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Abstract

Background: Gene duplication is a genetic mutation that creates functionally redundant gene copies that are
initially relieved from selective pressures and may adapt themselves to new functions with time. The levels of gene
duplication may vary from small-scale duplication (SSD) to whole genome duplication (WGD). Studies with yeast
revealed ample differences between these duplicates: Yeast WGD pairs were functionally more similar, less
divergent in subcellular localization and contained a lesser proportion of essential genes. In this study, we explored
the differences in evolutionary genomic properties of human SSD and WGD genes, with the identifiable human
duplicates coming from the two rounds of whole genome duplication occurred early in vertebrate evolution.

Results: We observed that these two groups of duplicates were also dissimilar in terms of their evolutionary and
genomic properties. But interestingly, this is not like the same observed in yeast. The human WGDs were found to
be functionally less similar, diverge more in subcellular level and contain a higher proportion of essential genes
than the SSDs, all of which are opposite from yeast. Additionally, we explored that human WGDs were more
divergent in their gene expression profile, have higher multifunctionality and are more often associated with
disease, and are evolutionarily more conserved than human SSDs.

Conclusions: Our study suggests that human WGD duplicates are more divergent and entails the adaptation of
WGDs to novel and important functions that consequently lead to their evolutionary conservation in the course of

evolution.

Keywords: Small-scale duplication, Whole-genome duplication, Functional divergence, Gene essentiality, Disease

genes, Protein multifunctionality, Evolutionary rate

Background

Gene duplication is a key source for generating new
gene copies from pre-existing ones [1-3]. These
newly-made gene copies are initially functionally re-
dundant and relieved from selective pressure, and
may adapt themselves to new functions [2, 4-6].
Thus, many of the previous studies concluded gene
duplication as the primary guiding force of organism
evolution for providing raw genetic materials for gen-
ome evolution [1, 2, 7]. Although, the retention of
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duplicated genes is not a trouble-free process and
most of the duplicates become nonfunctionalized and/
or lost from the genome [2], whereas others become
fixed within the genome in course of evolution. The
retention of duplicates might be initially favourable
due to circumstances like increased gene dosage ad-
vantage, where the duplication and subsequent in-
crease in the gene product may be advantageous to
the organism [5, 8]. Additionally, gene duplicates may
serve as backup copies capable of functional compen-
sation upon gene deletion [9] and provide increased
genetic robustness against deleterious mutations [10],
but their maintenance requires stringent regulation in
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gene dosage [11, 12] or expression patterns [13-16].
That apart, the duplicates may either diverge at the
subcellular protein localization [17] or share the
ancestral function [18] after complementary degenera-
tive mutations (subfunctionalization) [19] or adapt to
new functions (neofunctionalization) [2]. Furthermore,
there are also subtle differences in the extent of gene
duplication. In most of the cases, duplication involves
a single gene and termed as small-scale duplication
(SSD), whereas, large-scale duplications may involve
many genes, chromosomal segments or even the en-
tire genome, with the latter being known as whole-
genome duplication (WGD) [20]. Although small-scale
duplication can occur at any time and may be
retained in course of evolution, there are a few evi-
dences of whole genome duplication in eukaryotic
organisms, being most common and widely studied in
the evolution of plant genome [21-24]. Many previ-
ous studies highlighted the evidence of an ancient
WGD in the yeast genome [25-27]. Additionally,
evidence of two rounds of whole-genome duplication
was also prominent in the early vertebrate evolution
[28-33], which provides the raw materials for increas-
ing genome and organism complexity and extensive
species diversity [29, 31] and hence, is an important
process in vertebrate evolution [30, 31].

However, as genes’ functions are mainly mediated
by their encoded proteins, which primarily function
with the association of other such proteins [34], the
proper functioning of a gene depends on the stoichio-
metric balance of the proteins participants. The re-
tention of duplicated genes creates a stoichiometric
disparity in the protein-protein interaction network,
with the duplicated genes producing more proteins
than the non-duplicated ones [35-37]. The two extent
of duplication affect their associated protein-interaction
network differentially [20, 38—41]. In WGD, the whole
PPI network becomes simultaneously duplicated, and
the stoichiometric balance of the participant proteins
remains the same; whereas in SSD, the duplicated gene
tends to form more protein in contrast to the non-
duplicated interacting partners, thereby creating an
imbalance in the whole PPI network. Therefore, in
general, whole-genome duplicates are expected to be
retained intact within the genome [39].

Most of the studies highlighting gene duplication
compared the attributes of duplicated genes with
that of singletons [10, 42, 43]. This raised an im-
portant question —are all duplicates equal in their
genomic and evolutionary characteristics? With the
well-established gene duplication data in yeast, it
became possible to identify the duplicates originated
from whole-genome duplication as well as those
from small-scale duplication [25]. Comparing these
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two distinct duplicate groups, researchers observed
quantifiable differences in yeast [20, 41, 44]. They
found that the yeast WGDs are functionally more
similar than SSD genes, which is independent of their
sequence similarity [20, 44]. Additionally, yeast SSDs also
diverge more at their subcellular localization than the
WGDs [41]. Also, yeast SSD genes were found to
contain a higher proportion of essential genes than
WGD genes [20, 44].

The occurrence of two rounds of whole-genome dupli-
cation in early vertebrate lineage [28—-33] and the subse-
quent detection of traces of these whole-genome
duplicates in human [32, 39, 45] lead us to differentiate
the genomic and evolutionary attributes of human
small-scale and whole-genome duplicates. As the human
WGDs stem from the ancient two rounds of genome
duplication that had occurred in early vertebrates, it can
be stated that these human duplicates became subjected
to more evolutionary pressure due to their long term
evolutionary exposure than that in yeast. Therefore,
our study will explore the relative importance and the
long-term fate of these whole-genome duplicates that
had originated during the early vertebrate evolution in
contrast to the duplicates originating spontaneously at
small-scale.

Results

Functional similarity of human SSD and WGD genes

The functional similarities between each pair of hu-
man small-scale and whole-genome duplicates were
calculated using the Gene Ontology (GO) annotation
from the biomart interface of Ensembl (version 77)
[46], using GO domains ‘biological process’ as well
as ‘molecular function’. We obtained a higher
functional similarity in small-scale duplicates than
the whole-genome duplicated group (Table 1). How-
ever, the functional diversification of paralogs is
dependent on their nonsynonymous nucleotide sub-
stitution per nonsynonymous site (dN), and the
whole-genome duplicates tend to have a higher dN
value the small-scale duplicates, for being evolution-
arily more ancient. Therefore, we binned our dataset
according to different dN ranges (nonsynonymous
nucleotide substitution per nonsynonymous site) (see
Materials and methods) and compared the functional
similarity between SSD and WGD duplicate pairs.
This approach is similar to that adopted by Hakes et
al. [20]. We found that SSD duplicate pairs are
functionally more similar than the WGD pairs in
each dN range (Table 1) considering both their
involvement in biological processes and molecular
function (Fig. 1). In other terms, human WGD pairs
were found to be functionally more divergent, inde-
pendent of their sequence divergence.
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Table 1 Differences between the properties of human small-scale and whole-genome duplicate pairs in different dN ranges. Pair
wise two-tailed Mann-Whitney U test were used to compare the means of SSD and WGD pairs within each group

Parameter Database used Overall dN 0.0-0.1 dN 0.1-0.2
Measured SsD WGD P-value ) WGD  P-value ) WGD P-value
Functional Similarity Shared GO Terms ¥= 0710 X=0415 <100x107° X=0734 X=0499 2325x10™% %=0720 X=0476 5925x10 '
between paralogs lior Biological N=14742 N=12022 N=3640 N=414 N=2754 N=1140
rocess
Shared GO Terms ¥=0840 X=0659 <100x10° %=0850 X=0724 6077x10% %=085 X=0706 1075x10"'%*
for Molecular
Function N=18584 N=12392 N=4668 N=410 N=3510 N=1188
Shared Subcellular GO Cellular ¥=0782 X=0541 <100x107° X=0816 ¥X=0579 5341x107° X=0788 <X=0581 5652x107""°
Compartment Component _ _ _ _ _ _
of paralogs N=15248 N=12198 N=3790 N=380 N=2914 N=1162
Gene expression Human Protein %= 0403 X=0193 <100x10° %=0615 X=0254 1558x10°% %X=0414 X=0253 1774x10 %
profile similarity Atlas B B B B B B
between paralogs N=11726 N=13060 N=2588 N=426 N=2758 N=1226
Expression ¥=0450 X=0216 <100x107° X=0508 X=0284 1.032x107° X=0457 X=0280 5953x107>
Atlas N=15404 N=13072 N=3628 N=422 N=3458 N=1220
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Table 1 Differences between the properties of human small-scale and whole-genome duplicate pairs in different dN ranges. Pair
wise two-tailed Mann-Whitney U test were used to compare the means of SSD and WGD pairs within each group (Continued)

Parameter Database used dN 0.2-03 dN 03-04 dN>04
Measured SSD WGD P-value SSD WGD P-value SSD WGD P-value
Functional Similarity Shared GO Terms %= 0657 %=0440 2892x107'%° X=0726 ¥=0413 1397x107%% X=0710 ¥=0391 1983x10"">°
between paralogs fpor Biological N=3328 N=2002 N=4264 N=2192 N=756 N=6274
rocess
Shared GO Terms %= 0810 X=0696 1814x107° ¥=0846 X=0677 4976x107°'"® %=0826 X=0628 5072x107'"
for Molecular
Function N=4300 N=2076 N=5246 N=2250 N=860 N=6468
Shared Subcellular GO Cellular ¥= 0740 X=0541 3344x107"%° %=0781 X=0555 1421x1072"° X=0777 X=0527 1.156x107'%°
Compartment Component _ _ _ _ _ _
of paralogs N=3444 N=2036 N=4356 N=2228 N=744 N=6392
Gene expression Human Protein %= 0307 %=0.191 7331x107? %=0316 ¥=0.190 1131x107* =%x=0322 %=0.179 1308x107"
profile similarity Atlas B _ _ _ _ _
between paralogs N=2834 N=2158 N=3042 N=2366 N=504 N=6884
Expression ¥=0430 X=0216 1377x107'%® %=0420 X=0219 5471x107°° %X=0394 %=0199 5735x107°
Atlas N=3792 N=2166 N=3922 N=2370 N=604 N=6894

Subcellular localization of SSD and WGD pairs

In addition to the functional divergence, insight into
the function of a gene is associated with the location
of its encoded protein within the cell at the sub-
cellular level. Many previous studies reported that
gene duplication and the functional redundancy of
duplicates can often be neutralized at the protein
level by the subcellular protein compartmentalization
[17, 47, 48]. Therefore, we also considered the
subcellular localization of their encoded proteins as
an alternative and/or associated mechanism beside
functional divergence of the duplicated genes. The
localization of the protein can be obtained by using
the Gene Ontology (GO) terms under the GO do-
main ‘Cellular Component’ against its gene identifier.
The shared cellular component between the para-
logous copies of all SSD and WGD genes were
calculated (see Materials and methods). We observed
an overall higher subcellular compartment sharing of
SSD pairs than that of WGD pairs (Table 1). When
we binned our dataset according to different dN
ranges as mentioned previously, the trend remains
the same for each dN range (Table 1, Fig. 2), which
indicates that the SSD genes are more often co-
localized, and WGD genes are significantly more
diverged in their subcellular localization, irrespective
of their sequence divergence.

Gene expression correlation between SSD and WGD pairs
The divergence of duplicated genes and can also
occur at the gene expression levels. Earlier studies
suggested that the gene expression patterns of dupli-
cated pairs often undergo a spatial variation [reviewed
in Li et al. [15]], and this can be considered as a
mechanism for their stable maintenance [13]. There-
fore, it is essential to understand the co-expression of

the paralogs in different tissues after gene duplication,
which is measured using the gene expression profiles
of the paralogous copies in a wide range of normal
tissues [14-16]. We used the high-throughput recent
RNA-seq gene expression data of a wide range of
normal human tissues from the Human Protein Atlas
[49] and Expression Atlas [50] (see Materials and
methods for more details). However, we observed that
human SSD pairs have higher expression profile simi-
larity than the WGD counterparts as a whole, and in
each dN range (Table 1, Fig. 3), suggesting that the
functionally redundant human SSD genes also have
more correlated expression profiles, and WGDs tend
to diverge more in gene expression patterns.

Evolutionary rate of human SSD and WGD genes

The differences of human SSD and WGD pairs in their
evolutionary genomic attributes clearly suggest that the
human WGDs may tend to adapt themselves to new
functions and locations. To investigate this, we used the
one-to-one Mouse as well as Chimpanzee orthologs (see
Materials and methods for details) to compare the
evolutionary rates of human SSD and WGD genes by
the Nonsynonymous nucleotide substitution per nonsy-
nonymous sites (AN) and the %Y ratio, where 'dS' denotes
synonymous nucleotide substitution per synonymous
sites. We obtained a significantly slower evolutionary
rate in WGD genes than the SSD genes for both the
cases (Table 2, Fig. 4), indicating that the human WGD
genes are evolutionarily more conserved, besides being
functionally more diverged than the SSD genes, which is
also supported by a previous study [51] and is consistent
with the idea of the slower evolutionary rate of dupli-
cated genes following their adaptation to new circum-
stances as described in Jordan et al.[43].
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Fig. 1 Functional similarity between human small-scale and whole-genome duplicate pairs. The SSDs are represented in brick red and WGDs are
represented in blue. The red and blue lines represent the mean functional similarity of SSD and WGD pairs, respectively. The black line represents
the mean functional similarity of all human duplicates. The functional similarities between different dN ranges were calculated using both GO
domains. a. Biological Process and b. Molecular Function (For every dN range, P < 0.05). For exact P-values, refer Table 1

dN>04

Multifunctionality of human SSD and WGD genes

The higher probability of functional, sub-cellular
localization and gene expression divergence of hu-
man WGD genes and their evolutionary conservation
suggests that they may be associated with miscellan-
eous functions in contrast to the SSD counterparts.
As our study is based on the functional fates of SSD
and WGD genes, we were interested to observe which
group is associated with more numerous functions. We
used the unique GO biological process terms [52, 53] and
the Pfam domain count [54] as proxies of multifunctional-
ity (see Materials and methods). We observed that WGD-
only genes are associated with more numerous Gene
Ontology terms [Mean number of unique GO terms in
SSD ~ 5, Mean number of unique GO terms in WGD = 10,
P=6707 x 107'%%, Mann Whitney U test, Ngsp = 2569,
Nywgp =5437] [Fig. 5a] and contain significantly more

domains in their encoded proteins [Mean number of Pfam
domains in SSD = 1.61, Mean number of Pfam domains in
WGD =202, P=1.130x10"%, Mann Whitney U test,
Nissp = 3060, Nywgp = 5607] [Fig. 5b] than SSD-only genes.
This suggests that human whole-genome duplicates
are associated with more variety of functions than
human SSD genes.

Gene essentiality between human SSD and WGD genes

So far, the comparison between the human SSD and the
WGD genes showed that the SSD genes tend to diverge
less in their function, subcellular localization, as well as
in gene expression levels in different tissues. Addition-
ally, WGD genes were also found to be evolutionarily
more conserved and were adapted to new functions. But
the importance of such functions from organismal
perspective also plays a crucial role to get the whole
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Fig. 2 Subcellular co-localization between human small-scale and whole-genome duplicate pairs. The SSDs are represented in brick red and
WGDs are represented in blue. The red and blue lines represent the mean functional similarity of SSD and WGD pairs, respectively. The black line
represents the mean functional similarity of all human duplicates (For every dN range, P < 0.05). For exact P-values, see Table 1

picture. The importance of a gene can be measured in
terms of gene essentiality. We used the Online GEne Es-
sentiality (OGEE) Database [55] to obtain human
essential genes [56] and observed a significantly higher
proportion of essential genes among the WGD genes
[Proportion of essential genes in SSD genes =4.601 %,
Nssp = 2692; Proportion of essential genes in WGD
genes = 11.344 %, Nygp =5730] [Z=-9.99, confidence
level 99 %; P<1.00 x 107%, two sample Z-test]. In other
words, a greater portion of WGD genes shows lethality
or sterility upon deletion than SSD genes, due to the
absence of redundant paralogs in the former group.

Disease association of human SSD and WGD genes

Like gene essentiality, another important factor contrib-
uting to the importance of a gene in the organism is its
disease association. It was previously hypothesised that
gene duplication creates additional gene copies, and the
increased functional redundancy can reduce the probability
of disease formation by functional restoration upon gene
deletion [57-59]. Therefore, the disease genes should re-
main as singletons [60]. More recently, studies linking gene
duplication with disease hypothesise that duplication in-
crease genetic redundancy, which in turn prefers accumula-
tion of disease-associated mutations on the duplicates and
hence, the duplicates may be more disease prone than the
singletons [61]. Works with Mendelian disease genes re-
ported their association with WGD genes [39, 62]. For our
study, we considered all human disease associated genes
from the Human Gene Mutation Database (HGMD) [63],
which contains both Mendelian (monogenic) and complex
(polygenic) disease genes. We observed that the proportion
of disease genes is much higher among genes originating
from whole-genome duplication [Proportion of disease
genes in WGD genes = 61.46 %, Nywgp = 5908]; than the
small-scale duplicates [Proportion of disease genes in

SSD genes =27.89 %, Nssp = 3478] [Z = -31.420, confi-
dence level 99 %; P<1.00x107% two sample Z-test].
This suggests that the reduction of functional redun-
dancy in WGD genes increases disease susceptibility,
and the increased ability of functional restoration
reduce disease association of SSD genes.

Discussions

Gene duplication is the major source of genetic novelty
that brings about genomic evolution. The term ‘genetic
novelty’ comprise the generation of new genes from the
pre-existing ones by mutation. Genetic mutation creates
structural changes within the DNA which may lead to
changes in the protein structure as well as its function.
Although initially the duplicates are functionally redun-
dant, they may either diverge or be maintained as
backup copies during the course of evolution [2, 7, 64].
Recent studies with yeast confirmed that the whole-
genome duplication maintains the stoichiometry of
protein interaction network by increasing the dosage of
its every participant, and small-scale duplication creates
a stoichiometric imbalance within the network and
hence, become functionally more divergent to maintain
this balance [20, 38-41]. However, with the increasing
organismal complexity and the genetic robustness, the
whole-genome duplicates may also adapt to new func-
tions, besides maintaining the resilience of protein inter-
action network. It will therefore be very interesting to
explore the long-term fates of whole-genome duplication
by observing human whole-genome duplicates (WGD),
as the identifiable WGDs in human are traced from long
back in the evolutionary scale i.e. from the two rounds
of whole-genome duplication that had occurred in early
vertebrate evolution . Therefore they must be evolved
during the course of evolution from early vertebrates
(like fish) to humans. In this study, we explored the
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on data from a. Human Protein Atlas and b. Expression Atlas. The SSDs

distinguishable differences between human small-scale
and whole-genome duplicates. As we mentioned, the
small-scale (SSD) and whole genome duplicates (WGD)
are not similar in terms of their origin, and therefore in
sequence divergence. So, we binned our datasets accord-
ing to the non-synonymous nucleotide substitutions (dN)
to compare the similarities in evolutionary genomic

Table 2 The evolutionary rate differences between human small-sca

properties between SSD and WGD duplicates independ-
ent of sequence changes that bring changes in amino
acids, and in turn encoded proteins [20]. We observed
that the human SSD and WGD duplicates were not
similar in terms of their evolutionary and genomic
properties. Based on their gene ontology terms, we
found that WGD pairs share less functional similarity

le and whole-genome duplication using mouse (Mus musculus)

and chimpanzee (Pan troglodytes) as outgroups. Two-tailed Mann-Whitney U-Test was used for comparisons between groups

Outgroup Used Gene Group Number of genes ~ Mean dN  P-value Mean Z—AS’ P-value

Mouse (Mus musculus) Human Small-Scale Duplicates 958 0.089 6212x 10718 0.135 2415x 107"2
Human Whole-Genome Duplicates 5689 0.062 0.101

Chimpanzee (Pan troglodytes) ~ Human Small-Scale Duplicates 1611 0012 3.842x 1077 0480 2410x 10776
Human Whole-Genome Duplicates 5309 0.006 0.257
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than the SSD pairs, irrespective of their sequence di-
vergence for both the ‘GO Biological Process’ and
‘GO Molecular Function’ domains (Fig. 1, Table 1).
We observed that these results are not influenced by
duplicates having a large family size by conducting
the same experiments using the closest duplicate pair
only for both SSD and WGD duplicates (Additional
file 1: Figure S1). We also observed that this difference
is not due to the percentage identity based on which the
SSD pairs are obtained, as using more stringent thresholds
for determining SSD pairs also shows the similar trend
(Additional file 1: Figure S2).

As the function of a protein is dependent on its
localization in subcellular compartments [65], another
possible mode of channelizing duplicated genes is in the
subcellular localization of their encoded proteins [17].
Previous reports highlighted that the subcellular adapta-
tion of duplicated proteins is also associated with the
functional diversification [17, 47]. Consistent with this
finding, we also observed a higher subcellular colocaliza-
tion of the proteins encoded by SSD pairs (Table 1, Fig. 2;
Additional file 1: Figure S3). This pattern is also opposite
to that of yeast, where SSD pairs were more divergent
in their subcellular localization, suggesting the human
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whole-genome duplicates have a higher probability of
adapting themselves to new locations than the SSD
counterparts. However, in higher eukaryotes having a
tissue-level organization, gene duplication and the
subsequent functional redundancy between the para-
logs are often regulated by patterning their gene ex-
pression in different tissues [13-16, 66-68]. For
example, the paralogs may express differentially in
different tissues so that the amount of the produced
protein remain at a steady level. Therefore, the spatial
variation of gene expression can be treated as a pos-
sible candidate for the maintenance of duplicated
pairs in humans. But the differences in gene expres-
sion patterns of SSD and WGD duplicated pairs were
still not clear. Using high-throughput RNA-seq gene
expression data of human for at least 27 normal tis-
sues, we observed that the SSD pairs are more often
coexpressed in the same tissue, whereas, WGD pairs
tend to express differentially, ie. in different tissues.
This explains the idea that these WGD duplicates have
not only adapted themselves to divergent functions or
new locations, but also in divergent tissues. This also
suggests a higher probability of specialization of expres-
sion patterns of human WGD pairs than the SSDs having
the same level of sequence divergence (Fig. 3, Table 1).
Using more stringent sequence identity for identifica-
tion of SSDs also shows the similar trend (Additional
file 1: Figure S4). Additionally, using closest paralogs
to normalize the influence of duplicates with large
gene families also shows that the differences between
human SSD and WGD pairs hold true (Additional
file 1: Figure S1). However, as humans are very
distantly related with reference to the vertebrate whole-

genome duplication event, we hypothesised that our
results reflect the long-term evolutionary fates of
genes originating from whole-genome duplication, with
those originating from small-scale duplications. To prove
our hypothesis, we firstly explored the influence of
recent small-scale duplications in our dataset uding
phylostratum rank as the age of SSD genes [69]. We
differentiated the SSD pairs in two groups- young-
SSD pairs and o0ld-SSD pairs (see Additional file 2 for
more details) and reperformed our overall analysis. We
observed that the proportion of young SSDs are very
low in our dataset (Z=79.875, confidence level 99 %;
P<1.00x107% two sample Z-test) and differences
between o0ld-SSD and WGD genes still persist
(Additional file 2: Figure S5). From another perspec-
tive, we used Xenopus tropicalis as a control and
compare the attributes of small-scale and whole-
genome duplicates in xenopus genome. Interestingly,
both the SSD and WGD pairs shows high functional
similarity in xenopus, with very little or no difference
(Additional file 3: Figure S6). This also indicates that
in course of vertebrate evolution, although initially
both the SSD and WGD duplicates were similar in
their attributes, the WGD genes were found to be
more suitable candidates to diverge themselves to
perform novel functions.

The higher functional divergence of human WGD
genes and divergence in their subcellular and tissue-
specific gene expression patterns lead us to investigate
the differences in evolutionary conservation between
SSD and WGD genes. In general, the duplicated genes
tend to evolve faster than singletons just after duplica-
tion due to the increased functional redundancy, and
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subsequently upon its functional specialization, these
duplicates evolve at a slower rate to maintain the func-
tions to which it became adopted [43]. However, the
human WGD genes are identified as the genes originated
at the early vertebrate lineage, where the two rounds of
genome duplication had happened. We observed a slower
evolutionary rate in human WGD genes in contrast to
SSD counterparts, which clearly demonstrates that the
WGD genes has become adapted to new functions and
lost its redundancy, and became slow evolving to
maintain these functions (Fig. 4). The slower evolu-
tionary rates and higher functional divergence of
WGD genes indicate that the functions, to which they
are adopted, are also evolutionarily conserved.

Our hypothesis that human WGDs have adapted to
divergent functions and became evolutionarily conserved
is further strengthened by the analysis of protein mu-
Itifunctionality. The WGD genes and their encoded
proteins tend to have higher multifunctionality than the
SSD genes (Fig. 5), which strengthen our idea of higher
adaptation of human WGD genes to new functions in
contrast to SSD counterparts. However, besides the
functional fate of duplicated genes, we were interested
to comprehend the importance of such functions to the
organism’s life. Therefore, we also considered the
importance of such functions to human. We used the
gene essentiality along with the disease association as
measurements of the vitality of a gene. Firstly we studied
the effect of gene deletion to understand the functional
restoration by the paralogous copy(ies). A recent study
showed that the proportion of essential human gene is
significantly higher in duplicates than in singletons [56].
Additionally, disease-associated genes were found to be
enriched in duplicates [61]. Considering Mendelian
disease genes, researchers also found WGDs to be more
frequently disease-associated [39]. As our data contains
two groups of duplicates which are quite different in
their evolutionary genomic properties, we were curious
to observe the proportion of essential genes and disease-
associated genes (considering both Mendelian and
Complex disease genes) among human SSD and WGD
gene sets. We obtained a higher proportion of essential
genes, as well as disease genes in the whole-genome
duplicate set. Taken together, these results prove that
the WGD genes have adapted themselves to serve
more functions, which are more often crucial for
humans, and may cause disease, sterility or even lethality
upon disruption.

Conclusions

In summary, our results suggest that the human dupli-
cates originated from WGD event in early vertebrate
evolution are quite different from those originating
spontaneously at a smaller-scale (SSD), but these
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differences are exactly opposite to that of yeast. The pos-
sible explanation for this scenario is that the human
WGDs have been traced back from long time ago on the
evolutionary scale, as in humans, we obtained the WGDs
from two rounds of whole-genome duplication occurred
in early vertebrate lineage. Additionally, the SSDs in our
dataset are also enriched in ancient genes. Clearly, it
suggests that both the human SSD and WGD genes have
faced many evolutionary challenges than that in yeast.
However, we found that in long evolutionary timespan,
WGDs are more prone to diverge themselves in struc-
ture, function as well as expression to perform new and
beneficial roles within the organism than the SSD genes.
This also increases the chance to cause disease or lethal-
ity upon mutation on the WGD genes, due to the inabil-
ity of their paralogous copies to restore the gene-
deletion fitness. However, why the ancient SSD and
WGD genes show differences in their functional diver-
gence, being evolutionarily similar in origin, is a matter
of future investigation. In conclusion, our study provide
an insight into the long-term evolutionary fate of dupli-
cates originated from whole-genome duplication, rather
than their immediate impact on the organism, to which
the early studies with yeast [20, 41, 44] were focussed.

Methods

Identification of human small-scale and whole genome
duplicates

We obtained 22,447 human protein coding genes from
the biomart interface of Ensembl version 77 [46] (http://
www.ensembl.org/biomart/martview). The whole-genome
duplicate (WGD) pairs were obtained and compiled from
two datasets: 1. Makino and McLysaght [39] and 2.
OHNOLOGS (http://ohnologs.curie.fr/) [45]. We used the
strict [g-score (outgroup) < 0.01 and q-score] (self com-
parison) < 0.01] dataset of OHNOLOGS database to
discard false positives and maintain stringency of our data.
All other duplicates were obtained from the biomart inter-
face of Ensembl 77 [45] and termed as small-scale dupli-
cates (SSD). We used 50 % sequence identity with high
paralogy confidence to assign paralogs, in order to
retain old and/or distant paralogs. Finally, we ob-
tained 34,746 duplicated pairs with 21,446 SSD and
13,300 WGD pairs comprising 4670 and 7070 genes,
respectively (Additional file 4: Table S1).

As our dataset contains two groups of duplicates origi-
nated differentially in evolutionary time-scale, they are
also different in terms of sequence divergence between
duplicated pairs. The whole genome duplicates have
originated during the evolution of early vertebrates and
the small-scale duplicates have originated spontaneously
at different times, thus, the latter may contain more re-
cent duplicates with a possibility of being less diverged
in sequence level. Therefore, it is necessary to remove
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the bias due to the differential sequence divergence of
SSDs and WGDs for calculating their differences in their
functional properties. For this, we binned our dataset ac-
cording to the nonsynonymous nucleotide substitution
per nonsynonymous sites (AN) between each duplicated
pairs, as the nonsynonymous substitutions bring change
at protein level and older duplicate group (WGD) will
tend to have higher dN than the newer one (SSD).
Finally, both SSD and WGD duplicate pairs, we ob-
tained five groups based on dN ranges between the
paralogs—dN 00-0.1» AN 0102, AN 0203 dN g3 04
and dN .4 and differentiated the evolutionary features
between SSD and WGD genes in each dN range.

Functional similarity

The functions of human protein coding genes repre-
sented by their Gene Ontology terms were obtained
from the biomart interface of Ensembl version 77 [46].
We considered the GO domains ‘Biological process” as
well as ‘Molecular function’ separately for functional
similarity measurement. The functional similarity
within each duplicate pair were calculated by their GO
annotations using the following formula adapted from
the Bayesian data integration method [44, 70]-

2 x 8(i, )
[GO terms(i) + GO terms(j)]

Functional Similarity(i,j) =

Where ‘i’ and " are duplicated pairs and ‘S(i,j)’ repre-
sents the Gene Ontology terms shared between the
duplicated pairs 1 and .

Subcellular localization

The protein subcellular localization represented by the
respective genes’ Gene Ontology terms for the GO
domain ‘Cellular component’ were obtained from the
biomart interface of Ensembl version 77 [46]. Considering
the Gene Ontology terms of a gene and its paralog, we
obtained the subcellular compartment sharing for each
SSD and WGD duplicate pairs. With the same for-
mula used for functional similarity calculation men-
tioned previously, we calculated the subcellular
compartment sharing for each duplicate pairs and
compared the SSD and WGD genes of different dN
ranges (as mentioned above).

Gene expression

The RNA-seq gene expression data of human were
taken from two databases- The gene expression values
of 9113 duplicated genes in 27 different tissues (namely
adipose tissue, adrenal gland, appendix, bone marrow,
cerebral cortex, colon, duodenum, oesophagus, gallblad-
der, heart muscle, kidney, liver, lung, lymph node, ovary,
pancreas, placenta, prostate, salivary gland, skin, small
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intestine, spleen, stomach, testis, thyroid gland, urinary
bladder and uterus) were extracted from the human
protein atlas Release 9 (http://www.proteinatlas.org/)
[49, 71] and 9393 duplicate genes in 32 different tissues
(namely adipose tissue, adrenal gland, ovary, appendix,
bladder, bone marrow, cerebral cortex, colon, duodenum,
endometrium, oesophagus, fallopian tube, gall bladder,
heart, kidney, liver, lung, lymph node, pancreas, placenta,
prostate, rectum, salivary gland, skeletal muscle, skin,
small intestine, smooth muscle, spleen, stomach, testis,
thyroid and tonsil) were obtained from Expression Atlas
(http://www.ebi.ac.uk/gxa) [50, 72], which present stable
repositories of experimental RNA-seq gene expression
data in human tissues. The Pearson correlation coeffi-
cient (see formula below) was used to determine the
expression profile similarity within the paralogous
copies.

Pearson correlation coefficient(r)

) Ny (30 ()
ey ]2

Where ‘i’ and ‘" are paralogous pairs, ‘N’ is the total
number of tissues, ‘Yij’ is the sum of the products of
paired expression signal intensities, Y’ sum of expres-
sion signal intensities for gene ‘i, ¥ is the sum of
expression signal intensities for gene %, (Xi*)" is sum of
squared expression signal intensities of gene ‘i, ‘Yj* is
sum of squared expression signal intensities of gene ‘.

Evolutionary rate

The oldest and widely used measurement of evolu-
tionary rate calculates the evolutionary rate by using
either dN values [73], or the ‘% ratio [74, 75], where
'dN" denotes Nonsynonymous nucleotide substitution
per nonsynonymous sites and 'dS' stands for Syn-
onymous nucleotide substitution per synonymous
sites. For our study, we obtained one-to-one Mouse
(Mus musculus) and Chimpanzee (Pan troglodytes)
orthologs for each human genes to obtain the dN and
dS values from the biomart interface of Ensembl ver-
sion 77 [46]. Mutation saturation was controlled by
discarding all dS values>3 [76]. We discarded the
genes having paralogous copies from both small-scale
and whole-genome duplications and used the nonredun-
dant set of 9386 genes with only SSD or only WGD para-
logs, but not both. Considering these SSD-only and
WGD-only pairs, we obtained two distinct sets of genes:
1. Genes (and its paralogous copies) involved in Small-
scale duplication only (SSD only) (containing 3478 genes),
and 2. Genes involved in Whole-genome duplication only
(WGD only) (containing 5908 genes). The dN values and
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‘:I—I;[ ratios between these groups were compared and used

as the measurement of evolutionary rate.

Multifunctionality

The Multifunctionality of a gene and its encoded protein
was measured by two approaches: A. Using their Gene
Ontology annotation [77] for the GO domain ‘biological
process’ from Ensembl Genome Browser [46], we calcu-
lated the unique biological processes of which a gene
and its encoded protein(s) take part and used as the
measurement of multifunctionality [51, 52], B. Addition-
ally, we also considered the number of functional protein
domains as proxy of Multifunctionality using Pfam
protein families database. Finally, we compared the
multifunctionality of SSD-only and WGD-only genes.

Gene essentiality

The human gene essentiality data were obtained from
the Online GEne Essentiality (OGEE) database (http://
ogeedb.embl.de/#overview:) [55]. After matching this
essentiality data with our dataset, we finally obtained
gene essentiality information of 2692 SSD-only and 5730
WGD-only genes. We compared the proportion of
essential genes between these duplicate sets.

Disease association

Human disease genes were obtained from ‘The Human
Gene Mutation Database’ (http://www.hgmd.cf.ac.uk/ac/
index.php) [63]. After discarding redundancy, we were
able to identify 9668 disease genes of which, 9299 genes
were matched to our dataset. This contains both the
monogenic and the polygenic disease genes and is con-
sidered as human disease-associated genes. All other
genes were termed 'non-disease genes' (N =13148). We
compared the proportion of disease genes among the
SSD-only (N = 3478) and WGD-only (N = 5908) sets.

Software

We used the SPSS package (version 13) [78] and our
in-house PERL-script for all statistical analyses. The R
package [79] was used for data representation.

Availability of supporting data

The dataset of human small-scale and whole-genome
duplicate pairs used in the study is available in Additional
Table S1.

Ethics statement

The human data used in the study were collected from
publicly available databases. Therefore ethics was not
required for our study.
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