Fig. 4d). Taken together, these re-
sults suggest that the production of snoRNAs may be
controlled by an unknown mTORCI-dependent mech-
anism that does not rely on the expression of the host
genes. Nevertheless, the increase in snoRNAs in RBS
cells has the potential to affect the modification and be-
havior of many RNAs.

The imprinted H19 and GTL2 loci are differentially
expressed in RBS cells

The cohesin complex has been shown to physically regu-
late expression via looping at the IGF2-HI9 imprinted
region [22]. IGF2-HI19 shows a parent of origin specific
monoallelic expression pattern that is important for em-
bryogenesis and its disruption contributes to the etiology
of several fetal disorders [23]. The long noncoding RNA
H19 negatively regulates IGF2 (insulin growth factor 2),
and HI9 deletion increases IGF2 signaling. In addition,
H19 serves as a precursor of miRNA-675, which pre-
vents IGF-IR (insulin-like growth factor 1 receptor) ex-
pression. IGF-1R activity promotes downstream PI3K/
Akt/mTOR signaling [37, 38].

We wondered whether the expression of imprinted
loci was affected in RBS cells. In fact, several imprinted
genes were differentially expressed in RBS cells (Fig. 5a).
For example, RNAs involved in growth suppression and
stem cell maintenance, including MEG3/GTL2, were
present at higher levels. Another group of RNAs from
imprinted genes were present at lower levels, including
MEST, and the p53 repressor (MKRN1). H19 was signifi-
cantly elevated in RBS cells (Fig. 5b). Moreover, miRNA-
675 was also elevated (Fig. 5c), as would be expected
based on the elevation in HI9. Since miRNA-675 may
negatively regulate the PI3K-Akt- mTORC1 pathway,
this H19/miRNA-675 elevation might contribute to
mTORCI1 depression in RBS. The differential expression
of imprinted genes was not significantly affected by L-
Leu, suggesting the differential expression of these genes
is not due to low mTORCI signaling, but may instead
be related to defects in gene looping/chromosome archi-
tecture and/or altered DNA methylation patterns [39].

MEG3/GTL2-DLK1 is another imprinted locus regu-
lated by differentially methylated regions (DMRs). Cohe-
sin has been reported to colocalize with CTCF at this
locus where it binds to the GTL2 DMR on the unmethy-
lated maternal allele [40, 41], potentially playing a re-
pressive function for MEG3/GTL2 expression [40].
Cohesin binds to the GTL2 DMR on the unmethylated
maternal allele. GTL2 is a growth suppressor that
strongly activates p53 expression. GTL2 regulates mater-
nal expression of an miRNA cluster [42-47], where it
promotes the expression of miRNAs that could reduce
mTORCI1 signaling by inhibiting translation of their tar-
get mRNAs [48, 49]. Both GTL2 mRNA and GTL2-regu-
lated miRNAs showed an elevation in RBS cells by RNA
seq analysis which was verified by qPCR (Fig. 5d;
Additional file 1: Figure S6). We also found a significant
increase in MEG8/Rian in RBS cells. MEGS8 is a mater-
nally expressed, imprinted long non-coding RNA tran-
scribed from the same DNA as GTL2. Our results
suggest that loss of cohesin acetyltransferase function al-
ters expression from the IGF2-H19 and MEG3/GTL2-
DLK1 imprinted loci, providing one possible speculative
mechanism by which cohesin could influence mTORC1
signaling and translation.

L-Leu independent differential gene expression in RBS
cells

Homeobox (HOX) genes are a group of transcription
factors that determine the anterior-posterior axis of
an embryo. Recent work indicates that cohesin influ-
ences HOX gene expression through chromatin archi-
tecture organization [3, 50-52]. We examined HOX
gene expression in RBS cells and found that the ex-
pression of many HOX A, B, C, and D subunits is re-
duced [3], independent of L-Leu treatment, while
translation is unaffected (Additional file 1: Figure S7).
Although taken all together the differential expression
for this gene group is not statistically significant be-
tween mutant and corrected cells, the reduced ex-
pression of many individual genes is significant, and
this reduced expression is apparent in the stretch of
the boxes into the negative log2 values. The data
suggest that ESCO2 dependent HOX gene expression
and architecture is independent of ESCO2-induced
mTORC1 defects.
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Fig. 4 High levels of snoRNAs in RBS cells were partially reduced by L-Leu treatment. We selected a group of 379 snoRNA genes based on the
biotype “snoRNA” and having the words “C/D box" or “H/ACA box" in the description field from ensembl. a The boxplot shows the expression of
these genes is increased in RBS cells, but partly reduced with L-Leu treatment (gene data in Additional file 2: Table S11). Corrected cells with D-
Leu 24 h versus Mutant cells with D-Leu 24 h, P=1.4e-275; Mutant cells with L-Leu 24 h versus Mutant cells with D-Leu 24 h, P =3e-53; Corrected
cells with D-Leu 3 h versus Mutant cells with D-Leu 3 h, P=7.6e-243; Mutant cells with L-Leu 3 h versus Mutant cells with D-Leu 3 h, P=7.1e-98.
P values in a and ¢ were generated using a t test. b The scatter plot depicts the log2 fold change for snoRNAs in RBS mutant vs corrected at 3 h
D-Leu (x axis) versus the same for host genes (y axis). The correlation is 0.76. ¢ The boxplot shows the snoRNA host gene expression was not
significantly different between corrected cells and mutant cells, and the host gene expression is not affected by L-Leu treatment. Corrected cells
with D-Leu 24 h versus Mutant cells with D-Leu 24 h, P=0.3; Mutant cells with L-Leu 24 h versus Mutant cells with D-Leu 24 h, P=0.96; Corrected
cells with D-Leu 3 h versus Mutant cells with D-Leu 3 h, P=0.1; Mutant cells with L-Leu 3 h versus Mutant cells with D-Leu 3 h, P=0.62. d The
scatter plot depicts the log2 fold change for snoRNAs in RBS mutant L-Leu vs D-Leu at 3 h (x axis) versus the same for host genes (y axis). The
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There are over 6000 differentially expressed genes in
RBS cells, but ~1000 fewer with L-Leu treatment, suggest-
ing a significant fraction of the differential expression
could be translation-driven. The most notable and top
GO term for the upregulated genes in the RBS mutant

cells treated with L-Leu vs D-Leu at 3 h is “respiratory
chain complex I” (Additional file 2: Table S12). However,
the differential expression of particular gene groups in
RBS cells, such as HOX genes and imprinted genes, was
independent of L-Leu. We previously reported that the
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nucleolar architecture in RBS cells is only rescued by
ESCO?2 replacement, not by L-Leu addition [16]. Similar
to the rDNA, these loci may be examples where basic
chromatin architecture is dependent on cohesin acetyl-
ation and cannot be rescued with leucine.

Previous work has shown that regions from almost all
human chromosomes associate with nucleoli [53, 54].
These regions have been termed NADs for nucleolar asso-
ciated domains. Given the disruption of nucleolar morph-
ology in the RBS cells, we wondered whether the
expression of genes within NADs was affected. We found
that genes in many of the domains were differentially
expressed in RBS cells (Fig. 6, Additional file 2: Table S13).
In some cases genes that were not expressed in RBS cells
became expressed in the corrected cells, and in other
cases the reverse occurred. Whichever trend was observed
was true for most of the genes within that NAD, arguing
that the domains are behaving as a unit. The differential
expression was mostly independent of L-Leu, consistent
with the lack of rescue of the nucleolar morphology with
L-Leu. We conclude that disruption of nucleolar morph-
ology has the potential to affect the expression of genes
normally associated with nucleoli.

Discussion

We provide compelling molecular evidence that L-Leu
can partially rescue translation initiation and mitochon-
drial function via its stimulation of mTORC1 in RBS cells.
Ribosome profiling combined with RNA seq allowed us to
evaluate the contribution of differential expression and
translation in RBS. We speculate that L-Leu provides par-
tial rescue of translation and translation-dependent gene
expression without rescuing cohesin dependent chromatin
organization. Our data, combined with the existing litera-
ture, argues that at least two different mechanisms gener-
ate differential gene expression in RBS cells: 1) defects in
looping or other aspects of chromosome architecture and
2) loss of translation function. This second mechanism
can be targeted by L-Leu stimulation of mTORCI signal-
ing. Our work suggests the possibility that a few critical
loci that contribute to translation, such as imprinted genes
and rDNA, play a key role in the RBS disorder. L-Leu
treatment allows us to begin to distinguish between differ-
ential gene expression that is dependent on mTORCI sig-
naling versus independent in the ESCO2 mutant. Our
studies suggest targeting translation with the non-toxic
amino acid L-Leu may be a productive strategy in human
diseases with  poor translation, such as the
cohesinopathies.

Additional human diseases with defects in translation
include the ribosomopathies, diseases caused by defects
in ribosome biogenesis [55]. Stimulation of the TOR
pathway with L-Leu in the ribosomopathy Diamond
Blackfan anemia has shown promise as a therapeutic
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[56, 57] and is currently being tested in a Phase I clinical
trial. Translational control is emerging as an important
regulatory mechanism for many different cell types, such
as germline stem cells, hematopoietic stem cells, and
neurons [58]. Another process affected in over 40 differ-
ent human diseases is mitochondrial function. We pro-
vide the first evidence that mitochondrial function is
affected in RBS fibroblasts, and we further report that L-
Leu stimulation of mMTORCI1 could promote both trans-
lation initiation and mitochondrial function. Together
these findings suggest that it will be important to study
the role of mTORC]1 in embryo development, cell iden-
tity, and mitochondrial function in order to discover
strategies to target this pathway to treat human disease
associated with translation impairment.

How L-Leu stimulates mTORC1 has been the topic of
debate. Two groups have argued that the charged form of
the leucine tRNA synthetase is a key factor in the activa-
tion of the Ragulator complex that activates TOR [59, 60].
Others have argued that the mechanism may involve dir-
ect sensing of amino acids in the lysosome, where
mTORCI1 is located during activation [61, 62]. While the
exact molecular mechanism is still unclear, our work pro-
vides a detailed molecular picture of how transcription
and translation respond to L-Leu activation of mTORC]I.
We found evidence that the 5’TOP and PRTE-containing
mRNAs respond more quickly to L-Leu than other tar-
gets, such as mRNAs with mitochondrial function, sug-
gesting that mTORC1 stimulation affects immediate
targets followed by secondary targets. Our study also sug-
gests that pharmacological inhibition of mTORC1 with
small molecules has similar effects on translational effi-
ciency as genetically-induced depression by ESCO2
mutation.

Cohesin and CTCF (CCCTC-binding factor) co-localize
at a significant fraction of cohesin binding sites where
these proteins likely directly regulate genome architecture
and gene expression. Some of these sites include the
imprinted genes and the HOX genes. Recently, the Hi-C
method has identified that loss of cohesin or CTCF func-
tion not only causes the loss of some chromatin interac-
tions, but also leads to the gain of other interactions [63].
Cohesin appears to positively regulate some loci and nega-
tively regulate others, making the effects of loss of func-
tion difficult to predict. However, we have previously
provided evidence that acetylated cohesin promotes ex-
pression of the ribosomal DNA repeats and the formation
of nucleoli. CTCF is also important for the formation of
nucleoli [64]. Nucleoli likely provide a keystone for gen-
ome architecture [64—67], suggesting that disruption in
the organization of rDNA could have extensive effects on
the organization and expression of most chromosomes
such as that observed at NADs. In the future it will be in-
teresting to analyze chromosome organization in the
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Fig. 6 Nucleolar associated genes are differentially expressed in RBS cells. Expression levels of genes located in nucleolar associated domains
(NADs, indicated on the left) is shown in a heatmap for corrected cells (C) and RBS cells (M) treated with either D-Leu (D) or L-Leu (L) for 3 or
24 h. Within each domain, genes tend to show a similar pattern, although some domains show increased expression in the corrected cells while
others show reduced expression. In general these patterns are unaffected by the addition of L-leucine. Data can be found in Additional file 2:

Table S13

absence of ESCO2 function and how this impacts gene
expression.

Partial loss of function in many different cohesin re-
lated genes (ESCO2, SMC1, SMC3, NIPBL, RAD2I)
causes translation defects in yeast, zebrafish, and human
cells [1, 4, 14, 16, 18, 19]. Collectively, these observations
suggest that one evolutionarily conserved function of
cohesin is to couple chromosome structure with the
translational output of the cell. The mechanisms that
link these processes may include the role of cohesin in
bringing two DNA sequences together such as (1) loop-
ing of promoter and terminator within the rDNA for ef-
fective polymerase recycling and rRNA production, (2)
gathering of the rDNA repeats into a functional nucle-
olus which may provide an anchor point for genome
architecture, and (3) regulation of looping of promoter
and regulatory sequences and therefore expression at
imprinted loci and HOX genes. Additional mechanisms
for coupling chromosome structure to translation may
exist. This study provides a gene by gene understanding
of how L-Leu stimulation of mTORCI affects gene ex-
pression and translation.

Conclusions

ESCO2, a gene encoding an acetyltransferase for cohesin,
is required for normal gene expression and translation.
We characterized the effect of L-Leu on translation initi-
ation complexes, mitochondrial function, gene expres-
sion and translational efficiency in ESCO2 mutant RBS
cells in which mTORCI signaling is depressed. We find
L-Leu provides a significant rescue effect for all of these
measures. L-Leu activation of mTORCI function may be
a useful approach for human diseases with disruption of
these functions.

Methods

Reagents

Reagents were obtained from the following sources: anti-
bodies to S6K1, 4EBP1, elF4E, phospho-S51 elF2a, elF2a,
elF4G1 from Cell Signaling; antibodies to eIF3b (N20), a-
tubulin, S6K, RPS7, RPS19, RPL5 and horseradish-
peroxidase-labelled anti-mouse, anti-goat and anti-rabbit
secondary antibodies from Santa Cruz Biotechnology;
Anti-p70S6K1 (phospho T389) antibody from Abcam
company; antibodies to RPL23 from Sigma company; anti-
bodies to RPL24 from Genetex company. Complete Prote-
ase Mixture from Roche Applied Science; cycloheximide

from Sigma; immobilized 2’/3’-EDA-7-methyl-GTP- agar-
ose beads from Jena Bioscience GmbH, Germany; DMEM
from Life Technologies Inc.; inactivated fetal calf serum
from Invitrogen; Dynabeads® magnetic separation system
from Life Technologies Inc.

Preparation of cell lysates and affinity purifications

Cells were rinsed once with ice-cold PBS and lysed in
ice-cold lysis buffer (buffer A: 50 mM HEPES-KOH
(pH 7.4), 2 mM EDTA, 10 mM pyrophosphate, 10 mM
B-glycerophosphate, 40 mM NaCl, 1 % Trition X-100
and one tablet of EDTA-free protease inhibitors (Roche)
per 25 mL. The soluble fraction of the cell lysate was
isolated by centrifugation at 12,000 g for 10 min. For im-
munoprecipitations, primary antibodies were added to
lysates and incubated with rotation for overnight at 4 °C.
20 ul of a 50 % slurry of protein G-dynabeads were then
added and the incubation continued for an additional
3 h. Immunoprecipitates were washed three times with
lysis buffer. Immunoprecipitated proteins were dena-
tured by the addition of 20 pl of sample buffer and
boiled for 5 min, resolved by 8-16 % SDS-PAGE, and
analyzed by Western blot. For m7GTP affinity purifica-
tions, 2'/3-EDA-7-methyl-GTP- agarose beads were
washed with lysis buffer. 20 pl of beads from a 50 %
slurry was added to cell lysates and incubated with rota-
tion overnight at 4 °C. Beads were washed three times
with lysis buffer, denatured by the addition of 50 pl sam-
ple buffer, and analyzed by Western blot.

Preparation of ribosome profiling samples

Ribosome profiling samples were essentially collected and
processed as described in the Mammalian ARTseq”
Ribosome Profiling Kit (Epicentre, cat. no. RPHMR12126,
protocol version 2012). In brief, human wild-type fibro-
blasts, ESCO2-mutant RBS fibroblasts, and ESCO2-cor-
rected RBS fibroblasts were grown on 15-cm plates in
DMEM medium supplemented with 10 % Fetal Bovine
Serum (FBS). At 80 % confluence, the cells were washed
two times with PBS, and grown for another 24 h in
DMEM/10 % FBS. Subsequently, the cells were supple-
mented with 10 mM D-leucine (D-Leu) or L-Leu and in-
cubated for either 3 or 24 h. Prior to lysis, the cells were
incubated for 1 min in DMEM containing 0.1 mg/ml cy-
cloheximide (US Biological, cat. no. C8500-10). After a
rinse with ice cold PBS containing 0.1 mg/ml cyclohexi-
mide, the cells from up to three plates (~20-60, 000,000
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cells) were collected by scraping into 800 pl chilled Mam-
malian Lysis Buffer (ART-Seq 1X Mammalian Polysome
Buffer, 1 % Triton X-100, 0.1 % NP-40, 1 mM DTT, 10 U/
ml DNase I, 0.1 mg/ml cycloheximide). The cell lysate was
triturated 10 times through a 26G needle to insure
complete lysis, incubated for 10 min on ice with periodic
agitation, and clarified by a 10 min centrifugation at
20,000 x g at 4 °C. The RNA concentration of the super-
natant was determined using the Quant-iT RiboGreen
RNA Assay Kit (Invitrogen) and a SpectraMax M2 reader
(Molecular Devices) according to manufacturer’s instruc-
tions. Aliquots were flash-frozen in liquid nitrogen and
stored at —80 °C. Ribosome-protected mRNA fragments
(RPFs) and fragmented total RNA depleted for ribosomal
RNA were sequenced for each sample. Footprinting was
performed at room temperature for 45 min using ART-
Seq Nuclease (Epicentre), then stopped with SUPERa-
seeIn™ RNase Inhibitor (Life Technologies). For the 24 h
timepoint samples, 400 pl of clarified lysate was used and
2.8 units of nuclease was added per pug of RNA. For the
3 h timepoint samples, 300 pl of lysate was used and the
amount of nuclease was reduced to 0.5 units/pg of RNA.
RPFs were isolated from 200 to 400 pl of the nuclease/
SUPERase«In™ treated lysate using 2—4 Sephacryl S400
columns (GE Healthcare: MicroSpin S-400 HR, cat. no.
27-5140-01), followed by acid phenol:chloroform extrac-
tion and isopropanol precipitation. Total RNA was iso-
lated from untreated lysate by acid phenol:chloroform
extraction and isopropanol precipitation. Ribosomal RNA
was removed from 1-5 pg of RPFs and total RNA using
either the Ribo-Zero™ Magnetic or the Ribo-Zero™ Mag-
netic Gold Kit (Human/Mouse/Rat) (Epicentre). To purify
the Ribo-Zero treated samples, the RNA Clean & Concen-
trator™-5 Kit (Zymo Research) was used as described in
the ART-Seq protocol. RPFs in the range of 26—34 nt were
size selected by PAGE purification and the total RNA was
heat fragmented. Libraries were constructed as described
in the ART-Seq protocol. The desired 140-160 bp PCR-
amplified libraries were purified from excess adapter-only
product (~113 bp) by PAGE purification. Library pools
were sequenced on a HiSeq 2500 System (Illumina) with
the 50 bp Single-End read protocol.

RNA sequencing analyses

Before alignment, ribosome footprint and total mRNA li-
braries were processed to remove cloning artifacts. Proc-
essed reads were then aligned to a database of human
rRNA sequences using the bowtie2 short-read alignment
program (version 2.1.0 with parameters -k 1 -N 1 —local)
to remove reads from ribosomal RNA. A very small per-
centage of reads aligned to rRNA sequences in most cases,
ranging from 0.2 to 12 %. The remaining reads were then
aligned to the hgl9 human genome using tophat (version
2.0.8 with parameters —segment-mismatches 1 -x1 -gl
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—no-coverage-search). Translational efficiency was calcu-
lated as footprint RPKM/mRNA RPKM. Values from bio-
logical replicates were averaged together.

Gene ontology analysis

To determine enrichment for gene ontology categories,
differentially expressed or translated genes were analyzed
using the GeneAnswers package in R (version 3.0.2).
Representative gene ontology categories from each con-
trast with a P value < 0.05 were selected.

Cellular ATP assay in RBS cells

Cells were cultured as for ribosome profiling. Samples
were prepared according to the instructions provided by
the ATP Colorimetric/Fluorometric Assay Kit of the Bio-
Vision company. Cells (1 x 10°) were lysed in 100 ul of
ATP Assay Buffer and centrifuged at 4 °C at 15,000 g for
2 min to pellet insoluble material. 2—50 pl supernatant
was added to a well in a 96-well plate, and the final vol-
ume was adjusted to 50 pl/well with ATP Assay Buffer.
Samples were tested at several doses to make sure the
readings were within the standard curve range.

Mitochondria isolation for cultured cells and cytochrome
c oxidase assay

Cells were cultured as for ribosome profiling. Mitochondria
were isolated according to the instructions provided by the
Mitochondria isolation kit from the Thermo Scientific com-
pany. For the cytochrome c oxidase assay, we used the
Cytochrome ¢ Oxidase Assay Kit from Sigma-Aldrich. The
reaction was started by the addition of 50 ml of Ferrocyto-
chrome c¢ Substrate Solution and mixed by inversion. Ab-
sorbance was read at Asso/min immediately due to the
rapid reaction rate of this enzyme. Background values were
between 0.001 and 0.005 Asso/min.

Real-Time quantitative PCR of microRNAs in RBS cells
Total RNA (50-200 ng/ul) was extracted from ESCO2-
mutant RBS cells or corrected RBS cells with L-Leu or
D-Leu treatment. The RNA concentration was measured
by Bioanalyzer RNA Nano chip, and normalized for re-
verse transcription (RT). For each 15 pl RT reaction,
total RNA (10 ng of total RNA per 15 pl reaction) was
combined with the RT master mix (TagMan® MicroRNA
Reverse Transcription Kit, PN4366596, Applied Biosys-
tems). 3 pyl of the RT primers was transferred to the ap-
propriate tubes, and reactions were subjected to thermal
cycling. TagMan gene expression assays (Applied Biosys-
tems) were performed on triplicate samples with a 7500
Real-Time cycler (Applied Biosystems). U6 snRNA
serves as a reference control. The TagMan gene expres-
sion assays were performed according to the manufac-
turer’s instructions. All qRT-PCR was performed using
TagMan probes.
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Statistical analysis

The results are reported as mean values + standard error
(mean * s.e.). Statistical analysis was performed by
Student's t-test with SigmaPlot-Systat Software (Sigma-
plot Software Inc). An ANOVA two-way model was used
to compare continuous variables. A P value <0.05 was
considered statistically significant.

Description of additional data
Additional data include seven figures and thirteen tables.

Accession numbers

The data set supporting the results of this article is avail-
able in the Gene Expression Omnibus repository,
[#GSE64962].

Data availability

Original data underlying this manuscript can be accessed
from the Stowers Original Data Repository at http://
www.stowers.org/research/publications/libpb-1023.
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