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Abstract

Background: One of the fundamental measures of molecular genetic variation is the Watterson’s estimator (θ), which is
based on the number of segregating sites. The estimation of θ is unbiased only under neutrality and constant population
growth. It is well known that the estimation of θ is biased when these assumptions are violated. However, the effects of
sample size in modulating the bias was not well appreciated.

Results: We examined this issue in detail based on large-scale exome data and robust simulations. Our investigation
revealed that sample size appreciably influences θ estimation and this effect was much higher for constrained genomic
regions than that of neutral regions. For instance, θ estimated for synonymous sites using 512 human exomes was 1.9
times higher than that obtained using 16 exomes. However, this difference was 2.5 times for the nonsynonymous sites
of the same data. We observed a positive correlation between the rate of increase in θ estimates (with respect to the
sample size) and the magnitude of selection pressure. For example, θ estimated for the nonsynonymous sites of highly
constrained genes (dN/dS < 0.1) using 512 exomes was 3.6 times higher than that estimated using 16 exomes. In contrast
this difference was only 2 times for the less constrained genes (dN/dS > 0.9).

Conclusions: The results of this study reveal the extent of underestimation owing to small sample sizes and thus
emphasize the importance of sample size in estimating a number of population genomic parameters. Our results
have serious implications for neutrality tests such as Tajima D, Fu-Li D and those based on the McDonald and
Kreitman test: Neutrality Index and the fraction of adaptive substitutions. For instance, use of 16 exomes produced 2.4
times higher proportion of adaptive substitutions compared to that obtained using 512 exomes (24 % vs 10 %).
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Background
Measuring genetic variation is fundamental in popula-
tion genetics. Molecular genetic variation (θ) could be
measured as the product of mutation rate (μ) and
population size (Ne) and the theoretical relationship is
θ = 4Neμ (for diploid organisms). Empirically θ could
be estimated by the Watterson’s estimator θw [1] (or
simply θ hereafter), which is based on the number of
segregating sites (S) or by the Tajima’s estimator θπ [2]
(π hereafter), which uses the mean pair-wise differences
between sequences. The estimation of θ is based on popu-
lation coalescent theory and its popularity is due to its

simplicity. Hence it is widely used in theoretical and em-
pirical population genetic analyses. For instance θ or S is
used to model the expected number of mutations, which
is fundamental in molecular evolutionary biology [3]. θ is
an unbiased estimator when the assumptions such as neu-
trality and constant population sizes are met [4]. However,
θ is downwardly biased for an exponentially growing
population. Similarly, estimates of θ are biased for se-
quences under purifying selection, which results in an
excess of low frequency variants. This is because the the-
oretical relationship (θ = 4Neμ) assumes that all mutations
neutral (or observable), which is not true in reality. There-
fore this relationship can be written as θ = 4Neμf, where f
is the fraction of neutral mutations and f = 1 and f < 1 for
neutral and for selectively constrained sites respectively [5].Correspondence: s.subramanian@griffith.edu.au
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Although the factors influencing θ are well known, the
effects of sample size in modulating the bias in θ estimation
is not clear. In the pre-genomic era the sample sizes used
in population genetics and molecular evolutionary analyses
were modest. Therefore, the effects of sample size on fun-
damental parameters were not well appreciated as the mag-
nitude of these effects were not obvious due to the small
differences between the sample sizes used in various
studies. However, in the post-genomic period the use of
thousands of samples compared to the few dozens of
the past will indeed make a huge impact on the esti-
mates [6–9]. Recent studies based on several thousand
human exomes identified a huge difference in the θ es-
timates. Nelson et al. [8] studied this issue and com-
pared the θ estimated using different sample sizes.
They reported that θ estimated using the protein-
coding genes from 11,000 humans was 4.6 times higher
than that estimated using 23 humans (40.4 vs. 8.8). In
contrast π estimated for the two datasets were identical
(3.96). Similarly, another study using exomes from >5,000
Americans showed a negative correlation between sample
size and Tajima D estimates and up to fourfold difference
between the estimates obtained using various sample sizes
[9]. Since Tajima D is based on the difference between θ
and π the fourfold difference observed in this study was
due to the difference in the θ estimated for various sample
sizes. Similar discrepancies owing to sample size bias were
also reported in other organisms such as plants [10].
These studies attributed this phenomenon to the expo-
nential growth of the populations [9]. However, a proper
simulation study is needed to confirm this.
Another important factor that is known to bias θ

estimation is purifying selection. However, whether sam-
ple size will modulate the magnitude of this bias is not
known. This is an important issue because every gene
(and the genome) consists of regions under selection as
well as under neutral evolution and most of the popula-
tion genetic parameters are estimated for both regions.
If sample size differentially influences the θ estimates of
neutral regions and selected regions, then the estimates
obtained for these regions are not comparable. This has
serious implications for the tests of neutrality such as
Tajima D [2], Fu and Li D [11] and the statistics based
on McDonald and Krietman test [12] namely the Neu-
trality Index (NI) [13] and the proportion of adaptive
substitutions (α) [14].
To examine the differential effects of sample size bias

in neutral and constrained sites we assembled a large
dataset consisting over 1000 exomes [obtained from the
1000 genomes project [15] and estimated various popu-
lation genetic parameters. We also examined how and to
what extent sample size effects influence the tests of
neutrality. Finally, we conducted robust simulations to
further elucidate the magnitude of sample size effects on

the estimation of θ and to determine the probable cause
for this pattern.

Results
Differential effects of sample size on neutral and
selected sites
To examine the effect of sample size on the estimation of θ
we used 1008 human exomes and grouped them into six
categories, each containing non-overlapping 16, 32, 64, 128,
256 and 512 exomes respectively. We then estimated θ at
synonymous (θS) and nonsynonymous (θN) sites of >13000
protein-coding genes. Figure 1a clearly shows that θ esti-
mates significantly correlate (P < 0.01) and systematically
increase with the sample size for both neutral and con-
strained sites. However, the rate of increase is much higher
for constrained than that of neutral sites. This is evident
since the slope of the regression line of the former was
44 % higher than that of the latter (0.26 vs 0.18). To further
confirm this we estimated the ratio of θN/θS, which showed
a highly significant positive correlation (P < 0.01) with the
sample size (Fig. 1b). The θN/θS estimated for the sample
size of 512 was 0.49, which was 32 % higher than that esti-
mated for the size of 16 (0.37). The above results suggest
that increase in the sample size lead to the identification of
more nonsynonymous variants compared to synonymous
SNVs. To confirm this, we estimated the proportion of
nonsynonymous SNVs (nSNVs) in each dataset and found
positive correlation with the sample size (Fig. 1c). We also
repeated our analysis by creating the non-overlapping
six-category dataset multiple times through randomly
choosing the sequences and obtained consistent results.
This was to avoid any bias due to a specific set of
exomes in a sample size category.

Magnitude of purifying selection and the extent of
sample size bias
The above results indicate that the purifying selection
on constrained sites could inflate the sample size bias in
estimating θ. To investigate this further, we grouped the
genes based on the magnitude of selection pressure on
them. For this purpose, we estimated the dN/dS ratio for
each protein-coding gene and used this as a proxy for
the magnitude of selective constraint on them. We then
estimated θN for the sets of genes with different dN/dS
ratios (or under varying levels of selection pressure).
Fig. 2a shows that with the rate of increase in the esti-
mation of θN (with respect to the sample size) was much
higher for the constrained genes compared to those
under relaxed selective constraints. For example, the slope
of the regression line for the genes with dN/dS < 0.1 was
0.34, which is 79 % higher than that observed for the
genes with dN/dS > 0.9 (0.19). Note that the slope of the
latter was close that observed for the neutral synonymous
sites (0.18). To further support these results we computed
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the ratio between θN estimated using 16 exomes and that
estimated using 512 exomes (θN(16)/θN(512)) (Fig. 2b). We
show that these ratios perfectly correspond with the
magnitude of selective constraints (dN/dS) on the genes
(P < 0.01).

Sample size effects on Tajima D (DT) and Fu-Li D (DFL)
Apart from the number of segregating sites another
popular measure for the extent of variation is nucleotide
diversity (π). Unlike θ this measure is not affected by
population growth or purifying selection. Hence we

A

B

C

Fig. 1 Differential effects of sample size on the estimation of θ using the number of synonymous (θS) and nonsynonymous (θN) segregating
sites. a Relationship between the sample size and θ. The relationships were significant (P < 0.01) based on the Pearson correlation as well as
the non-parametric Kendal rank correlation using the log-transformed values of X and Y data points. Best fitting regression lines are shown. X and Y
axes are in log-log scales (base 2). b Correlation between the number of exomes and the ratio of θS/θN. The relationship was statistically significant
(P < 0.01). c The fraction of nonsynonymous variants observed using various sample sizes of human exomes. The error bars denote the standard error
estimated using the binomial variance
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compared these two measures when they are estimated
with various samples sizes. This reveals that π is not
affected by sample sizes not only for neutral sites (P > 0.05)
but also for constrained sites (P > 0.05) (Fig. 3a). The popu-
lar Tajima D (DT) statistic uses the properties of π and θ to

test a genomic region for any deviation from neutral evolu-
tion. As we have shown that sample size influences only
one of these two measures (θ) we examined the extent of
its effect on DT. As expected, we observed negative
correlation (P < 0.01) between DT and sample size for

A

B

Fig. 2 The magnitude of selection pressure and the extent of bias in estimating θ. a Relationship between sample size and θ estimates using the
nonsynonymous sites (θN) of genes under different magnitude of selection. The ratio of nonsynonymous to synonymous substitutions (dN/dS)
was used as a proxy for selection intensity on genes. All relationships were significant (P < 0.01). b Correlation between the extent of purifying
selection (dN/dS) and the ratio of θN estimated using small (N= 16) and large (N= 512) sample sizes. The relationship was statistically significant (P< 0.01)
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Fig. 3 Sample size effects on Tajima DT statistics. a θ and π were estimated for synonymous (θS and πS) and nonsynonymous sites (θN and πN) using different
sample sizes. While relationships between sample size and θ was significant (P< 0.01) those between sample size and θ were not (P= 0.06). b Scatter plot
shows the Tajima DT estimated for nonsynonymous (DTN) and synonymous sites (DTS) using different sample sizes of human exomes. The relationships were
significant at the 1 % level. c Relationship between the magnitude of selection pressure on protein-coding genes (dN/dS) and the difference (δDT) in Tajima
DT estimated using large (N= 512) and small (N= 16) number of exomes. The plot shows the comparative patterns of the significant relationships observed
for neutral (δDTS) and constrained (δDTN) sites. Each data point indicates the δDTS or δDTN estimated using the genes belong to a selection intensity category
(eg. dN/dS< 0.1). The correlation involving constrained sites was significant (P< 0.01) but that of neutral sites was not (P= 0.48)
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neutral and constrained sites (Fig. 3b). However, the
extent of this overestimation was much higher for
constrained than neutral sites. This is evident from the
widening of the DT estimates of constrained (DTN) and
neutral sites (DTS) with increasing sample size. For
instance, the difference between DTN and DTS was only
0.22 for a sample size of 16. But this value was 0.54 for
a sample size of 512, which is more than two fold
higher than the former. We also examined the relation-
ship between the magnitude of selection and extent of
bias in estimating DTN. For this purpose, we estimated
DTN using the genes under varying levels of selection
pressures. We computed DTN for the synonymous and
nonsynonymous sites of these genes. We then mea-
sured the difference (δDTN) between the DTN value ob-
tained for the lowest (N = 16) and highest (N = 512)
sample sizes. This measure δDTN was computed for 10
gene sets with dN/dS ranging between 0–1 with an
interval of 0.1 (Fig. 3c). We observed a significant posi-
tive correlation (P < 0.001) between dN/dS and δDTN for
the nonsynoymous sites of protein-coding gene sets. In
contrast this relationship was not observed for the syn-
onymous sites of the same gene sets (P = 0.48). This
suggests that the level of selective constraint signifi-
cantly influences the estimation DTN of different genes.
On the contrary the bias in the estimation of DTS is
similar across the genes under various levels of selec-
tion pressures.
We then examined the effect of sample size on the

other popular test of neutrality, the Fu-Li D test - with-
out using an outgroup (DFL). This test uses the differ-
ence between the total number of mutations (η) and the
singleton (appearing only once in the genealogy) muta-
tions (ηs). We computed the difference (η – ηs) for syn-
onymous and nonsynonymous sites of protein-coding
genes using different sample sizes. While the difference
for neutral sites (ηS – ηSs) only slightly varied with sam-
ple sizes that (ηN – ηNs) for constrained sites signifi-
cantly increased with sample size (Fig. 4a). The slope of
the regression line for the latter was (0.029) higher than
that observed for the former (0.014). This result clearly
predicts differential effects of sample size on DFL as well.
To confirm this, we estimated DFL for synonymous
(DFLS) and nonsynonymous sites (DFLN) using different
sample sizes. We found a positive relationship between
DFL and sample size (P < 0.01) and the bias in the esti-
mation of DFL was more pronounced for the constrained
sites (Fig. 4b) than neutral sites. The DFLN estimates
obtained using a sample sizes of 512 was 6 times higher
than that estimated using the sample size of 16. In
contrast this difference was only 3 times for DFLS. We
also observed a positive relationship between dN/dS and
δDFLN for constrained sites (P < 0.01). However, there
was no significant relationship between sample size and

A

B

C

Fig. 4 Influence of sample size on the estimation of Fu-Li DFL. a The
difference between the total number of mutations (η) and singleton
mutations (ηs) estimated for neutral (ηS and ηSs) and constrained
(ηN and ηNs) sites using various numbers of human exomes. b Scatter
plot shows Fu and Li D estimated for nonsynonymous (DFLN) and
synonymous sites (DFLS) using different sample sizes. The relationships
were significant at the 1 % level. c Relationship between the magnitude
of selection pressure on protein-coding genes (dN/dS) and the difference
(δDFL) in Fu-Li DFL estimated using large (N= 512) and small (N= 16)
number of exomes. The plot shows the comparative patterns of
the relationships observed for neutral (δDFLS) and constrained
(δDFLN) sites. Each data point indicates the δDFLS or δDFLN estimated
using the genes belong to a selection intensity category (eg. dN/
dS = 0.1-0.2). The correlation involving constrained sites was significant
(P < 0.01) but that of neutral sites was not (P = 0.14)
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δDFLS for the neutral sites (P = 0.14) (Fig. 4c). Hence the
patterns observed for Fu-Li DFL were similar to those
detected for Tajima DT, which clearly emphasize the
significance of sample size-mediated bias in estimating
these parameters.

Influence of sample size on MK-test based measures
Two routinely used population genetic measures that
are based on the principles of McDonald and Kreitman
test are the Neutrality Index and the fraction of adaptive
nonsynonymous substitutions (α). Both these measures
use polymorphisms and substitutions in synonymous
and nonsynonymous positions. To examine the effect of
sample size on these parameters we computed them
using different numbers of human exomes. We observed
a highly significant positive relationship (P < 0.01) between
sample size and Neutrality Index (NI) (Fig. 5a). The values
of NI for the sample sizes of 16 and 512 were 1.4 and 1.9
respectively showing a 36 % difference. Since NI is the
measure of purifying selection using a smaller sample size
significantly underestimates the selection pressure on
human exomes.
Finally, we quantified the proportion of adaptive non-

synonymous substitutions (α) using different sample
sizes. Our result produced a strong negative correlation
(P < 0.01) between the sample size and α (Fig. 5b). Inter-
estingly using a small number of exomes suggested that
24 % of the nonsynonymous mutations were fixed by
adaptive evolution. However, using a much larger sample
size of 512 exomes this number reduced 2.4 fold and
only 10 % of the nonsynonymous substitutions were
estimated to be under positive selection.

Results from simulation analysis
To investigate whether θ estimated for exponentially grow-
ing populations and for selectively constrained genomic re-
gions is seriously influenced by sample size we conducted a
simulation study using the program SFS_CODE [16]. We
modelled two populations that undergo a similar initial
growth phases, but one was later allowed to grow exponen-
tially and the other remained under constant population
growth (see Methods). We also repeated this model for
neutrally evolving sequences as well as for those under dif-
ferent levels of selection pressures. Both simulations were
conducted for varying sample sizes of 16, 32, 64, 128, 256
and 512. The results from the sequences simulated under
neutrality clearly show that the θ estimated for the popula-
tion under constant population growth did not vary with
sample sizes (P > 0.05) (Fig. 6a). On the contrary θ esti-
mated for the sequences simulated under exponential
growth significantly correlated with sample size (P < 0.01)
and these estimates varied up to 84 % between the samples
sizes of 16 and 512. However, the estimates of π were not

affected by sample sizes and this is true for the populations
under constant as well as exponential growth (P > 0.05).
The results from the sequences simulated under varying

levels of selective constraints are shown in Figs. 6b and c
for constant and exponential growth models respectively.
Figure 6b shows that even under constant population
growth conditions the estimation of θ varied with sample
sizes. The rate of variation was much higher for sequences
under high selective constraints (NeS = 2000) than those
under relaxed selective pressures (NeS = 2). The slope of
the regression line of the former was 2.7 times higher than
that of the latter (0.21 Vs 0.08). However, θ estimated for
neutrally evolving sequences did not vary with the sample
size as there was no significant correlation between the
two variables (P < 0.13). These results suggest that for
populations under constant growth, purifying selection
alone modulate the sample size bias in estimating θ.
Our simulation results for exponentially growing popu-

lation shows that the sample size bias in estimating θ is
much higher compared to that under constant growth.
For instance, the slopes of the regression lines shown in
Fig. 6c are much higher (0.17 – 0.34) than the correspond-
ing lines shown in Fig. 6b (0.03 – 0.21). Furthermore, the
difference in θ estimates obtained for large (N = 512) and
small (N = 16) sample sizes are also much higher for
exponentially growing populations than those under con-
stant growth. For instance, this difference was 3.3 times
for the highly constrained (NeS = 2000) exponentially
growing populations (blue circles-Fig. 6c) and this was
only 2.1 times for those under constant growth (blue
circles-Fig. 6b). The overall results from our simulation
study were qualitatively identical to those observed using
the 1000 genome human data.

Discussion
In this study we showed that there is an effect of sample
size in estimating the fundamental population genetic par-
ameter, θ. Previous studies based on human exome data
reported the sample size effect on the estimation of θ and
attributed this to the exponential mode of growth in
human populations [7–10, 17]. In this study we showed
that the sample size effect could also be significantly
modulated by purifying selection. The results from the
simulation study clearly highlighted the independent
contributions of demography (exponential growth) and
selection in influencing θ estimation for different sample
sizes. The patterns of our observed and simulated results
could be explained based on the fact that the resolution in
identifying low frequency variants increases with the in-
crease in the sample size. When a population undergoes
constant growth phase, the distribution of SNVs (site
frequency distribution) follows standard coalescence model
and Watterson’s θ clearly captures this. However, when a
population grows exponentially, a higher proportion of low
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frequency variants are created due to faster coales-
cence events near the tip of the genealogies. This is
shown in Fig. 7 and the hypothetical population tree
based on large sample size has more branches in the
tips suggesting more observable mutations when the
sample size is large [9]. Hence for an exponentially
growing population a higher θ is expected. However,
to observe or to identify the vast majority of low
frequency variants a larger sample size is required. In
the context of mutations, small sample size underesti-
mates the overall mutations in a population as it mis-
ses rare mutations and a higher sample size is needed
to observe all of them.

The role of selection could be explained by comparing
the regions under neutrality to those under selective
constraints. Since purifying selection prevents deleteri-
ous mutations reaching high frequencies, constrained
genomic regions are typically abundant in low frequency
SNVs [18]. Therefore, large sample sizes are required to
properly identify these rare SNVs. Hence the estimation
of θ for the constrained regions of exponentially growing
populations is much more severely biased by sample
sizes because they are modulated by both demographic
and selective forces. Since the human population is
known to be under exponential growth, the sample size
effects on the estimation of θ for neutral synonymous

A

B

Fig. 5 Effect of sample size on the McDonlad and Kreitman test based statistics. a Correlation between Neutrality Index and the number of exomes used
to estimate this measure. b The proportion of adaptive nonsynonymous substitution estimated using different sample sizes. Both the relationships were
statistically significant at the 1 % level
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Fig. 6 (See legend on next page.)
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sites are influenced by the demographic factor alone but
estimates for the nonsynonymous sites are modulated by
both demographic and selective forces. This is clear in
the simulation study, which showed that the sample size
bias is influenced only by purifying selection in constant
populations. Therefore, the extent of sample size bias for
the constrained regions of exponentially growing popu-
lations was much higher than that observed for the con-
strained regions of populations under constant growth.
Furthermore, humans have a unique demographic his-
tory and it is well known that human populations have
undergone an explosive population growth, which resulted
in much higher fraction of rare deleterious variants [8, 9].
This is evident from the unusually high ratio of θN/θS (0.5)
observed for large sample sizes (Fig. 1b).
Apart from neutrality and constant growth, the esti-

mation of θ is also based on the assumption that individ-
ual sites/mutations in a genome are inherited and evolve
independently. However, this is not true in reality as the
genomic regions along with the mutations are inherited
as large blocks of IBD segments. Therefore, the equation
used for θ estimation does not account for this and
therefore the results shown in this study might have the
influence of this bias.
In this study we have used the data 1000 genome project,

which consists of genomes from a number of populations
all over the world. Hence this sample composition is from
a continuous population, which is a unique and unusual
characteristic of this dataset. Therefore, to examine the

generality of the patterns observed in this study for specific
populations we examined the sample size issue using single
populations. For this purpose, we used the subset of 85
exomes belonging to the CEU (Utah American) population
and divided the data into two groups, one with small
(16 exomes) and another with large (64 exomes) sample
sizes (Additional file 1: Figure S1). For neutral genomic re-
gions (synonymous sites) the θ estimate obtained for the
large sample size was 9 % higher than that observed for
small sample sizes and the difference was highly signifi-
cant (P < 10−7). In contrast for constrained regions this
difference was 26 % (P < 10−7). As expected, π estimates
were similar between large and small sample sizes and
this was true for neutral (P = 0.48) as well as constrained
sites (P = 0.61). Similar results were observed for African
(YRI) and Asian (CHB) populations (Additional file 1:
Figures S2 and S3). Although we could perform the
population specific analyses using only a small number of
available exomes the results were highly significant
and qualitatively similar to the main results reported
in this study.

Conclusions
The results of this study highlight the significance of
sample size in estimating some of the fundamental pa-
rameters of population genetics. Importantly we showed
that for small sample sizes the underestimation of θ is
higher for constrained regions than that for neutral re-
gions of the same set of exomes. Hence the different θ

Fig. 7 Hypothetical trees show the effects of sample size. Large sample size increases the resolution that lead to the detection of rare and personal
variants shown in the tips of the tree

(See figure on previous page.)
Fig. 6 Results from the simulation study. a Estimation of θ and π using different number of genome sequences simulated under neutral evolution and
constant as well as exponential growth models. Only the relationship between sample size and θ estimated for the exponential growth model was
significant (P< 0.01) and other three were not (P> 0.06). b The estimates of θ obtained for the sequences simulated under neutral and under different
levels of purifying selection using constant population growth model. The relationship between sample size and θ estimated for the sequences simulated
under neutral evolution was not significant (P= 0.13). All other relationships were significant (P< 0.01). c θ estimates for the sequences simulated under
neutral and under different levels of purifying selection using exponential population growth model. The figure shows the correlation between θ estimates
and the number of simulated sequences used for the estimation. All relationships were significant at the 1 % level
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estimated for the two regions using same population
genomic data are not comparable especially when the
sample size is small. Therefore, this bias affects all
neutrality tests and the estimates based on them. For
instance, Fig. 3 shows that the difference in Tajima’s D
estimated for neutral and constrained sites widens with
the increase in sample size. In fact, the (close to) true
values will only be obtained for very large sample sizes.
When sample size is small Tajima’s D of the two types of
sites are apparently similar. Hence use of small number
of samples in this analysis will produce erroneous results
due to severe underestimation of θ for constrained sites.
This also is true for the results of Fu-Li D test (Fig. 4).
In the case of MK test based statistics, the proportion

of adaptive nonsynonymous substitutions (α), use of large
number of samples results in identifying more deleterious
(low frequency) nonsynonymous SNVs, which increases
Pn in eqn 5 and thus the value of α is reduced. In contrast,
small sample sizes identify fewer nonsynonymous
SNVs, which leads to an overestimation of the pro-
portion of adaptive substitutions. The other measure
based on MK-test, the Neutrality Index, is underesti-
mated using a small number of samples due to the
failure to precisely identify some of the low frequency
nonsynonymous SNVs.

Methods
Genomic sequence data and analyses
We obtained the genome data for 1092 humans from
GenBank, which was originally generated by the 1000
genome project (phase 1-version 3) [15]. Using the genome
annotations, we extracted the single nucleotide variants
(SNVs) present in the synonymous and nonsynonymous
sites of protein-coding genes and included only the
bi-allelic SNVs. We divided the data into six non-
overlapping sets consisting of 16, 32, 64, 128, 256 and
512 exomes (or samples). To determine the magni-
tude of selection on nonsynonymous sites we used
the dN/dS ratio computed for the protein-coding
genes using the human-chimpanzee pair. For this pur-
pose, we obtained the human-chimpanzee pair-wise
genome alignment from the UCSC genome browser
data resource (https://genome.ucsc.edu/). Using the
exon-intron boundaries provided in the reference
gene annotations we extracted the protein-coding
transcripts from the human-chimp alignment. Using the
gene annotations from Ensembl (http://www.ensembl.org/)
we retained the longest transcript for each gene. For each
gene the divergence at synonymous sites (dS) and nonsy-
nonymous sites (dN) were estimated based on the max-
imum likelihood method employed in the software PAML
[19]. While dS (SM/SS) is the number of synonymous sub-
stitutions (SM) per synonymous site (SS) in a gene dN (NM/
NS) is the number of nonsynonymous substitutions (NM)

per nonsynonymous site (NS). In estimating dN or dS, the
maximum likelihood method tend to overestimate when
the actual divergence is large. To avoid such estimation er-
rors (due to the overcorrection of multiple hits) we ex-
cluded the genes for which dN or dS estimate was > 0.8.
These filters resulted in 13,454 unique protein-coding
genes, which were eventually used for further analysis.
The ratio of dN and dS (dN/dS) was used as the proxy for
the magnitude of selection pressure on a gene.

Parameter estimation
We estimated a number of population genetic parameters
such as θ, π, Tajima D, Fu-Li D, Neutrality Index and the
proportion of adaptive nonsynonymous substitutions using
the following equations.

Estimation of θ and π
The Watterson’s estimator (θ) measures the molecular
genetic variation as the population scaled mutation rate
using the number of segregating sites as [1]:

θ ¼ S
an

where S is the number of segregating sites, n is the num-

ber of sequences and an ¼
Xn−1

i¼1

1
i . In this study we

estimated θ and S as the number of segregating sites per
site. Nucleotide diversity (k) is the average number of
pair-wise nucleotide differences between sequences,
which was estimated using the following equation [2]:

k ¼
X
i<j

X
kij

n
2

� �

In this study we used π rather than k, which is the aver-
age number of pair-wise nucleotide differences per site.

Tajima D (DT)
This test is based on the difference between the number
of segregating sites and average number of pair-wise nu-
cleotide differences. Under neutrality these two measures
are expected to be equal. Tajima’s D is given by [2]:

DT ¼ k− S
a1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e1S þ e1S S−1ð Þp
where S is the number of segregating sites, k is the aver-
age number of pair-wise nucleotide differences between
sequences and e1 and e2 are given by the equations 36
and 37 of Tajima [2].

Subramanian BMC Genomics  (2016) 17:123 Page 11 of 13

https://genome.ucsc.edu/
http://www.ensembl.org/


Fu and Li D (DFL)
This is another neutrality test similar to Tajima DT but
based on the difference between the total number of
mutations and the singleton mutations in a population
genealogy. Under neutrality these two numbers are
expected to be equal. The DFL of Fu and Li (without
outgroup) is given by [11]:

DFL ¼
n

n−1

� �
η− anηsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uDηþ vDη2
p

where η is the total number of mutations, ηs is the number
of singleton mutations in the sequences and uD and vD are
given by the equations in page 701 of Fu and Li [11]. We
used the total number of segregating sites and the number
of singleton sites as the proxy for η and ηs respectively as
suggested [20].

McDonald and Kreitman (MK) test
MK test uses the ratio of nonsynonymous to synonymous
polymorphisms and divergence [12]. Under neutrality
these ratios are expected to be equal as given by:

Pn

Ps
¼ Dn

Ds

where Pn and Ps are number of nonsynonymous and
synonymous polymorphisms and Dn and Ds are num-
ber of nonsynonymous and synonymous substitutions
respectively.
The popular statistics used in population genetics namely

the Neutrality Index (NI) and the proportions of adaptive
nonsynonymous substitutions (α) are based on the princi-
ples of the MK test.

Neutrality Index (NI)
NI is the ratio of the two ratios, which is given by [13]:

NI ¼ Pn

Ps

�
Dn

Ds

Proportion of adaptive nonsynonymous substitutions (α)
This measure is routinely used to quantify adaptive
nonsynonymous substitutions in protein-coding genes
when inter-species as well as within species (population)
genomic data are available [14]. α can be estimated as:

α ¼ 1−
DsPn

DnPs

Simulation
We conducted an extensive simulation using the pro-
gram SFS_CODE [16], which is based on forward-in-
time population genetic model. The simulation was
performed under constant and exponential growth

models. Sequences were also simulated for neutral
evolution and purifying selection. A sequence length
of 5000 bp, Ne = 10,000 and a mutation rate of 1 × 10−8

per site per generation was used for the simulation
[21]. We conducted separate simulation runs using
sample sizes of 16, 32, 64, 128, 256 and 512. For
human population growth we followed the model
proposed by Tennessen et al. [9]. This model uses two
growth phases, the first one was slow and a second
one was exponentially fast. To keep the simulations
comparable between constant and exponential growth
models we combined the simulation runs and used the
parameters suggested by a previous study [22]. In the
beginning we simulated a population that first splits
into two and both grow at the same rate until they reach
Ne = 9,210. Then only one population undergoes a large
exponential growth phase until it reaches Ne = 512,210.
The other population undergoes a constant growth phase
and thus its number remains at Ne = 9,210. For modelling
constrained site evolution, we used the scaled selection
coefficient γ = 2Ns with γ following a gamma distribution,
which has a mean of α/β. We fixed α as 0.206 based on
previous studies [23] and varied β to model various mag-
nitudes of selection ranging between γ = 2 to 2000. We
performed 1000 replicates, obtained the estimates θ and π
and computed the mean values. Since the simulation con-
ducted here was only to compare the θ estimates from
different sample sizes changing any parameter (eg.
mutation rate) does not affect the end results.

Additional file

Additional file 1: Figure S1. Theta and Pi estimates using 80 CEU
(Utah Americans) exomes. The data was divided into large (64) and small
(16) sample sizes to estimate theta and pi. (A) Using synonymous sites of
protein-coding genes (B) nonsynonymous sites. The error bars denote
standard error. We used a bootstrap (1000 replications) procedure to esti-
mate the variance. Figure S2. Theta and Pi estimates using 80 CHB (Han
Chinese) exomes. The data was divided into large (64) and small (16)
sample sizes to estimate theta and pi. (A) Using synonymous sites of
protein-coding genes (B) nonsynonymous sites. The error bars denote
standard error. We used a bootstrap (1000 replications) procedure to esti-
mate the variance. Figure S3. Theta and Pi estimates using 80 YRI (Yoru-
ban) exomes. The data was divided into large (64) and small (16) sample
sizes to estimate theta and pi. (A) Using synonymous sites of proteincod-
ing genes (B) nonsynonymous sites. The error bars denote standard error.
We used a bootstrap (1000 replications) procedure to estimate the vari-
ance. (DOCX 85 kb)
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