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Abstract

Background: Molecular mechanisms associated with sexual dimorphism in cattle have not been well elucidated.
Furthermore, as recent studies have implied that gene expression patterns are highly tissue specific, it is essential to
investigate gene expression in a variety of tissues using RNA-seq. Here, we employed and compared two statistical
methods, a simple two group test and Analysis of deviance (ANODEV), in order to investigate bovine sexually
dimorphic genes in 40 RNA-seq samples distributed across two factors: sex and tissue.

Results: As a result, we detected 752 sexually dimorphic genes across tissues from two statistical approaches and
identified strong tissue-specific patterns of gene expression. Additionally, significantly detected sex-related genes
shared between two mammal species (cattle and rat) were identified using qRT-PCR.

Conclusions: Results of our analyses reveal that sexual dimorphism of metabolic tissues and pituitary gland in
cattle involves various biological processes. Several differentially expressed genes between sexes in cattle and rat
species are shared, but show tissue-specific patterns. Finally, we concluded that two distinct statistical approaches
have their advantages and disadvantages in RNA-seq studies investigating multiple tissues.

Keywords: RNA-seq, Sexual dimorphism, Tissue-specific gene expression, ANODEV

Background
The molecular mechanisms underlying sexual dimorph-
ism have only been partially elucidated. Gene expression
analysis has been utilized to answer relevant questions
through analysis of transcriptomic differences. While
many of these studies have been performed on data from
humans, rodents, and fruit flies, only a few studies have
attempted to characterize sexual dimorphism in cattle
[1, 2]. Additionally, most bovine transcriptomic research
with the goal of identifying mechanisms of sexual di-
morphism related to tissue growth and development has
been performed exclusively on pre-implantation em-
bryos; exploratory analyses on other tissues may provide
further insight into these mechanisms.

Bovine beef and milk are important sources of nutri-
tion for humans [3]. The quality and quantity of these
nutrition sources have been shown to be affected by sex
and the expression of sex determination genes in the
food-producing animal [4, 5]. Investigation of sexual di-
morphism in metabolic tissues such as liver, muscle and
adipose tissue from cattle is crucial for both research
and the food production industry. Results of previous
microarray studies which investigated sex differences in
metabolic tissues and brain in mouse revealed that bio-
logical pathways are highly distinct between males and
females. Additionally, comparison of sex in multiple tis-
sues revealed a tissue-specific pattern of gene expression
[6]. Given these results, we expect to find clear sexual
differences in cattle metabolism as well.
While the entire brain displays sexually dimorphic

phenotypes, the hypothalamus-pituitary axis acts as one
of the primary structures which controls sexual di-
morphism in the central nervous system (CNS) as well
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as peripheral tissues. The pituitary gland, known as the
“master gland” of the body, acts as the central endocrine
regulator of metabolism, growth, and sexual maturation.
In order to perform these functions, unique cell types in
the anterior pituitary gland secrete polypeptide hormones
such as growth hormone (GH) and gonadotropins, a
family of protein hormones including luteinizing (LH) and
follicle stimulating (FSH) hormones, by appropriately or-
chestrating signals from environmental and internal
stimuli. Additionally, profound sex differences exist in
hormonal regulation and responses of the pituitary gland
to external stressors, which is why females display a higher
vulnerability to various neuropsychiatric disorders [7, 8].
Hence, examination of sexually dimorphic gene expres-
sion patterns in the pituitary gland simultaneously with
metabolic tissues will improve our understanding of
sexual dimorphism in physiological and metabolic per-
spectives [9, 10]. Additionally, there is a lack of a
species-specific research using transcriptome analysis
on bovine pituitary-gland tissues to explore sexual
dimorphism.
In recent years, the experimental design of transcrip-

tomic studies to detect differentially expressed genes
(DEGs) has become increasingly more sophisticated in
terms of considering multiple factors, which is often re-
quired for simultaneous investigation of multiple tissues
samples. While most microarray studies employ a two-
way analysis of variance (ANOVA) [11, 12] for detecting
DEGs from multifactor designed data, only a few RNA-
seq based transcriptome analysis studies continue to be
performed using a multi-factorial design. There are two
reasons why limited RNA-seq studies with complex ex-
perimental designs are performed. Firstly, high RNA-seq
prices make biological replication difficult. Secondly,
there is an absence of analysis methods for detection of
DEGs in multi-factorial designed RNA-seq data. While
complex-structured RNA-seq data can be analysed using
R or SAS, such approaches are often inadequate for
handling normalization, assumption of distribution, etc.
Fortunately, recent methodological advances [13, 14]
have made it possible to perform multi-factorial analysis
on RNA-seq data by using an analysis of deviance
(ANODEV) model.
In the present study, we aimed to identify sexual di-

morphic genes that contribute to bovine sexual di-
morphism. Two statistical approaches were utilized for
analyzing complex RNA-seq data from samples collected
from several different tissues- liver, muscle, visceral adi-
pose tissue and pituitary gland: 1) a simple two group
comparison for detecting sexually dimorphic genes in
each tissue (M1); and 2) an ANODEV based approach
which simultaneously considers not only the effect of
sex but also tissue type on the model (M2). Here we re-
port advantages and disadvantages of these approaches

for identification of sexually dimorphic genes in several
tissues, as well as identified diverse mechanisms of
bovine sexual dimorphism.

Results
Description of the RNA-seq analysis pipeline
For extraction of RNA-seq gene expression data, we
employed Trimmomatic [15]. As shown in (Additional
file 1: Table S1), this resulted in clean reads (adapter se-
quences removed) with a 98.75 % average surviving
reads rate among 40 samples. These reads were aligned
to the cattle reference genome (bos taurus7 from the
UCSC genome database) using Bowtie2 with default op-
tions with an average 81.91 % mapping rate. We calcu-
lated gene expression using General Transfer Format
(GTF) file from UCSC genome browser with mapped
result on HTSeq python package. 13,570 total genes re-
sulted from this pipeline and detailed numbers of genes
in each chromosome is reported in (Additional file 1:
Table S2). Non-expressed genes across all samples were
removed. A total of 13,148 genes were used for DEG
analysis.

Identification of sexual dimorphic genes using M1 in each
tissue
For identification of sexual dimorphic genes in several
tissues, we performed a two-group test on each tissue
using M1. As a result, 24, 14, 86, and 57 genes were de-
tected as significantly differentially expressed in liver, fat,
muscle, and pituitary-gland tissues, respectively (FDR
adjusted P-value < 0.05). Three genes were commonly
identified in all four tissues: DDX3Y, USP9Y, and ZFY
(Fig. 1-(a)). Significantly detected DEGs reveal high
tissue-specificity; only a few DEGs were found com-
monly significant in several tissues simultaneously. Of
the 24 significantly detected DEGs in liver tissue, 21
genes were only identified in liver tissue, including
CUX2 (FDR adjusted P-value: 4.41E-04), CYP7A1
(4.41E-04), AK4 (1.05E-03), COL27A1 (1.18E-03), and
TNC (1.32E-03). This pattern of strong tissue-specificity
in detected DEGs was also observed in other tissues. In fat
tissue, 8 out of 14 total DEGs were identified as fat-tissue
specific sexually dimorphic gene, including IGFBP1
(2.02E-04), TECTB (6.77E-03), and ACR (1.24E-02). In
muscle tissue, the highest number of sexual differenced
genes was detected. While 86 genes were significantly de-
tected, only 7 DEGs were commonly identified in other
tissue. MYH1 (7.51E-16), MMP12 (1.02E-07), MCHR1
(4.15E-05), and SH3KBP1 (2.89E-04) were found to be ex-
tremely significant between female and male exclusively in
muscle tissue. Finally, of 57 DEGs detected as significant
in pituitary-gland tissue, 51 of those were tissue specific
including GRP (1.79E-14), LOC781146 (2.70E-09), and
LYSB (9.12E-08). For more detailed investigation of tissue
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Fig. 1 Tissue specificity of the detected sex-related genes. a Venn diagram of DEGs list using a two-group test in each tissue (FDR adjusted P-value < 0.05).
b Result of hierarchical clustering among each tissue samples using the all genes with Pearson correlation coefficients. c Number of detected genes and
tissue specific genes by FDR cutoff and their tissue specificity calculation
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specificity, we performed hierarchical clustering in order
to uncover the relationship among tissues using all genes.
Figure 1-(b) shows male and female samples clustered
within each tissue; results reveal that expression differ-
ences between sexes are less than the differences across
tissues. In this figure, within group similarity of fat tissue
samples is observed to be lower than the others. However,
this phenomenon can not only be observed at a certain
FDR cut-off; tissue-specificities were also calculated by
adjusting FDR-adjusted P-value cutoff 0.05 to 0.2 as
shown in Fig. 1-(c). Although this significance cutoff was
varied (0.05 to 0.2), overall trends were maintained in
terms of ranking of tissue specificity.

Characterizing sexual dimorphic genes in relation to sex
biasness, chromosomal location, and tissues
A previous sexual dimorphism study in mouse [6] defined
over-expressed genes as sex-biased genes. Following this
definition, sex biasness was investigated in our study in
order to identify bovine sexual characteristics. Firstly,
sexually dimorphic genes in each tissue detected using M1
were distinguished using both sex-biased information and
chromosomal location such as autosome (1 ~ 29 chromo-
some), unknown, X, and Y chromosome which is based
on gene annotation (Fig. 2-(a)). This figure reveals two pri-
mary differences among tissues in terms of proportion
with significance level (FDR adjusted P-value < 0.05). First,
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Fig. 2 Distinguishing significant sexual dimorphic genes (FDR < 0.05) from several categories including sex biasness, tissues, and chromosomal
location. a The box plot composed of two factors, sex biasness and chromosomal allocation, in each tissue b The pie charts showed proportion
of male and female biased genes in each tissue, respectively c Manhattan plot for allocating sexual dimorphic genes from located chromosomal
position with y-axis is a logged2 fold-changes (Male: Female). A total of 166 significantly detected DEGs using M1 across whole tissues were
visualized. The red-dotted line represents the 2-fold change cutoff.

Seo et al. BMC Genomics  (2016) 17:81 Page 4 of 18



all Y-chromosomal sexually dimorphic genes were ob-
served to be male-biased. Second, no male-biased genes
located in the X-chromosome were observed.
Figure 2-(B) shows significantly detected genes classified

according to the proportion of sex biasness of each tissue.
High female biasness was observed in liver (66.6 %), fat
(57.14 %), and muscle tissues (73.25 %). On the other
hand, a different pattern was observed in the pituitary-
gland; the percentage of female biased genes in this tissue
was lower than that of male biased genes (40.35 %). As
this result could be only observed at a specific threshold
value, we attempted to observe expression patterns by
varying the FDR cutoff (0.05, 0.1, and 0.2) (Additional file
1: Figure S1). Although the proportion of female biased
genes was higher than that of male biased genes with FDR
adjusted P-value < 0.1 or <0.2 in pituitary-gland tissue, the
relatively high proportion of the male biased genes is pre-
served when comparing to other tissues. Based on this ob-
servation, statistical tests were performed in order to
examine this pattern of detected sexually dimorphic genes
being enriched as male-biased genes in the pituitary-
gland tissue more than in other tissues (Additional
file 1: Table S3). Results revealed that only detected
DEGs (FDR adjusted P-value < 0.05, 0.1, and 0.2) in
pituitary-gland tissues were significantly male-biased.
Significantly detected sexually dimorphic genes were

visualized as a transcriptional Manhattan plot (Fig. 2-(c))
[16]. From this type of plot, comprehensive patterns can
be panoptically recognized using detected genes in each
tissue with their chromosomal information and log2 fold
change (logFC) between female and male expression. To
visualize an RNA-seq version of Manhattan plot, we
used gene location information from the transcriptome
reference file. Unlike SNP markers, genes are not spe-
cific to one base position, so we considered the central
position of the gene region as that gene’s chromosomal
location in order to apply RNA-seq data. Detected sexu-
ally dimorphic genes were shown to spread all over the
chromosome (see also Additional file 1: Table S4), how-
ever, extremely strong signals were identified in the sex
chromosome (see also, Additional file 1: Figure S2, S3,
and S4). These figures reveal that although sexual di-
morphic genes are spread all over the chromosome, ex-
tremely large differenced genes based on the logFC can
be identified in sex chromosome.

Identification of sexual dimorphic genes considering the
effect of whole tissue simultaneously using a statistical
model based approach
In order to simultaneously consider the effect of tissue
on the statistical model and identify sexually dimorphic
genes, ANODEV implemented within edgeR [13] was
used to allow for identification of DEGs in cases where
the data structure is more complex. M2 was used for

detection of sexual dimorphic genes when adjusting for
the effect of tissue on the model. As a result, 655 signifi-
cant (FDR adjusted P-value < 0.05) DEGs were identified
using a likelihood ratio test (LRT) including Y-linked
genes such as USP9Y (5.47E-72), DDX3Y (6.56E-55), and
ZFY (8.79E-55), X-linked genes such as XIST (1.37E-17),
KDM6A (9.01E-05), and autosomal genes such as
LOC780876 (3.71E-12), LYSB (5.71E-06), and etc. which
appeared on the list of the top 20 most significant genes
(Additional file 1: Table S5). We compared the number
of significant genes using a Venn diagram, varying
FDR-adjusted P-value cutoffs such as 0.05, 0.1, and 0.2
(Additional file 1: Figure S5). A larger number of sexually
dimorphic genes were identified using M2 than using M1.
In addition, approximately half of the significantly detected
DEGs resulting from using M1 were shown to overlap with
the integrated model (M2); the proportion of overlapped
genes was 40 ~ 92 % (Additional file 1: Table S6). However,
there were a large number of non-overlapped genes which
were only significantly detected when using either M1 or
M2. We examined potential factors causing this clear
distinction between M1 and M2. Under a FDR ad-
justed P-value cutoff of 0.05, 752 genes were signifi-
cantly detected using M1 and M2 (Additional file 2).
Of these genes, three representative genes which
showed distinctly different patterns between M1 and
M2 were visualized as a box-plot (Additional file 1:
Figure S6) and a line-plot (Additional file 1: Figure S7). It
can be observed in these figures that significantly detected
DEGs from M2 show relatively similar slopes among the
tissues compared to significantly identified genes from
M1. As shown in Figure S6-(A), AK4, ANXA9, and STRA6
were selected as representative genes for M1. AK4 (FDR
adjusted P-value: 0.001 in the liver) was significantly de-
tected in M1, but was not significantly detected in M2
(0.476). Likewise, ANXA9 and STRA6 genes were sig-
nificant in M1 (0.049, 0.014) in muscle and pituitary-
gland, respectively. However, M2 reported FDR adjusted
P-values of 0.782 and 0.891 for muscle and pituitary-
gland respectively. Contrastively, AGPHD1, KDM6A,
and SRSF2 genes were only significant using M2 (FDR
adjusted P-values were 0.001, 7.99E-05, and 0.0007, re-
spectively). M1 did not significantly detect any of these
genes in any tissue.

Chromosomal enrichment analysis using significant
sexual dimorphic genes from M2
Sexually dimorphic genes are well known to not only
be widespread across chromosomes, but also show
high enrichment in the sex chromosome across di-
verse species [6]. Based on the 655 DEGs significantly
detected using M2, chromosomal enrichment analysis
was conducted in order to check the degree of
chromosomal enrichment. To investigate the degree
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of enrichment in each chromosome of cattle species,
a Fisher’s exact test was employed using the DEGs
identified using M2. Chromosome 10, 18, X, and Y
were shown to be significantly (P < 0.05) enriched
(Table 1). As expected given results of previous stud-
ies, sexual dimorphic genes were highly enriched in
the X and Y chromosome in cattle (See Additional
file 1: Figure S8). This result implies that sexual di-
morphic genes cover not only sex chromosome but
autosome as well. Additionally, creation of a Manhattan
plot revealed that M2 detected a larger number of DEGs
than M1. Based on the detected 655 genes in M2, sex bi-
asness was calculated using chromosomal information
(Fig. 3-(a)). A high percentage of the detected genes were
observed as female biased gene, except for those found
in the Y chromosome. Understandably, detected sexual
dimorphic genes located in sex chromosomes showed
specific sex biased expression without any exception. In
the autosome and unknown chromosome (Un_random),
although a few male biased genes were observed, most
detected genes were female biased genes. As shown in
Fig. 3-(b), sexually dimorphic genes of autosome and
unknown chromosome were identified in both sex
biased categories. In contrast, X and Y linked genes
were only identified in female and male biased categor-
ies, respectively. In this figure, it can be observed that
this pattern is very similar with muscle tissue results
using M1 (Fig. 2-(a)). In order to confirm this result, log
fold-changes were visualized as a logFC based Manhattan
plot (Fig. 3-(c)) for the significantly observed 655 detected
genes. Additionally, their FDR adjusted P-values of
M1 were visualized as adensity plot (Additional file 1:
Figure S9). These plots reveal that a larger number of
DEGs were observed in muscle tissue than in others,
and most DEGs showed female-biased expression.

Gene-set enrichment analysis for identification of
biological mechanism about sexual dimorphism using
significant genes from M2
In order to better understand the biological processes
related to sexual dimorphism, enrichment analysis was
performed on the 655 DEGs detected using M2. DAVID
analysis revealed 56 significantly enriched GO biological
process terms (P-value < 0.05) and 11 KEGG pathways
(Additional file 1: Table S7). Results of enrichment ana-
lysis revealed many different biological processes, presum-
ably involved in cattle sexual dimorphism. Several immune
system related terms were found enriched: immune system
development (8.40E-02), autoimmune thyroid disease
(3.90E-02),T cell receptor signaling pathway (9.60E-02), and
Natural killer cell mediated cytotoxicity (9.60E-02). Add-
itionally, several metabolic pathways between sexes such as
regulation of RNA metabolic process (2.90E-04), fructose
and mannose metabolism (1.20E-02), glycosphingolipid
biosynthesis (6.50E-02) and steroid hormone biosynthesis
(9.90E-02) were significantly identified. Finally, calcium sig-
naling pathway (3.70E-03), eye development (6.30E-02) and
taste transduction (7.60E-02) were found to be enriched as
well. In order to segregate these diverse significant gene-
sets, DAVID annotation clustering was performed and 14
enriched biological clusters exhibiting diverse biological ac-
tivities were identified (Additional file 1: Table S8). Among
them, one cluster containing several sex related terms was
observed, which included rhythmic process (6.90E-04) and
circadian rhythm (4.90E-02). In order to visually represent
this relationship, a hierarchical relationship plot of GO
terms was constructed (Fig. 4). This plot revealed that re-
sults appear to be nested underneath two representative
groups: sex differentiation related and rhythmic process re-
lated terms. Several DEGs were associated with these terms,
including AFP, CGA, FOXL2, STAT5A and ANG2. Five sig-
nificant transcription factors were found to be associated
with circadian rhythm: PER2, NR1D1, DBP, NFIL3 and
BHLHE41. They are known to participate in core transcrip-
tional regulation of circadian rhythm and, according to our
results, they may have roles linking circadian rhythm and/
or metabolism in sexual dimorphism. These results have
implicated various biological functions, including circadian
rhythm, in sexual dimorphism in cattle.

Technical validation to detect sexually dimorphic genes in
two different species using qRT-PCR
Technical validation was performed using qRT-PCR in
order to 1) technically validate detected sexual dimorphic
genes by comparing expressed genes between RNA-seq
and qRT-PCR in cattle; and 2) compare cattle and rat to
investigate whether validated sexually dimorphic genes are
shared between these two different mammal species.
Using two statistical approaches, M1 and M2, we identi-
fied 752 significant (FDR < .05) sexually dimorphic genes.

Table 1 Results of chromosomal enrichment test (Fisher’s exact
test)

Chr. P-value Chr. P-value Chr P-value

Chr. 1 0.432 Chr. 12 0.354 Chr. 23 0.546

Chr. 2 0.224 Chr. 13 0.997 Chr. 24 0.72

Chr. 3 0.839 Chr. 14 0.541 Chr. 25 0.958

Chr. 4 0.891 Chr. 15 0.893 Chr. 26 0.947

Chr. 5 0.573 Chr. 16 0.621 Chr. 27 0.527

Chr. 6 0.460 Chr. 17 0.705 Chr. 28 0.794

Chr. 7 0.593 Chr. 18 0.009* Chr. 29 0.214

Chr. 8 0.611 Chr. 19 0.058 Chr. X 0.02*

Chr. 9 0.736 Chr. 20 0.927 Chr. Y 0.005*

Chr. 10 0.04* Chr. 21 0.955

Chr. 11 0.887 Chr. 22 0.112

(*) significant genes at P-value < 0.05

Seo et al. BMC Genomics  (2016) 17:81 Page 6 of 18



Of these detected DEGs, 40 genes were randomly se-
lected from the known primer sequence in cattle
(Additional file 1: Table S9) and rat (Additional file 1:
Table S10) species and qRT-PCR was performed in order
to compare not only RNA-seq vs. qRT-PCR in cattle, but
also cattle vs. rat. To examine global gene expression
among three experiments, a comparative heatmap was vi-
sualized using quantile-normalized values (Fig. 5). First,
most gene expression patterns were observed to be analo-
gous between qRT-PCR and RNA-seq (Fig. 5-(a, b)). In
order to quantitatively assess this observation, Pearson’s
correlation coefficients were calculated using the log-fold

change ratio between male and female among the three
experiments as shown in Fig. 5-(d). As a result, high cor-
relation coefficients (0.43 to 0.87) were observed in bovine
RNA-seq and qRT-PCR. On the other hand, small correl-
ation coefficients (-0.18 to 0.13) were observed between
cattle and rat. In order to compare this validation result in
another aspect, statistical tests were performed on our
qRT-PCR results (Table 2). As the 40 sexually dimorphic
genes were derived from RNA-seq analysis using a gener-
alized linear model (GLM) such as M1 (two group com-
parison) and M2 (using ANODEV), a t-test and analysis
of variance (ANOVA) were employed to apply similar
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Fig. 3 The summary of the pattern of sexual dimorphic genes resulting from M2 (FDR < 0.05). a Proportion of the male or female biased gene in
chromosomal group such as autosome, Un_random, X, and Y chromosome. b Proportion of the detected sexually dimorphic genes based on
chromosomal location in female and male biased, respectively. c Significantly detected 655 DEGs were visualized as Manhattan plot using log
fold-changes. The red-dotted lines represent cutoff of 2-fold change
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statistical tests for qRT-PCR analysis. Most detected sexu-
ally dimorphic genes were significantly found in cattle and
rat species using qRT-PCR. This statistical result reveals
that although gene-expression patterns of the two species
are not identical, sexually dimorphic genes can be com-
monly identified in both species. To examine this
phenomenon, hierarchical clustering analysis was per-
formed using gene expression data from the 40 genes
using the cluster R package. Euclidean distance was

employed for determining the distance among samples
and calculating representative distance in each branch of
the cluster. In addition, silhouette scores were calculated
for detecting the optimal number of clusters for each of
the three types of datasets. As a result, the optimal
number of clusters, k, was estimated as 4 for RNA-seq
on cattle and qRT-PCR on rat, but was estimated as 7
for qRT-PCR on cattle. Based on these estimated opti-
mal number of clusters, hierarchical cut-trees were

Fig. 4 Diagram representing the relationship of significantly detected sex related cluster and their GO-terms by DAVID clustering analysis. Each box and
line represents GO-terms and relationships, respectively. The figure was generated by QuickGO [59] with our detected biological terms using DAVID. In this
diagram, coloring boxes are significant in our analysis
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visualized for each dataset (Additional file 1: Figure S10).
The three trees reveal not only that samples can be clearly
distinguished by tissue, but also that samples are clearly di-
vided based on sex in each tissue. These technically

validated 40 selected genes were revealed to be sexually di-
morphic genes in both cattle and rat species. Finally, of 40
randomly selected DEGs, 33 were significantly detected in
M2. In order to measure the accuracy of the M2, statistical

A qRT-PCR in cattle B RNA-seq in cattle

C qRT-PCR in rat D Correlation plot

Fig. 5 Relative Heatmap drawn using 40 randomly selected sexual dimorphic genes from cattle RNA-seq analysis. The intensities included in the relative
Heatmap represent quantile-normalized values. a qRT-PCR result using 32 biological replicated samples for cattle species b gene expression from the
RNA-seq in cattle species c qRT-PCR result using 40 biological replicated samples in rat species. d Quantification of the similarities among
three experiments. Pearson’s correlation coefficients were employed with logged2 fold-changes (Male:Female) in each experiment
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Table 2 Statistical significance of qRT-PCR results for the selected set of 40 genes analyzed

Gene_symbol Liver Muscle Pit. Fat ANOVA Liver Muscle Pit. Fat ANOVA

ADM 7.30E-02 2.30E-01 6.90E-01 4.70E-01 2.70E-01 1.50E-01 3.00E-01 2.90E-03* 3.50E-03* 5.70E-01

AMPD1 8.50E-01 9.20E-02 4.00E-01 1.40E-01 2.40E-01 1.70E-01 1.30E-01 2.40E-02* 3.00E-01 4.20E-01

APOD 2.60E-02* 1.20E-01 3.40E-01 2.80E-02* 5.00E-02* 7.70E-02 2.30E-01 5.50E-01 6.20E-01 5.60E-02

ARHGEF19 2.90E-02* 1.60E-02* 6.90E-02 5.10E-03* 2.30E-03* 2.80E-01 2.50E-02* 4.70E-01 2.40E-01 4.60E-02*

CATSPER2 8.40E-03* 4.50E-02* 1.00E + 00 1.10E-01 6.50E-03* 6.30E-02 3.10E-01 5.50E-02 8.90E-01 9.30E-01

CGA 1.10E-02* 5.00E-03* 7.00E-02 5.50E-02 1.60E-01 5.40E-02 1.60E-01 2.20E-01 8.30E-04* 1.60E-01

COL27A1 1.90E-01 2.80E-02* 1.20E-02* 9.70E-03* 1.50E-02* 2.30E-01 1.50E-02* 6.00E-01 4.20E-01 9.00E-01

CUX2 6.10E-01 8.90E-04* 8.10E-01 4.20E-01 1.10E-02* 1.70E-02* 5.40E-05* 4.60E-02* 1.30E-01 9.40E-03*

CYP7A1 5.50E-01 1.50E-03* 2.50E-01 9.30E-03* 4.10E-01 4.40E-01 1.50E-01 1.10E-01 5.00E-01 9.50E-01

DBP 5.40E-02 2.40E-04* 4.70E-01 1.60E-01 3.40E-03* 2.90E-01 3.70E-01 2.60E-01 4.50E-02* 7.00E-01

DDX3Y 4.90E-08* 4.40E-06* 2.20E-03* 2.70E-06* 9.90E-22* 6.80E-04* 4.30E-02* 1.00E-05* 2.20E-08* 1.10E-14*

DOCK6 4.60E-02* 5.60E-02 6.90E-02 8.80E-01 6.00E-02 2.40E-01 4.70E-01 3.90E-02* 5.60E-01 1.10E-01

EPYC 5.80E-01 5.50E-01 3.90E-03* 1.50E-04* 1.30E-04* 1.90E-02* 1.50E-02* 9.70E-01 5.50E-02 7.70E-02

FTCD 2.30E-02* 8.40E-05* 3.40E-02* 4.90E-01 5.90E-05* NA 3.70E-01 2.30E-03* NA 7.60E-01

GABBR1 5.40E-01 2.70E-02* 4.60E-02* 6.50E-03* 6.10E-01 6.80E-02 4.90E-01 9.10E-01 2.40E-01 1.90E-01

GNAL 7.00E-01 5.70E-01 1.00E-01 4.20E-03* 3.00E-01 3.20E-01 4.30E-01 6.10E-01 4.80E-01 6.00E-01

HOXD4 8.50E-01 5.70E-01 8.30E-01 NA 5.10E-01 3.30E-01 1.30E-02* 4.30E-01 1.20E-01 1.60E-02*

HTRA1 4.60E-02* 5.80E-01 2.00E-01 3.70E-02* 5.50E-01 4.80E-01 4.20E-01 4.90E-02* 2.30E-01 3.30E-01

IGFBP1 1.90E-03* 8.10E-03* 7.50E-03* 1.00E-02* 6.70E-10* NA 2.80E-01 4.20E-02* 8.40E-02 3.20E-01

ME2 1.40E-01 3.10E-01 2.90E-01 6.70E-01 7.80E-02 6.60E-01 4.60E-01 1.70E-01 1.30E-01 4.00E-01

MYH1 9.80E-02 4.20E-03* 1.70E-03* 1.30E-03* 2.90E-02* 1.80E-02* NA 3.10E-01 1.50E-02* 1.40E-01

NRBP2 4.40E-01 1.20E-01 9.40E-03* 9.10E-01 1.80E-02* 3.80E-02* 3.80E-01 3.60E-02* 2.10E-01 1.20E-01

PPP1R3A 1.00E-01 5.40E-03* 6.00E-01 7.00E-01 4.80E-01 4.80E-02* 3.70E-01 8.40E-02 4.40E-01 4.70E-02*

RAB3C 2.30E-02* 4.60E-05* 7.30E-01 6.10E-03* 2.20E-02* 1.00E-02* 3.70E-01 NA 6.10E-01 8.40E-02

RBM38 3.90E-02* 5.60E-03* 6.60E-01 2.30E-02* 5.60E-04* 1.90E-02* 5.00E-01 2.20E-03* 8.40E-03* 2.30E-01

RGS2 2.70E-02* 6.40E-05* 6.70E-01 6.20E-01 1.60E-03* 2.30E-02* 3.40E-01 7.20E-01 4.30E-01 1.70E-01

RGS7 3.40E-01 1.00E-06* 8.40E-01 8.30E-01 5.20E-03* 3.40E-02* 4.90E-01 7.50E-01 7.70E-02 6.90E-01

RGS9 9.20E-01 5.60E-01 3.70E-01 2.10E-01 5.80E-01 2.00E-01 4.40E-01 4.60E-02* 9.10E-03* 6.80E-01

SCN8A 5.60E-02 2.50E-01 NA NA 7.30E-01 5.10E-01 4.10E-01 9.80E-01 3.40E-02* 5.50E-01

SCN9A 3.80E-02* 1.80E-02* 7.00E-01 7.50E-01 1.50E-02* 5.90E-03* 4.50E-01 5.80E-03* 6.80E-04* 4.40E-02*

SLC17A3 1.60E-02* 5.20E-01 1.00E-02* 4.60E-02* 4.40E-05* NA 3.40E-01 NA NA 2.90E-01

SLC6A15 5.90E-02 NA NA 9.80E-01 9.30E-02 3.80E-01 3.70E-01 NA 3.90E-02* 3.80E-01

STXBP5L 4.10E-02* 2.70E-01 8.90E-01 1.50E-01 2.90E-01 NA 5.80E-01 6.10E-01 6.80E-02 6.00E-01

TBL1X 6.40E-01 2.80E-02* 9.00E-01 4.20E-02* 8.10E-03* 6.00E-01 3.80E-01 7.20E-02 8.90E-01 2.80E-01

TMEM59L 7.80E-01 9.80E-02 5.80E-02 2.70E-02* 9.50E-02 4.40E-02* 3.10E-01 4.50E-01 1.50E-02* 5.30E-01

TNNC1 8.60E-01 4.10E-01 4.90E-02* 1.50E-01 1.00E + 00 6.50E-01 4.40E-01 2.50E-03* 8.30E-01 6.40E-01

TNNT3 1.50E-02* 6.40E-01 3.50E-02* 6.90E-02 1.20E-03* 2.10E-02* 3.20E-01 3.90E-02* 6.10E-02 1.80E-01

UCP3 NA 3.60E-01 9.80E-01 1.00E-01 8.10E-02 4.40E-02* 5.10E-01 6.80E-01 1.30E-02* 6.00E-01

USP9Y 5.70E-06* 2.70E-05* 8.20E-04* 7.90E-05* 2.30E-20* NA 9.30E-01 5.70E-01 6.50E-04* 4.10E-01

ZNF280B 5.00E-03* 9.40E-05* 2.90E-03* 1.10E-03* 4.00E-12* 1.60E-01 3.60E-01 3.30E-02* 3.50E-01 2.20E-01

Experiment qRT-PCR in cattle qRT-PCR in rat

(*) significant genes at P-value < 0.05
NA value represents non-measured expression in the qRT-PCR
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results of qRT-PCR and RNA-seq were compared (Table 3).
As a result, 21 genes were technically validated in qRT-PCR
(ANOVA analysis with a significance cutoff of 5 %).

Discussion
Bovine sex-chromosomal genes detected from RNA-seq
analysis
As we excluded genes with very low expression levels
(non-expressed genes in all samples) in this study, we
expected all Y-linked genes to exhibit significant male-

biased expression. However, only a few Y-linked non-
DEGs were identified as a result of our analyses. Of 8 an-
notated genes based on the bosTau7 reference genome,
five genes (EIF1AY, PRAME, SRY, TBL1X, ZNF280B) were
not significantly detected in M1 and M2. Three genes
(EIF1AY, PRAME, SRY) had extremely low TMM normal-
ized values. TBL1X and ZNF280B showed a large TMM
normalized value (4.04 and 2.53, respectively) (Additional
file 1: Figure S11). To investigate the possibility of cross-
mapping between each of the gene and its paralogues,
local alignment was performed using the ZNF280B
mRNA-sequence to the reference genome using a basic
local alignment search tool (BLAST). As a result, we not
only observed the ZNF280B gene with 98 % query cover
rate, but also expression of an un-annotated gene located
in chromosome 17 with a 92 % query cover rate. In
addition, a previous study identified ZNF280B as a auto-
some derived Y-chromosome gene [17]. Therefore, ap-
pearance of Y-linked non-DEGs may be attributed to their
low expression or to variable between replicates to be
found differentially expressed, or could be caused by two
genes in the reference gene with similar sequences.
We observed no male-biased genes on the X chromo-

some at FDR adjusted P-value < 0.05 (Additional file 2).
However, three X-linked genes were significantly up-
regulated in males at FDR adjusted P-value < 0.1
(Additional file 1: Figure S12; see also Additional file 2).
Three genes; ZIC3 (FDR adjusted P-value: 0.083 in M2),
CXHXorf34 (0.095), and TMEM35 (0.097) showed rela-
tively little difference in expression between females and
males, but also high individual variations compared to the
other 752 significantly observed sexually dimorphic genes
(FDR adjusted P-value < 0.05). Of the 325 X-chromosomal
annotated genes, 26 were female-biased DEGs detected in
either M1 or M2. These genes may serve a good candi-
dates for X-chromosome inactivation escaping gene in
cattle species (XCI-escaping gene). In muscle tissue, five
such genes were identified: CA5B (4.97E-02), RBM3
(4.34E-02), SH3KBP1 (2.88E-04), XPNPEP2 (4.69E-02),
and XIST (5.83E-92). Additionally, NXF3 (1.35E-03), XIST
(4.25E-124), and ZFX (1.45E-02) were detected as DEGs
in pituitary-gland tissue.
Of these genes, only one X-linked gene, XIST, was com-

monly identified in several tissues. XIST was significantly
detected using M1(3.06E-47, 5.87E-92, and 4.26E-124 in
fat, muscle, and pituitary-gland tissue, respectively) and
M2 (1.34E-16). However, XIST was not significantly de-
tected in liver tissue; this result was surprising, as we ex-
pected this female-specific X-inactivation related gene to
be included in whole tissues. Examination of raw data re-
vealed expression outliers in the liver in both female and
male (Additional file 1: Figure S13), which resulted in no
statistical significance (FDR adjusted P-value 0.591) and
eventually eliminated XIST from the DEG list.

Table 3 Comparison between qRT-PCR and RNA-seq results for
the 33 sexually dimorphic genes significantly detected using M2

Gene_symbol qRT-PCR RNA-SEQ

ADM 2.7E-01 8.31E-03*

AMPD1 2.4E-01 4.14E-04*

APOD 5.0E-02* 1.62E-03*

ARHGEF19 2.3E-03* 3.50E-02*

CATSPER2 6.5E-03* 3.86E-03*

CGA 1.6E-01 3.27E-02*

COL27A1 1.5E-02* 2.40E-04*

CYP7A1 4.1E-01 7.40E-05*

DBP 3.4E-03* 1.12E-03*

DDX3Y 9.9E-22* 3.01E-50*

DOCK6 6.0E-02* 4.14E-04*

EPYC 1.3E-04* 1.35E-02*

FTCD 5.9E-05* 3.96E-02*

GABBR1 6.1E-01 2.76E-05*

GNAL 3.0E-01 5.57E-04*

HOXD4 5.1E-01 1.23E-02*

IGFBP1 6.7E-10* 2.49E-03*

MYH1 2.9E-02* 2.98E-02*

NRBP2 1.8E-02* 2.21E-04*

PPP1R3A 4.8E-01 2.42E-02*

RAB3C 2.2E-02* 1.46E-02*

RGS2 1.6E-03* 3.36E-02*

RGS7 5.2E-03* 4.18E-03*

RGS9 5.8E-01 4.14E-04*

SCN8A 7.3E-01 8.69E-04*

SCN9A 1.5E-02* 5.71E-03*

SLC17A3 4.4E-05* 4.09E-02*

SLC6A15 9.3E-02* 4.76E-02*

STXBP5L 2.9E-01 1.75E-02*

TMEM59L 9.5E-02* 2.71E-03*

TNNC1 1.0E + 00 1.81E-02*

UCP3 8.1E-02* 7.81E-03*

USP9Y 2.3E-20* 5.20E-70*

(*) significant genes at P-value < 0.05 for ANOVA analysis in qRT-PCR and FDR
adjusted P-value < 0.05 for ANODEV analysis in RNA-seq
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Sexual dimorphism displayed in metabolic tissues and
pituitary gland
We investigated causes for why male biased genes were
enriched only in pituitary-gland tissue. Numerous muscle
development related gene-sets were significantly reported
by DAVID including striated muscle tissue development
(1.30E-03), muscle tissue development (1.60E-03), cardiac
muscle tissue morphogenesis (1.10E-02), muscle tissue mor-
phogenesis (1.10E-02), cardiac muscle tissue development
(5.10E-02), skeletal muscle tissue development (7.40E-02),
and skeletal muscle organ development (7.40E-02) among
others (Additional file 1: Table S14).. Results of previous
studies [18], have shown that androgens play a highly im-
portant role in the development of muscle and bone, par-
ticularly in males. It appears that significantly detected
sexual dimorphic genes in pituitary-gland tissue show
male-biased enrichment given that many of the genes
found significant in this tissue play an important role in
muscle development. The results revealed that the effect
of muscle tissue on about sex differences in gene expres-
sion is higher than that of other tissues. These results are
consistent with earlier findings from studies using M1.
These results and the number of detected genes imply
that gene expression in muscle tissues is more impacted
by sexually dimorphism than other tissues.
The pituitary gland is a critical structure for rhythmic

control of metabolism and reproduction; this function is
the result of hormones such as growth hormone (GH)
and the gonadotropins being secreted in a pulsatile man-
ner. Although the relationship among sexual dimorph-
ism, metabolism and rhythmic process is complicated
and not well-understood, identification of significant
rhythmic process-related genes and pathways might in-
dicate physiological roles of the pituitary gland and its
effects on peripheral tissues. For instance, it is well recog-
nized that a large number of sex differences in liver gene
expression are controlled by the central circadian system
[19–22] as well as result from the pulsatility of circulating
GH [23, 24]. However, a non-circadian role for core circa-
dian oscillators cannot be excluded [25, 26], and the
circadian rhythm-related genes may be DE regulated
downstream of these signaling cascades. Taken together,
results of this study suggest that pituitary gland-expressed
genes might at least be partly involved in the cascade of
events starting with secretion of hormone, gene expres-
sion in peripheral tissues and, finally, establishment of
sexual dimorphism in metabolic processes.

Degree of sexual dimorphism in abdominal fat tissue
gene expression
Results from RNA-seq analysis performed using M1 re-
vealed that DEGs detected from abdominal fat tissue not
only showed very little tissue specificity compared to liver,
muscle, and pituitary gland, but also the lowest number of

detected sexual dimorphic genes. This suggests that most
of the genes found significant in fat tissue have a smaller ef-
fect on sexual dimorphism than the other tissues. Sex
biased differences in fatty acid metabolism and regional fat
distribution have been well recognized in previous studies
[27, 28]. However, the number of studies on sex differences
in gene expression of abdominal fat is limited and insuffi-
cient to elucidate the degree of sexual dimorphism in fat
tissue. Meanwhile, several studies have reported that some
aspects of visceral adipose tissue function appear to act in-
dependent of sex. For example, a previous study reported
that no sex differences in androgen binding [29] and estro-
gen receptor expression [30] can be observed in human
adipose tissue. Furthermore, another possible reason for
the detection of fewer DEGs in fat tissue than in other tis-
sues could be the breeding strategy for Korean native cattle,
which was the species studied in the present study. Because
highly marbled beef is preferred by consumers and manu-
facturers in the Korean beef industry, the cattle breeding
system is mainly focused on increasing fat marbling [31,
32], which most likely has caused a gradual decrease in
gene expression differences between female and male. Fur-
ther investigation at the transcriptomic, proteomic and
physiological levels should be performed to conclude
whether fat depots possess a lesser extent of sexual di-
morphism compared to other metabolic tissues.
We observed a large number of pituitary gland up-

regulated in males, while the majority of liver, fat and
muscle DEGs were up-regulated in females. There
have been several previous studies that compared sex-
ual dimorphism at a gene expression level between
tissues, including the pituitary gland [9, 33]. While
these results do not explain why pituitary gland genes
appear to show sex-specific expression patterns, it
may be beneficial for future studies to identify
whether male-biased gene expression pattern in the
pituitary gland appear in other species such as human
and rodents.

Comparison of two statistical approaches for detecting
sexual dimorphic genes using two-way factorial designed
data
In this paper, we used two statistical approaches, M1 and
M2, to detect sexually dimorphic genes from two-way fac-
torial RNA-seq data. M1, the simplest method for discover-
ing DEGs, involves performing two group comparisons
between female and male in each tissue. From this ap-
proach, a list of sexual dimorphic genes was for each indi-
vidual tissue. Using these results, tissue specific sexually
dimorphic genes (identified in only one tissue) or com-
monly identified genes in several tissues was identified by
comparing lists of significant genes. Although our RNA-seq
experiment produced 40 RNA-seq samples from 4 tissues,
the M1 approach used only 5 (female) vs. 5 (male) samples
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from each tissue. Due to this small sample size, a relatively
smaller number of DEGs were detected by M1 compared
to M2; this issue of sample size leads to a loss of statistical
power when using this model. This problem is widely dis-
cussed in microarray analysis [34–36]; comparison between
t-test and contrast ANOVA reveals that contrast based
methods are more statistically powerful than a simple two
group test, since a contrast based approach makes it pos-
sible for more elaborate variance estimation given the larger
number of samples used. Additionally, estimation of the
interaction effect between two factors is only possible using
an integrated model. Given these advantages, an ANOVA
type model on GLM, the ANODEV, has been developed
for RNA-seq data analysis. By employing ANODEV, we can
consider more complex structured experimental design on
the statistical model [13]. By considering several factors on
the model, more DEGs can be significantly detected by in-
creasing sample size. As we had expected, when applying
these two statistical approaches for detection of sexual di-
morphic genes, different patterns of detected DEGs were
observed (Additional file 1: Figure S6 and S7). This differ-
ence is mainly due to the different statistical assumptions
of each approach. In short, while M1 is suitable for finding
tissue-specific sexually dimorphic genes, its statistical power
is lower than the integrated model, which leads to a high
rate of false negatives. In contrast, while M2 tends to detect
more significant genes than M1, it has a relatively higher
rate of false positives. We observed a 0.36 false positive rate
(12 / 33) based on qRT-PCR validation results; 33 genes
were significantly identified in RNA-seq analysis with M2,
while 12 genes were found not significant in the qRT-PCR
result (Table 3). This highly false positive rate may be attrib-
uted to a broken equal variance assumption. M2 assumes
equal variance of each individual, however, highly tissue-
specific patterns of gene expression make it difficult to pre-
cisely detect DEGs. This result suggests that equal variance
can not be guaranteed when employing several tissues in
RNA-seq analysis. Furthermore, in general RNA-seq exper-
iments where testing on multiple tissues was performed,
tissue samples were extracted from one individual, which
leads to a complex correlated structure; this is referred to
as a nested design [37]. One solution, which has already
been suggested in microarray studies [38], is to estimate co-
efficients in the model using the weighted least squares
(WLSE) method, which would allow for consideration of
complex correlation structure. In addition, a generalized es-
timating equation (GEE) model could also be applied for
repeated measure RNA-seq data analysis [39]. Although an
ANODEV model implemented in edgeR and DESeq2 [40]
is able to consider this nested design by adding fixed-effect
dummy variables for distinguishing nested variables, this is
merely a second-best solution. Development of new meth-
odology would allow for more accurate estimation using
samples taken from several tissues. Another inconvenience

of M2 is that we cannot distinguish the effect of specific tis-
sues because post hoc analysis is not yet provided for RNA-
seq studies. This issue has been widely discussed in
regards to microarray data analysis on multilevel data-
set [41, 42]. In short, by performing post-hoc test on
each tissue (i.e. Tukey’s test in ANOVA) after the test-
ing main factor (i.e. sex term on the M2), we are able
to determine which tissue’s effect causes a sex differ-
ence. Unfortunately, as far as we know, no known at-
tempts have been made to develop post-hoc test in
RNA-seq analysis so far. More research is required to
develop accurate methods for analysis multi-factor de-
signed data using an integrated model based approach.
While statistical tests were performed using edgeR in

this study, DESeq2 also provides ANODEV. The list of
DEGs resulting from an analysis could be highly influ-
enced by several factors including choice of aligner,
counter, statistical tools, and specific parameters. Unfor-
tunately, it is nearly impossible to determine the optimal
pipeline for each individual study given the high number
of possible combinations of those factors. In this study,
we mainly focused on the comparing between statistical
models; M1 and M2, therefore other variable factors
should be fixed. However, since the results derived from
the edgeR can be uniquely observed, we additionally
compared M1 and M2 in DESeq2 for identifying differ-
ences between edgeR and DESeq2. As a result, high cor-
relations (0.66 to 0.85) were observed between these two
statistical tools (Additional file 1: Figure S14). In
addition, larger numbers of DEGs were detected when
using DESeq2 (Additional file 1: Figure S15). Third, M2
has stronger statistical power than M1, which was ob-
served in edgeR and DESeq2 (Additional file 1: Figure
S16). Finally, high tissue specificity was detected in
DESeq2 (Additional file 1: Figure S17). From these
results, we conclude that although patterns of the test
results from the edgeR and DESeq2 are very similar, a
larger number of DEGs and higher strong tissue specifi-
city can be observed when using DESeq2.
In summary, although M2 was able to detect DEGs

in multiple factorial RNA-seq data, M1 appears to be
more suitable for the detection of sexually dimorphic
genes with considering several tissue than M2 in
terms of stability. As integrated model based ap-
proaches become more developed, those which con-
sider heterogeneity variance and post-hoc analysis
may provide a suitable way to detect DEGs in multi-
factors designed RNA-seq data.

Comparing detected sexually dimorphic genes between
cattle and rat species
Upon performing technical verification, although gene
expression patterns were shown to be different between
cattle and rat, a large number of sexually dimorphic
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genes were commonly validated (Table 2; see also Fig. 5).
Of 40 randomly selected candidate genes, 25 were com-
monly identified in both species including CUX2,
DDX3Y, USP9Y, ZNF280B, and etc. In addition, 8 candi-
date genes, APOD, CYP7A1, GABBR1, GNAL, SLC17A3,
STXBP5L, TBL1X, and CATSPER2, were technically vali-
dated in bovine qRT-PCR experiment, but those genes
were not significant in rat species. In results of qRT-
PCR analysis, 7 candidate genes were not significantly
detected including ADM, AMPD1, HOXD4, RGS9,
SLC6A15, UCP3, and ME2. Of these genes, only ME2
was not significantly detected in either species; the
others were significantly detected in only rat species.
CUX2 is well-known as a female-biased gene in mice
[43]. As shown in Additional file 1: Figure S18, CUX2
was shown to be female-biased gene rat liver tissue, but
was identified as male-biased in cattle. ZNF280B and
RAB3C showed diametrical patterns between the two
species. These genes may serve as strong candidate
markers for determination of sexual dimorphism in spe-
cific species. Of particular interest is USP9Y, which is a
representative Y-linked gene. USP9Y has been known to
show extremely low expression level in the brain of mice
[44, 45], which is supported by our results (Fig. 5; see
also Additional file 1: Figure S18). Contrastively, we ob-
served that USP9Y was highly expressed in bovine whole
tissues. Statistical qRT-PCR results showed that although
USP9Y was not significantly detected in liver, muscle,
and pituitary-gland tissues, it was significant in rat fat
tissue (Table 2). For this reason, although USP9Y appears
to not be significant in most rat tissues, the gene may be
related to rodent sexual dimorphism. On the other hand,
we observed high bovine expression levels of this gene,
which indicate that USP9Y is strong candidate gene for
identification of bovine sexually dimorphism.
Strong positive correlations among the tissues within

the experiment were observed (Fig. 5-(d)) (0.79 to 0.9
for bovine RNA-seq, 0.43 to 0.89 for bovine qRT-PCR,
and 0.18 to 0.58 for rat qRT-PCR). Of 40 DEGs ran-
domly selected for qRT-PCR based technical validation,
33 sexually dimorphic genes were significantly detected
in M2. M2 was able detect generally different genes
across tissues (Additional file 1: Figure S6; see also
Additional file 1: Figure S7). Strong positive correlations
among tissues may be explained by specific features of
M2. In order to examine this phenomenon, qRT-PCR
and RNA-seq results were compared (Table 3). Of 33
significantly reported genes in RNA-seq, 21 were signifi-
cantly identified using qRT-PCR. This result reveals that
M2 is an attractive solution for detection of sexually di-
morphic genes in multi-factorial designed RNA-seq data
given its high reproducibility.
Finally, only 40 sexually dimorphic genes were used in

order to compare the two species. While the need for

cross-species transcriptome analysis has increased as
interest in transcriptional evolution peaks, only a few
studies have attempted to organize gene expression com-
parison among species [46]. Several factors make cross-
species comparison of gene expression data difficult: (1)
RNA sampling from the homologue across the species; (2)
Construction of the orthologous gene-set across the spe-
cies; (3) Normalization of the gene expression for different
length gene; and (4) Compounding effects between species
and other biases. Due to these reasons, most transcrip-
tional cross-species studies have been performed at using
meta-analysis based approaches rather than mega-analysis
based ones [47–49]. Decisively, samples from multiple tis-
sues should be matched in each meta-data set and consid-
ered in the gene expression study for sexually dimorphism
given the highly tissue-specific pattern observed in our re-
sult. We performed qRT-PCR experiments on cattle and
rat species to meet the minimum requirement for meta-
study among multiple species. While our results do not
compare a large number of sexually dimorphic genes, it
may be beneficial in future studies to compare gene ex-
pression between species on a larger scale. As far as we
know, this is first attempt to construct comparative heat-
maps across species and multiple platforms (RNA-seq and
microarray). Although these heatmaps provide relative
gene expression patterns among three results, absolute in-
tensities of color would be not important in cross-species
comparison as most researchers would focus on detecting
opposite tendencies among the species as was observed
with CUX2 and USP9Y. However, one limitation of qRT-
PCR platform is that gene expression of genes can often
be undetermined; some genes, including UCP in fat tissue
and SLC6A15 in liver and muscle tissue, showed strong
blue intensity (Fig. 5-(a, c)). Development of methodology
may be able to resolve this issue for future studies on
RNA-seq based cross-species data.

Conclusions
In order to investigate bovine sexually dimorphism,
RNA-seq analysis was performed using two distinct stat-
istical approaches. As a result, numerous sexually di-
morphic genes and pathways were successfully identified
across various tissues; expression showed strong tissue-
specific patterns. For verification of the identified bovine
sexually dimorphic genes, qRT-PCR experiments were
performed in cattle and rat species, respectively. Results
revealed that while sexually dimorphic genes are shared
between these two mammal species, gene expression
patterns vary across tissues. Results of our study have re-
vealed that many biological processes might be involved in
sexual dimorphism of metabolic tissues in cattle. Particu-
larly, the expression patterns of sexually dimorphic
genes in the pituitary gland indicated not only the ef-
fect of sexual dimorphism of the brain itself, but also
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of the central nervous system on peripheral tissues in
determining differences between sexes. Finally, we
concluded that two statistical approaches have their
advantages and disadvantages in RNA-seq studies
considering multiple tissues.

Methods
Animal handling and RNA-seq procedures
All animal procedures were approved by the National
Institute of Animal Science Institutional Animal Use
and Care Committee (NIASIAUCC), Republic of
Korea, and performed in accordance with the animal
experimental guidelines provided by NIASIAUCC.
Samples were collected from Korean cattle raised in
the Daekwanryung experimental branches of the
National Institute of Animal Science (NIAS). 10 cattle
were slaughtered at age of (>22 months) and carcass
weight was 353 ± 36 kg after slaughter. Abdominal adipose
tissue, liver, intact longissimus dorsi muscle, and pituitary
gland tissue samples were immediately separated after
slaughter. Tissue samples were stored at -80 °C, and total
RNA was isolated from the four tissues using the TRIzol
reagent (Invitrogen) based on the manufacturer instruc-
tions. Total RNA quality and quantity was verified using a
NanoCrop1000 spectrophotometer (Thermo Scientific,
Wilmington, DE, USA) and Bioanalyzer 2100 (Agilent
technologies,Palo Alto CA, USA). The mRNA in total
RNA was converted into a library of template molecules
suitable for subsequent cluster generation using the re-
agents provided in the Illumina ® TruSeq™ RNA Sample
Preparation Kit. In summary, mRNA was purified using
poly-A selection, then chemically fragmented and con-
verted into single-stranded cDNA using random hexamer
priming. The second strand is then generated to create
double-stranded cDNA that is ready for TruSeq library
construction. The short ds-cDNA fragments were then
connected with sequencing adapters, and suitable frag-
ments were separated by agarose gel electrophoresis. Fi-
nally, truseq RNA libraries were built by PCR amplification,
quantified using qPCR according to the qPCR Quantifica-
tion Protocol Guide, qualified using the Agilent Technolo-
gies 2100 Bioanalyzer. (Agilent technologies,Palo Alto CA,
USA). Based on the generated RNA libraries, paired-end se-
quencing (101 bp read-length and approximately 150 to
180 insert size) was performed using the HiSeq™ 2000 plat-
form (Illumina,San Diego, USA). Next, to measure tran-
scriptome levels with generated RNA-seq reads we
performed the following widely used RNA-seq pipeline: (1)
We employed Trimmomatic (v0.32) [15] with following op-
tion: PE -phred33 ILLUMINACLIP:TruSeq3-PE.fa:2:30:10
MINLEN:75 2 for making clean reads. (2) We mapped such
clean reads into genome reference (BosTau7) from UCSC
database using Bowtie2 (v2.2.2.0) [50], implemented within
Tophat2 (v2.0.12) [51]. (3) For making the SAM file from

the BAM file, we used a SAMtools (v0.1.18.0) [52]. (4) We
used the HTseq package [53] to estimate the count of
uniquely mapped reads for each of the 13,570 annotated
genes in the Bos taurus7 gene transfer format (. GTF) file.
From this RNA-seq analysis pipeline, we obtained the tran-
scriptome expression level of 13,570 genes from 40
samples.

Statistical model for detecting sexual dimorphic genes in
each tissue using GLM implemented in edgeR
In a previous study [6], diverse sexual dimorphic
genes were detected by two group tests in four tis-
sues using microarray data. Since gene expression
data with enough replicates generally follows a nor-
mal distribution when using microarray analysis, a t-
test (equivalent simple linear regression with only
one explanatory two-group variable) can be applied
to identify DEGs. However, approaches that consider
count-type distribution such as Poisson and negative
binomial (one solution for over-dispersion in Poisson
assumption) is suitable for measuring gene expres-
sion from RNA-seq data given data characteristics
[54]. Finally, GLM can be successfully used for ana-
lysis of RNA-seq data by considering gene expression
as a negative binomial in edgeR in order to detect
DEGs.
There are two approaches for identification of sexual

dimorphic genes using RNA-seq data composed of two
factors (sex and tissues). The simplest approach for ana-
lysis of this data is to perform a two group test between
data from female and males in each tissue, separately, as
has been performed in previous studies [6] using micro-
array data. To extend this method in RNA-seq analysis,
we employed a GLM with only one explanatory variable
(sex group variable) as shown in M1.

log E Yð Þð Þ ¼ μþ Sex M1½ � ð1Þ

For identification of sexual dimorphic genes, we per-
formed LRT using full model with sex term and reduced
model without sex term in each tissue such as liver, fat,
muscle, and pituitary-gland, respectively. We used an
FDR < 0.05 significance cutoff [55] for multiple testing
adjustment. Based on the list of genes found significant
in each tissue, tissue specificities were calculated as the
number of genes uniquely detected in a specific tissue
over the total number of significantly detected genes in
certain tissue [6].

Integrated DE analysis using ANODEV for detection of
sexual dimorphic genes in two-way factorial designed
RNA-seq data
Recently, novel statistical methods optimized for com-
plex RNA-seq experimental designs have been developed
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[13, 56]. In a GLM, ANODEV can be applied in the
place of ANOVA for analysis of RNA-seq data displaying
a count-based distribution. By including an additional
factor following the linear predictor, the GLM is easily
extended

log θijk
� � ¼ μj þ τij þ βjk ð2Þ

where, i is treatment, j is gene, and k is individual. As
shown in log-link function and related linear predictor
(2), only βjk is different between M1 (including only one
group explanatory variable) and M2. By including βjk
with several covariates such as tissue, the GLM can eas-
ily be extended into an ANOVA type model. In this
paper, our model simultaneously considered two factors,
sex and tissue. This model can more simply be laid out
by expressing the linear predictor as following an
ANOVA type model as follows:

log E Yð Þð Þ ¼ μþ Sexþ Tissue M2½ � ð3Þ

As shown in M2, we simultaneously considered the ef-
fect of two factors on the model. By considering two fac-
tors, the design matrix was composed of 40 (Sample
size) * 5 (Intercept + level of sex -1 + level of tissue - 1).
Considering our goal of identifying sex differences, our
term of interest in this model is sex. In order to observe
DEGs between males and females, we performed a LRT
on each gene related to sex (13,148 genes remained after
filtering non-expressed genes). From the statistical test,
significant (FDR-Adjusted P-Value < 0.05) genes were de-
tected to adjust for multiple testing errors [55].

Gene-set and chromosomal enrichment analyses using
DAVID and a fisher’s exact test, respectively, for
biological interpretation
Several previous studies have found that sexual dimorphic
genes are enriched in the sex chromosome, particularly
the X-chromosome [6, 57, 58]. We performed a chromo-
somal enrichment test in order to investigate this
phenomenon in cattle. We employed a fisher’s exact test
with a 2x2 contingency table, composed of two factors:
whether the gene was included in a specific chromosome
(O / X), and whether the gene was a DEG or not (O/X).
31 different contingency tables were produced from each
chromosome. We performed a fisher’s exact test using the
table with the alternative hypothesis that one odds ratio
was larger than the other. Additionally, gene-set enrich-
ment analysis was performed using DAVID with default
options [59] after detection of DEGs using M1 and M2,
respectively. “Bos taurus” was set as the background refer-
ence. Several gene-set databases were cross-referenced
within DAVID including KEGG and Gene Ontology. We
performed statistical tests using resulting information and

the DEG list in order to calculate the significance of each
gene-set related to sexual dimorphism.

qRT-PCR experiments on Korean cattle and Sprague
Dawley rat for technical validation of sexual dimorphic
genes

– Korean cattle handling and tissue extraction
Four male and female Korean cattle were provided
by the Daekwanryung branches of the National
Institute of Animal Science (NIAS), Republic of
Korea. Cattle were slaughtered at approximately
22 months old and average carcass weight was
recorded as 366.17 ± 11.22 kg and 341.50 ± 18.95 kg
for bulls and cows, respectively. 4 different kinds of
tissue samples were collected: abdominal adipose,
intact longissimus dorsi muscle, liver, and pituitary
gland. Samples were immediately separated after
slaughter and stored at -80 °C. All animal experimental
procedures were approved by NIASIAUCC and
managed in accordance with the animal experimental
guidelines provided by NIASIAUCC.

– Sprague Dawley rat handling and tissue extraction
Sprague Dawley (SD) male and female outbred rats
(8 weeks old, 180–240 g, n = 5, respectively) were
obtained from Koatech, Inc. (Gyunggi-Do, Korea)
and maintained in a temperature (22 ± 1 °C) and
humidity (45–65 %) controlled room on a 12:12
light:dark cycle. They were allowed access to normal
food and water ad libitum for recovery according
to specific pathogen-free (SPF) conditions. All
animal experimental procedures were approved by
NIASIAUCC and managed in accordance with the
animal experimental guidelines provided by
NIASIAUCC. After 6 h of fasting, samples were
collected from 4 different tissues: abdominal
adipose tissue, skeletal muscle, liver, and pituitary
gland from each of the 10 rats. All surgical instruments
were pre-sterilized by steam sterilization. After body
weight was measured and recorded, rats were
anesthetized with CO2 and placed on an operating
table. Tissues were quickly removed after sacrifice,
washed with PBS, and then chilled in liquid nitrogen.
For determination of mRNA levels, samples were
stored at -80 °C. All tissues were collected from male
and female SD rats.

– RNA extraction and real-time polymerase chain
reaction analysis
All tissues were collected from male and female
Korean cattle and SD rats. Total RNA was isolated
from 4 different tissues using the TRIzol reagent
(Invitrogen Carlsbad, CA, USA) according to
manufacturer instructions. The extracted total RNA
was stored at -80 °C and then assessed through
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real-time PCR and RNA-sequencing. Briefly, total
RNA samples were quantified by absorbance at 260/
280 nm ratio. Total RNA (≤ 1 μg) was transcribed
into cDNA using QuantiTect Reverse Transcription
Kit (Qiagen, Valencia, CA, USA) and real-time PCR
was performed using SYBR Green PCR Master Mix
(Qiagen). Glyceraldehyde-3-phosphate dehydrogenase
(GAPDH), β-actin (ACTB), ribosomal protein S9
(RPS9), and ribosomal protein, large, P0 (RPLP0) were
used as endogenous control genes for the measurement
of fold change. Primers are listed in Additional file 1:
Table S19 and Table S20 for cattle and rat, respectively.

– Quantile normalization between RNA-seq and
qRT-PCR in order to visualize a relative heatmap
with adjusting ranges in two platforms
To draw a comparative heatmap using RNA-seq
and qRT-PCR, it is important to normalize gene
expression values since scale and range of
calculated gene expressions from qRT-PCR and
RNA-seq vary from each other. For example, ΔCt
values from the qRT-PCR ranged in − ∞ to ∞, and
smaller value means high-level gene expression.
On the other hand, gene expression of RNA-seq (log2
transformed TMM values by edgeR) is non-negative
values and larger value means high-level gene
expression. We corrected the range of ΔCt values as
non-negative scale by adding an absolute minimum
ΔCt value after multiplying ΔCt by -1. After that, we
performed quantile normalization to adjust scale
among the two platforms.

Availability of supporting data
The data sets supporting the results of this article is avail-
able in the GEO database, GSE65125 in http://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE65125.
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