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Abstract

Background: Minor allele detection in very high coverage sequence data (>1000X) has many applications such as
detecting mtDNA heteroplasmy, somatic mutations in cancer or tumors, SNP calling in pool sequencing, etc., where
reads with low frequency are not necessarily sequence error but may instead convey biological information. However,
the suitability of common base quality recalibration tools for such applications has not been investigated in detail.

Results: We show that the widely used tool GATK BaseRecalibration has several limitations in minor allele detection.
First, GATK IndelRealignment fails to work if the sequence coverage is above a certain level since it then becomes
computationally infeasible. Second, the accuracy of the base quality largely depends on the database of known SNPs
as the control, which limits the ability of de novo minor allele detection. Third, GATK reduces the base quality of
sequence errors at the cost of reducing scores for true minor alleles. To overcome these limitations, we present a novel
approach called SEGREG, which applies segmented regression to control sequences (e.g. phiX174 DNA) spiked into a
sequencing run. Based on simulations SEGREG improves both the accuracy of base quality scores and the detection of
minor alleles. We further investigate sequence error and recalibration parameters by applying a Logarithm Likelihood
Ratio (LLR) approach to SEGREG recalibrated base quality scores for phiX174 DNA sequenced to very high coverage,
and for mtDNA genome sequences previously analyzed for heteroplasmic variants.

Conclusions: Our results suggest that SEGREG improves base recalibration without suffering the limitations discussed
above, and the LLR approach benefits from SEGREG in identifying more true minor alleles, while avoiding false
positives from sequencing error.
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Background
Next generation sequencing is nowadays routinely ap-
plied in almost every field of biomedical research [1]. To
cope with the resulting high-throughput but error prone
reads, the base quality [2], which corresponds to the
position-specific error probability, is widely used and ac-
cepted. Unfortunately, the raw base quality from the
Illumina default basecaller (Bustard) is inaccurate [3];
thus a number of basecallers aimed at achieving better
performance have been developed. They either apply a
model-based strategy (e.g., AYB [4], naiveBayescall [5])
or use supervised learning approaches with an additional

training set such as phiX174 reads spiked into the run
(e.g., Ibis [6], Freeibis [7]). These approaches in general
give a more accurate base quality as well as introduce
fewer sequencing errors, but they require access to the
fluorescence intensity data, which is often discarded
since the storage facilities for such data is beyond the
capacity of most laboratories. Alternative base quality re-
calibration tools such as GATK [8] and ReQON [9] at-
tempt to find the error pattern from the raw base
quality, and reassign each base a recalibrated base qual-
ity to reflect the real error probability. However, these
tools mostly are designed for typical coverage data and
are untested for minor allele detection in very high se-
quence coverage (>1000X).
There are many applications involving high sequence

coverage data where minor alleles are of biological
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interest, e.g. heteroplasmy in mitochondrial DNA [10],
heterozygous alleles in polyploidy organisms or in pool
sequencing [11], and somatic mutations with low minor
allele frequency (MAF) in early development in cancers
that change over time [12]. The detection of mtDNA
heteroplasmy has developed extensively in recent years,
from simply setting a cutoff on read counts that satisfy
some base quality requirement (e.g. phred score >20)
[10, 13–15] to more sophisticated use of raw base quality
with the Logarithm Likelihood Ratio approach [16, 17].
Here, we propose a base recalibration tool to increase the
sensitivity of minor allele detection while avoiding most
sequence error hotspots. We also compare our base recal-
ibration tool with others and discuss why they fail to ac-
curately distinguish minor alleles from sequence errors.
We mainly compare our approach to the widely used

GATK base recalibration [8]; Reqon [9] is another base re-
calibration tool, unfortunately, the severe memory de-
mands of Reqon preclude use with vey high sequence
coverage data. Some applications such as de novo genome
assembly can also benefit from error correction tools (e.g.
RACER [18]), but we exclude the comparison to such
tools because they edit the bases directly instead of redu-
cing the base quality scores, thereby precluding direct
comparisons to our method. More importantly, such
methods assume explicitly that there are sequence errors
in reads contributing to low frequency kmers, which is not
the case for true minor alleles of low level frequency. Our
method also uses an additional training set spiked into the
run (as do basecallers such as Ibis and Freeibis), however
these basecallers recalibrate the raw fluorescence data to
both reduce sequence errors and improve the accuracy in
base quality, while our method recalibrates the measured
base quality scores and thus affects the base quality only.

Implementation
Sequencing error is often highly correlated with the ma-
chine cycle, observed nucleotide, nucleotide observed in
the previous machine cycle, and read direction, and the
goal of base recalibration is to remove systematic errors
related to these conditions. Our approach, called SEGREG
(for SEGmented REGression) works in two steps. In the
first step, it divides bases in the spiked in training set (e.g.
phiX174) into various groups, where a group is a combin-
ation of the following relevant conditions:

1. Whether it is the first or second read from
paired-end reads

2. The machine cycle
3. The current observed nucleotide (A,C,G,T)
4. The observed nucleotide in the previous machine cycle

Segmented regression is then applied to each group ac-
cording to the empirical base quality, which is calculated

within the group by assuming all differences from the
consensus sequence are sequence errors, excluding posi-
tions with known minor alleles. The segmented regression
is given by:

mina0;b0;a1;b1;bkð
X

xr i<bk

wi � xe i−a0 � xr i−b0ð Þ2

þ
X

xr i≥bk

wi � xe i−a1 � xr i−b1ð Þ2Þ

Where y0 = a0*x + b0 and y1 = a1*x + b1 are two lines
and bk is the break point, xr_i is the raw base quality, xe_i
and w_i is the corresponding empirical score and the
number of bases of xr_i respectively. For a typical pair
ended library with read length 100, the bases in the train-
ing set are divided into 3200 groups (i.e. 2*100*4*4), and
in some groups w_i can be small, which makes xe_i
inaccurate (in the extreme, xe_i equals infinity if there
is no error in w_i bases); we thus mask those groups
with w_i < 100 from downstream analysis. As shown
in Additional file 1: Figure S9, a number of bins (defined
as per base quality score per group) have only a few bases,
resulting in inaccurate estimates of empirical base quality,
and hence these are masked. However, many bins have a
sufficient number of bases for an accurate estimate of em-
pirical base quality, especially for intermediate range of
base quality scores which are of most interest (Additional
file 1: Figure S9).
Figure 1 gives four examples of the results of segmented

regression randomly selected from the thousands of
groups. Segmented regression assumes that there is a lin-
ear relationship of raw quality score with the recalibrated
score; we show below that assuming a more complicated
relationship, such as a quadratic relationship, does not im-
prove the performance of the method. We also assume
that the background error rate of the basecaller is under-
estimated, which has a larger effect on higher base quality
scores. For example, suppose there is a systematic error
with error rate 0.001 underestimated by the sequencer.
Then for the raw quality score of 40 (error rate 0.0001),
the recalibrated score is 29.59 (total error rate 0.0011),
while for the raw quality score of 10 (error rate 0.1), the
recalibrated score is 9.96 (total error rate 0.101). In the
second step, SEGREG once more assigns each base from
the user’s data to one of these groups, e.g. j, and uses the
bk_j and the regression lines y0_j and y1_j of the respect-
ive group to map the raw phred score to the recalibrated
score. The source code is publicly available at https://
github.com/sendru/SEGREG.

Results and discussion
Simulation
We first use simulation data for the comparison of
SEGREG with other approaches. Although any simulation
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is a simplification of real data, it has the advantage over
real data in that all sequence errors and true minor alleles
are known beforehand, whereas with real data it is not
possible to distinguish all true minor alleles from sequence
error hotspots, even in very high coverage data. For ex-
ample, a common way of generating true minor alleles is
to mix samples with different consensus sequences in dif-
ferent ratios and focus on the positions that differ in the
consensus sequences as the only true minor alleles (e.g.
[14]), but real samples may also contain true minor alleles
which are then falsely considered to be sequence errors,
thereby skewing the evaluation of the method. The simu-
lated sequences were generated by Simseq. [19] In brief,
thirteen complete mtDNA genome sequences represent-
ing the major haplogroups in modern humans were
downloaded from NCBI and used as the templates for
simulated reads (see Methods section for details); the se-
quence coverage is about 4000X. By pair-wise alignment
between the revised Cambridge reference sequence (rCRS;
reference) and the respective template sequences, all reads
were aligned to the correct position in the rCRS by Cross-
map [20] without misalignment issues. Additionally, we
applied different training sets for GATK results: GATK1

used dbsnp142 [21] for known SNPs as the control;
GATK2 used the polymorphic sites of all 13 template se-
quences as the control; GATK3 used the polymorphic
sites of the respective template sequence (the actual gen-
etic variants) as the control; and GATK4 used BWA [22]
for alignment and dbsnp142 as the control, which
represents a general use of GATK. We used the
Frequency-Weighted Squared Error (FWSE) [9], which
is defined as the sum of the squared errors between
the predicted base quality and the empirical base qual-
ity, weighted by the relative frequency, to compare the
accuracy of these tools. The recalibrated base quality in
one of the simulations (with the template sequence be-
longing to haplogroup H1, which is of European origin)
from different methods, as well as the raw quality scores
(Bustard), are compared to the empirical scores in Fig. 2.
In general, the FWSE is relatively high (compared to the
FWSE from phiX174 in Additional file 2: Figure S6), be-
cause Simseq generates many bases with the lowest base
quality (phred score = 2), which has a higher empirical
base quality, and none of the methods can improve it.
GATK4 has a larger FWSE than GATK1, which reflects
the misalignment issue; with more knowledge of the

Fig. 1 Four random examples of SEGREG recalibration. Bases are divided into groups based on the criteria described in the text, and in each
group segmental regression is applied. The correspondence between raw and empirical phred scores is plotted as dots for bases of the same
group and the breakpoint is chosen by the regression algorithm, with the two segments regressed to dots of the same color. If the dot (group)
shown in the plot is based on less than 100 observations, the corresponding empirical base quality is imprecise and hence is not considered in
the regression analysis
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actual genetic variants, GATK can improve the accuracy
of recalibrated base quality as GATK2 has a lower FWSE
than GATK1, and GATK3 has a lower FWSE than
GATK2. Our method, SEGREG, has the lowest FWSE,
which probably reflects both the direct regression on the
multiple conditional probability in our model, as well as
the simplicity of the error model generated from Simseq,
which is based on mtDNA sequence data (Simseq
reference).
Figure 3 gives the complete comparison of the 13 sim-

ulations. The relationships shown in Fig. 2 still hold in
general with a few exceptions: In the template belong to

haplogroup L5, there are 18 SNPs missing in dbsnp 142;
as a result, both GATK1 and GATK4 has a larger FWSE
value than the raw base quality, which means with an in-
appropriate database as the control, GATK can actually
produce results that are worse than the raw base quality.
GATK2 is not always better than GATK1, as shown for
haplogroup D4, which together with the fact that
GATK3 is always better than GATK2 reflects the impact
of the choice of control SNPs on the results obtained
with GATK. When compared to the FWSE from raw
base quality and from SEGREG, GATK has more vari-
ance in all settings, especially for African haplogroups

Fig. 2 Recalibrated base quality scores generated from different methods for simulated data. For each method the recalibrated scores are
compared to the empirical scores; the ideal (diagonal) line is shown in each plot. The Frequency-Weighted Squared Error (FWSE) is also given for
each method. Raw: Sequence generated by simulation (SimSeq); Seg: this study; GATK1: dbsnp 142 is used as known database of SNPs, no
misalignment issue (mapped by crossmap); GATK2: SNPs in the entire dataset of 13 mtDNA genome sequences, no misalignment issue; GATK3:
the actual genetic variants (both SNPs and indels) for just the particular mtDNA genome sequence are used, no misalignment issue; GATK4:
dbsnp142 is used, with potential misalignment issues (mapped by BWA)
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(haplogroups L0-L6), which may result from the fact that
the reference genome (rCRS) belongs to haplogroup H2,
which is mostly distributed in European populations.
In these simulations there are no true minor alleles in

the data, i.e. any differences between reads and the con-
sensus sequence are sequence errors. To simulate true
minor alleles, we randomly selected a small portion of
the reads from one template and mixed them with reads
from another template, after correctly aligning them to
the rCRS as described before. A total of 156 (13*12)
pairwise mixture samples were generated with an aver-
age sequence coverage of 4000 and 0.3 % mixture,
resulting in 9010 minor alleles as the true set. Note that
not all the reads that differ from the consensus sequence
at a true minor allele site will reflect true minor alleles.
For example, suppose all bases have an error rate of
0.01, so the observed frequency of reads with different
bases due to sequence error is 0.01/3 = 0.0033 (because
there are a total of 4 bases). As a result, at a sequence
coverage of 4000 we expect about 13 reads from se-
quence error and about 12 reads (=4000*0.03 %) from
true minor alleles. We also need to consider the sam-
pling variance, for example, with 0.3 % of reads ran-
domly chosen from the second template, the actual
mixture rate for all 9010 minor allele (Additional file 3:
Figure S1) ranges from 0 to 0.72 %. In real applications,
the variance should be even greater, given sequence

error hotspots, PCR bias in GC rich regions and Illu-
mina strand bias, etc.
Additional file 4: Figure S2 shows the distribution of

FWSE in the simulated mixtures. The pattern is very
similar to that for the previous simulation: GATK shows
relative large variance and a few outliers. The SNP data-
base used as the control for GATK does not appear to
greatly influence the minor allele calling, as the fre-
quency distribution of minor alleles that are included in
dbsnp 142 does not differ from the distribution of minor
alleles that are not in the database (Additional file 5:
Figure S3).
To see whether the recalibrated base quality provides

an improvement in minor allele calling, we first assign
every minor allele site a value, which can be written asX

xi
ei
, where x_i is the number of reads covering that site

whose base quality score is i, and the e_i is the error rate
corresponding to the phred score i. We then compared
the 1000 lowest values among the 9010 true minor allele
sites (i.e., true minor alleles receiving the weakest sup-
port) to the 1000 highest values among the remaining
sites (i.e., sequence errors receiving the strongest sup-
port). The frequency distributions of the weakest true
minor alleles and strongest sequence errors are shown
in Fig. 4. As explained above, true minor allele sites are
also covered by reads due to sequence errors, and a few
additional reads from the true minor allele does not have

Fig. 3 The FWSE for different base recalibration approaches applied to simulations based on 13 different mtDNA templates. The haplogroup for
each mtDNA template is given on the X axis. The methods for comparison are the same as Fig. 2
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a strong impact on the frequency distribution. However
it is still surprising that GATK downgrades the base
quality in the true minor allele sites. Apparently GATK
assigns a lower base quality to minor alleles that are not
at inferred SNP sites. Such a strategy is fine for SNP call-
ing in reasonable sequence coverage, but it is detrimen-
tal for minor allele detection. Moreover, since reads
from minor alleles constitute a very small portion of the
total reads, the difference is not apparent in the FWSE.
SEGREG, on the other hand, does not introduce such a
bias and leaves the actual calling of SNPs to the down-
stream tools.
To give an objective evaluation of these tools, the loga-

rithm likelihood ratio (LLR) [16, 17] was applied to the
recalibrated score for minor allele detection. Briefly, LLR
gives a likelihood ratio for each site; we then set cutoffs to
the ratio as the classification model, which gives con-
ditional positive (LLR > = c) and conditional negative
(LLR < c) outcomes respectively. Formally, the true posi-

tive rate is defined as
X

True positiveX
Conditional positive and the false posi-

tive rate is
X

False positiveX
Conditional negative. Using different cutoffs of the

LLR, we then get the Receiver Operating Characteristic
(ROC) curve of the different recalibration tools (Fig. 5).
The fact that GATK has a smaller area under the ROC
curve compared to the raw base quality confirms that
GATK actually worsens the minor allele calling, even
though it has a smaller FWSE.
We additionally used the simulation data for parameter

tuning in applying LLR based-SEGREG to identify minor
alleles. For the 9010 minor alleles produced in the artificial
mixtures, the MAF estimated from raw read counts and
that estimated by maximum likelihood are both highly
correlated with the real MAF (Pearson correlation is

0.9988 for raw reads counts and 0.9941 for maximum like-
lihood). Additional file 6: Figure S4 shows the maximum
LLR from sequence error at different sequence depths; in-
creasing sequence depth results in higher raw quality-
based LLR, but this pattern disappears after recalibration
with SEGREG, indicating that SEGREG reduces this sys-
tematic bias. Moreover, a cutoff of LLR > 3 rules out al-
most all minor alleles due to sequence error. For a given
site MAF, the LLR distribution for different sequence
coverage is given in Additional file 7: Figure S5. In brief,
for minor alleles with site MAF around 1 %, a sequence
coverage of 1000 is needed for distinguishing such minor
alleles from sequencing error; for site MAF around 0.3 %
a sequence coverage of 3,000 is needed; and a sequence
coverage > 16,000 is needed for site MAF around 0.1 %.
Although any simulation is a simplification of real data,

there are a number of insights that arise from knowing
the true minor alleles vs. the sequence errors. First, for a
given minor allele frequency there can still be substantial
variation in the number of covered reads with the minor
allele (Additional file 3: Figure S1), which can contribute
to difficulties in distinguishing true minor alleles from se-
quence errors. Second, even with a constant observed
MAF, LLR separates true minor alleles from sequence er-
rors at different rates depending on the sequence cover-
age. Third, the maximum LLR (without recalibration)
from sequence error increases with the sequence coverage
(Additional file 6: Figure S4). These observations would
not arise from real data, where true minor alleles cannot
be distinguished with certainty from sequence errors.

Real sequence data
We next used phiX174 DNA (from phage cultured in our
institute) for comparison. Briefly, reads from spiked-in

Fig. 4 Frequency distribution of the base quality from each method. Blue line: the average frequency distribution of true minor alleles with the
1000 weakest signals; red line: the average frequency distribution of sequencing errors with the 1000 strongest signals (see main text for the
explanation of weakest and strongest signals). Note that with GATK the weakest true minor alleles in general have lower recalibrated base quality
scores than the strongest sequencing errors, while with SEGREG the distributions of recalibrated base quality scores are more similar for the
weakest true minor alleles vs. the strongest sequencing errors
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phiX174 in one Illumina Hiseq2500 run were extracted,
resulting in a total of 3.77 million reads without PCR du-
plication and an average coverage of about 87,500. Two
previously reported polymorphic sites (positions 1401 and
1644) [7, 23] were also detected and masked from the
downstream analysis. The consensus sequence was called
and used as the reference to control for misalignment is-
sues. The result of GATK and SEGREG are shown in
Additional file 2: Figure S6, along with results for
SEGREG where we only used half of the data for the train-
ing set. All three methods improve the base quality to high
accuracy; however note that GATK implementation is
atypical. First, it does not have the misalignment issue;
and second, all of the occurring genetic variants are in-
cluded in the control SNP database (equivalent to GATK3
in Fig. 2). Note also that using half the data for the train-
ing set produces acceptable results, although the per-
formance of SEGREG improves with more reads in the
training set (Additional file 2: Figure S6).
We also applied quadratic regression to the phiX174

data (Additional file 8: Figure S10) to obtain recalibrated
base quality scores, however quadratic regression does not
provide an overall improvement. Part of the reason is that
there are only a few bases in many bins (Additional file 1:
Figure S9), which makes the empirical base quality in-
accurate. Moreover, the overall linear relationship between
the recalibrated and the raw base quality also appears to
provide important information.

A common assumption used in general SNP calling
pipelines is that all low frequency differences from the
consensus sequence are sequence errors. Any application
that explicitly (such as RACER for error correction) or
implicitly (such as GATK base recalibration) uses this
rule will be biased against detecting true minor alleles.
We also show that FWSE is not an appropriate measure
for comparing different methods, since reads from the
minor alleles constitute a very small portion of the total
reads, and hence the best way to compare different mea-
sures is using the ROC curve, which in turn requires
knowing the true minor alleles.
The phiX174 phage is cultured from a single strain,

and thus in many applications any differences between
reads and the consensus are assumed to be sequence er-
rors. However, as found both in our study and previously
[23], true minor alleles exist with a frequency around
25 % at positions 1401 and 1644. To further investigate
whether there are additional true minor alleles, we applied
SEGREG independently to 7 runs of phiX174 sequences
(data can be retrieved from EMBL: PRJEB11001, where
the training set and the user’s data are the same) from dif-
ferent Illumina platforms (Hiseq2500 and Miseq) and dif-
ferent sequence callers and analyzed them with the LLR
approach. Overall, the true minor alleles are expected to
be observed in different runs, although weak signals might
not be detected in every run. The observed minor alleles
with LLR > 3 were further divided into several groups:

Fig. 5 Receiver operating characteristic (ROC) curve for LLR from raw base quality (Bustard) and recalibrated base quality (GATK and SEGREG) scores
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CpG site (CpG); C- > T mutation (or G- > A on the com-
plement) where C is the major allele and T is the minor
allele except CpG sites; T- > C mutation (TC); C- > A mu-
tation (CA); A- > C mutation (AC); and G- > C mutation
(GC); T- > A mutations were not considered as none were
observed. Additionally, we applied a strand bias test [24]
and a Mann-Whitney U test on the position within the
read, called PosRankSum, to these minor alleles, requiring
SB < 1 (corresponding to a p-value <0.01) and PosRank-
Sum > -3 (corresponding to a p-value of 0.003). Minor al-
leles in CpG sites are the only group whose minor alleles
all passed these two tests, suggesting they are true minor
alleles, while C- > A mutations decreased from 137 to 36
and G- > C mutations from 7 to 0 after applying these fil-
ters, indicating they are caused by sequencing errors. The
large quantity of sequence errors in C- > A mutations also
means that the Illumina chemistry has a high error rate in
distinguishing A from C, which might explain the fact that
A- > C mutations have a relative large LLR score and are
almost unchanged after additional tests (from 26 to 24),
suggesting it is the main source for sequence error hot-
spots. The LLR distribution for each group of minor al-
leles is shown in Fig. 6.
Although strand bias test and position rank sum test

are effective to remove false minor alleles, the resulting
minor alleles after filtering still have a low transition to
transversion ratio (0.68), indicating that most of them

are still sequence error hotspots. In Additional file 9:
Table S1, we additionally set the cut-off to >0.001 in MAF
and compared minor alleles in these runs. The strand bias
test and position rank sum test look reasonable since
minor alleles filtered by these tests are sequencer/basecal-
ler specific, and concentrated in the region 3012–3035
near two GGT motifs (3021 and 3033), which is reported
to be an error prone pattern [25]. Four minor alleles from
AC mutations are likely to be sequence error hotspots as
discussed before. Besides the two previous reported minor
alleles (1401 and 1644), we additionally report two sites
that by our criteria harbor true minor alleles (878 and
5349). The only position that is unclear is position 2339,
but its MAF is very close to the cutoff (0.001). Although
these two additional suggested minor alleles are likely to
be true minor alleles, overall there are too few minor al-
leles in the phiX174 data to give a meaningful ROC curve.
We next applied SEGREG-based LLR to 247 mtDNA

genome sequences [26], and compared our results to a
previous LLR pipeline [17]. With mtDNA, the transition
to transversion (Ti/Tv) ratio can also be used as an indica-
tor of error rate for large datasets, as mtDNA mutations
show a strong excess of transitions over transversions
[27]. The sequencing coverage of the 247 mtDNA samples
ranges from 693 to 34180, with median sequence coverage
of 2809. We found 2164 minor alleles with a Ti/Tv ratio of
14.80 from the previous LLR pipeline [17] (i.e. MAF > 1 %

Fig. 6 Boxplot of the LLR distribution for different types of minor alleles (LLR > 3) observed in 6 runs of phiX174. Results from the strand bias and
position rank sum tests are also shown, as follows, with the number of alleles in parentheses: CpG(15), minor alleles on CpG sites; p0(15), CpG
after SB < 1 and PosRankSum > -3 filters; CT(20), C- > T mutations excluding CpG sites, where T is the minor allele; CT0(16), CT after filters; TC(14),
T- > C mutations; TC0(10), TC after filters; CA(137), C- > A mutations; CA0(36), CA after filters; AC(26), A- > C mutations; AC0(24), AC after filters;
GC(7), G- > C mutations; GC0(0), GC after filters. No A- > T minor alleles were observed
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and at least 2 reads from the minor allele from both
strands, LLR > 5). Using SEGREG-based LLR as shown in
Additional file 10: Figure S7, we found 32929 minor alleles
with Ti/Tv ratio 14.89, which means we found 14 times
more minor alleles while keeping the error rate at the
same level. Some of this discrepancy is due to the fact that
the previous pipeline uses additional criteria to identify
true heteroplasmies vs. potential contamination and nu-
clear inserts of mtDNA (nuMTs), whereas our pipeline
only tries to distinguish true minor alleles (regardless of
cause) from sequence errors. However, if we take the same
number of minor alleles (2164) with the highest LLR, the
Ti/Tv ratio is above 30 (Additional file 10: Figure S7).
Since heteroplasmies represent ongoing mutation and the
Ti/Tv ratio declines when sequences from longer evolu-
tionary distances are compared [28], the apparent two
levels of Ti/Tv ratio in Additional file 10: Figure S7 might
reflect heteroplasmies and contamination/nuMT effects
respectively. To further validate that the Ti/Tv ratio is
meaningful in this context, Additional file 11: Figure S8
shows the Ti/Tv distribution among these 247 samples for
inferred true minor alleles vs. sequence errors.

Conclusions
Detection of minor alleles with low frequency in very high
coverage (>1000X) sequence data is still a challenging
task, mainly because both a good model for sequence er-
rors and an accepted “gold standard” for calling true
minor alleles with low level frequency in real sequence
data are lacking. Despite these limitations, our method
SEGREG offers several improvements compared to
GATK. First, the GATK BaseRecalibration modulo re-
quires the IndelRealignment modulo to run properly for
the user’s data, which is often computationally infeasible
for very high sequence coverage and thus introduces add-
itional bias. By contrast, SEGREG merely requires a train-
ing set (e.g. phiX174) to align correctly, which is relatively
fast and easy to achieve by mapping reads to the consen-
sus sequence. Second, as we shown in the simulations
(Figs. 2 and 3), the performance of GATK depends greatly
on the control database of known SNPs, and in many ap-
plications there will be additional SNPs in the data.
SEGREG, on the other hand, only requires the genetic var-
iants of the spiked-in control sequence, (i.e. with phiX174,
positions 1401, 1644, 878 and 5349 would be excluded
from the empirical base quality calculation (Additional file
9: Table S1)). While it is likely that there are additional
true minor alleles in phiX174, especially in CpG sites,
(Fig. 6), the very low MAF for these sites (MAF < 0.001),
means they introduce little bias in the empirical base qual-
ity calculation. Lastly, but most importantly, the condi-
tional error model in GATK can be represented by

Pr eja1;…; a nð Þ ¼
X

covi � Pr ejaið Þ

Where a_i are conditions used in the model, and cov_i
are covariant functions for each condition. GATK esti-
mates Pr(e|a_i) independently and uses machine learning
for covariants, while SEGREG estimates Pr(e|a_1,…,a_n)
directly from the training data. While SEGREG requires
more reads in the training set than GATK, as the per-
formance is decreased if SEGREG is trained on only half
of the reads (Additional file 2: Figure S6), nevertheless
SEGREG exhibits greatly improved performance in minor
allele detection.
We also show that FWSE is not appropriate for evalu-

ating different base quality recalibration tools in terms
of minor allele detection, since some tools such as
GATK improve the overall precision of SNP calling at
the cost of failing to detect low frequency minor alleles.
However, a thorough comparison of SEGREG and other
base quality recalibration tools would need true minor
alleles in real sequence data; in the absence of such data,
we relied on simulation data for such comparison. By
comparing the SEGREG-based LLR results from differ-
ent runs of phiX174 DNA, minor alleles that are likely
to be true minor alleles, such as those at CpG sites due
to the elevated mutation rate at such sites, are mixed
with minor alleles that are likely to be sequence error
hotspots in Illumina reads, such as A- > C mutations.
Since repeated runs for a single strain such as phiX174
has mixed signals from both true minor alleles and se-
quence error hostspots, distinguishing these remains a
challenge for further studies.
Nevertheless, our method SEGREG does improve detec-

tion of mtDNA heteroplasmies. A commonly-used ap-
proach for detecting such minor alleles is to set a cutoff in
MAF to a high level and concentrate on significant minor
alleles only, thereby missing true minor alleles with low
MAF. By using the Ti/Tv ratio as an additional error indi-
cator for mtDNA, our results for MAF > 0.1 % shows the
same level of error rate as MAF > 1 % from the previous
pipeline [17]. This improvement is due to the improved
performance of SEGREG-based LLR (as shown in the
simulation data). Additionally, the Ti/Tv ratio (Additional
file 2: Figure S6) provides useful information in distin-
guishing different sources of minor alleles in mtDNA.
Overall, SEGREG-based LLR provides investigators with a
new and more accurate approach for identifying true
minor alleles in high coverage sequence data.

Methods
Logarithm Likelihood Ratio (LLR)
The likelihood function is defined as:

L( f ) = ∏j = 1
l [(1 − f )εj + f(1 − εj)]∏j = 1

k [(1 − f )(1 − εj) + fεj]

where epsilon is the error rate derived from the phred
score, f is the minor allele frequency and l and k are the
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number of reads covering the minor and major allele re-
spectively (without loss of generality, only minor alleles
with the most reads covered are considered). Maximum
likelihood is used to estimate the minor allele frequency

f̂ , and the LLR is then calculated as logðLðf̂ Þ=L 0ð ÞÞ ,
which can be interpreted as the relative likelihood that

MAF= f̂ vs. MAF = 0.

Simulated data
SimSeq (https://github.com/jstjohn/SimSeq) was used to
produce the simulated data. The sample error profile in
the same package was used as the error model. Thirteen
complete human mtDNA genomes representing major
haplogroups were downloaded from NCBI (genebank
KC911603.1, KJ786931.1, KJ786932.1, DQ304903.1,
KF179062.1, KC911354.1, KC911353.1, JN580306.1,
KC911364.1, HQ873516.1, KC911596.1, KJ756350.1,
KJ801919.1) and used as the templates, with no other
parameters specified. To generate reads evenly distrib-
uted across the circular mtDNA genome, the first
1000 bp was added to the end of the rCRS sequence; 4
million reads were generated for each template and
reads completely within the artificial repeat region were
discarded. Crossmap version 0.2.1 was used to align the
reads to the reference (rCRS) to remove alignment arte-
facts. The total sequence coverage was about 40,000 as
the library for each template. Pairwise mixtures were
then performed by randomly taking 10 % of the reads
from one library and mixing them with 0.03 % of the
reads from the other. dbsnp 142 was used as an add-
itional training set for GATK, while SEGREG takes one
of the libraries as the training set for parameter tuning,
and applies the results to all of the other libraries. Minor
alleles were obtained by the pairwise alignment tool
Emboss Strecher [29]; a total of 9034 putative minor al-
leles were detected. Removing those within 5 bp of an
indel resulted in a total of 9010 minor alleles for further
analysis.

Mapping reads to the mtDNA genome
Network-aware BWA (https://github.com/udo-stenzel/
network-aware-bwa), which is equivalent to BWA 0.5.10,
was used for mapping. An in house program equivalent
to MIA [30] was used for calling the consensus mtDNA
sequences. All reads were then mapped to the consensus
sequence with the first 1000 bp added to the end, and
only proper reads defined by BWA (extracted by sam-
tools –f 0x3) [22] were used in this study with no cut-off
set for mapping quality. Those reads with both segments
completely in the artificial repeat region were moved to
the corresponding position in the first 1000 bp by a cus-
tom C++ program, followed by duplication removal with
Picard (https://github.com/broadinstitute/picard). This

strategy maps reads covering the whole mitochondrial
genome with minimum sequence gaps, although reads
from nuclear mitochondrial sequence (nuMTs) may be
wrongly aligned to mtDNA. By contrast, mapping reads
first to the complete human genome and keeping only
those reads with mapq > = 20 will reduce nuMT influ-
ence but will also produce reduced coverage and even
gaps for the authentic mtDNA genome, due to incorrect
assignment of mtDNA reads that overlap with nuMTs.
As in this study we are only concerned with distinguish-
ing true minor alleles from sequence error, rather than
distinguishing different causes of minor alleles (e.g. con-
tamination, nuMTs, etc.), a strategy that maximizes
mtDNA coverage rather than minimizing nuMT reads is
preferred.

PhiX174
The phiX174 DNA was obtained from Life Technologies
and cultured further in house. It has 6 known SNPs
compared to the reference (NCBI_001422.1) and no
PCR is involved in the preparation of the phiX174 DNA.
The phiX174 was used as a control and the training set
in Illumina multiplex sequencing, and various Illumina
platforms (Hiseq2500 and Miseq) as well as various se-
quence callers (Bustard, Ibis, Freeibis) were used. The
two Miseq runs were merged for comparable sequence
coverage. By using the same strategy as with mtDNA se-
quences (except for duplication removal), we mapped
reads to the phiX174 genome with sequence depth
ranging from 77,000 to 125,000 for the Hiseq2500
and 18,000 for the Miseq platform (Additional file 9:
Table S1).

Heteroplasmy calling in mtDNA
The following filters were used to identify mtDNA hetero-
plasmies: bases with phred score <20 were not counted; at
least 2 reads with the minor allele from each strand were
required; and the LLR cutoff was set to 3 after SEGREG
base recalibration. We also required a minimum 0.1 %
MAF (estimated from maximum likelihood), a strand bias
ratio < 1 [24], and a Mann–Whitney U test on read pos-
ition (PosRankSum) > -3 (Additional file 3: Figure S1).
Minor alleles in repetitive regions of the mtDNA genome
that are prone to misalignment and frequent indels (302–
316, 513–526, 566–573 and 16181–16194) were excluded
from the analyses.

Availability of supporting data
The SEGREG program is publicly available at https://
github.com/sendru/SEGREG
The raw sequencing data for phiX174 is publicly avail-
able at EMBL: PRJEB11001
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Additional files

Additional file 1: Figure S9. The distribution of the number of bases in
each bin, which is defined as per phred score (typically ranging from 2 to
41) per group. Left, frequency distribution of the number of bases per
bin. Right, the number of omitted bins (with <100 bases) plotted against
base quality score, showing that bins are mostly omitted for very low or
very high base quality scores. (PDF 13 kb)

Additional file 2: Figure S6. Recalibrated base quality scores for
simulated data analyzed with different methods, compared to the
empirical score. The ideal (diagonal) line is shown in each plot. The
Frequency-Weighted Squared Error (FWSE) is given for each method.
Raw: Illumina default sequencer; GATK: Mapping to the consensus
sequence and the known minor alleles (MAF > 5 %) are used as the
known SNPs. Seg: this study; Seg_half: the same as Seg but with half of
the reads chosen randomly for the training set. (PDF 6 kb)

Additional file 3: Figure S1. The site MAF distribution for 9010 minor
alleles created by artificial mixture with a mean mixture of 0.3 % and a
sequence coverage of 4000. The variation is caused by the random
distribution of reads along the genome. (PDF 4 kb)

Additional file 4: Figure S2. Boxplot of FWSE distributions based on
156 simulated mixed datasets analyzed by different methods. Raw: the
simulation data; GATK: using db142 as the control with no misalignment
issue (corresponding to GATK1 in Fig. 2); SEGREG: this study. (PDF 4 kb)

Additional file 5: Figure S3. The frequency distribution of GATK (with
dbsnp142 as the control) recalibrated base quality. Black: sequence error;
Red: SNPs in dbsnp 142; Blue: SNPs not found in dbsnp 142. (PDF 4 kb)

Additional file 6: Figure S4. The maximum LLR from sequence error in
simulated data under different sequence depths. For the raw data
increasing sequence dept results in increased LLR from sequence errors,
whereas after SEGREG base recalibration, increasing the sequence depth
results in lower LLR. (PDF 11 kb)

Additional file 7: Figure S5. The sequence depth dependency for
minor allele detection in SEGREG-based LLR. Minor alleles with different
average levels of MAF (0.1 %, 0.3 % and 1 %) were tested in simulations
in each plot. LLR > 3 (from Additional file Figure S4) is used to distinguish
true minor alleles from sequence error. (PDF 97 kb)

Additional file 8: Figure S10. A comparison of segmented vs.
quadratic regression applied to base score recalibration for phiX174 data.
Quadratic regression does not result in an overall improvement. (PDF 5 kb)

Additional file 9: Table S1. Fifteen minor alleles reported from analysis
of phiX174 by various sequence callers. For each analysis, the minor allele
is reported only if LLR > 3, otherwise the entry is FAIL. We also omit
minor alleles with MAF < 0.1 % in all analyses. The results of the Strand
bias test (SB <1) and Position rank sum test (Pos_rank_sum > -3) are also
reported. The sequence coverage for each analysis is in the last row of
the table. Further notes about the nature of the minor allele are provided
in the last column of the table. (PDF 45 kb)

Additional file 10: Figure S7. The cumulative Ti/Tv ratio for minor
alleles in mtDNA, ordered according to decreasing LLR. The first 3,000
minor alleles have a Ti/Tv >30, then the ratio decreases to and stabilizes
around 18 for the next 5,000 to 30,000 minor alleles. The high Ti/Tv ratio
suggests these minor alleles are probably true but have different sources:
those with the highest Ti/Tv ratio are from heteroplasmy, which reflects
recent mutations, while the rest probably stem from cross contamination
or nuMTs, which diverged from the major allele thousands to millions
years ago and hence would have a relatively lower Ti/Tv ratio. (PDF 125 kb)

Additional file 11: Figure S8. Ti/Tv ratio among 247 mtDNA samples
for minor alleles covered by at least two reads from each strand. Positive
set: minor alleles with Segreg based LLR > 3, MAF > 0.001, SB < 1,
PosRankSum > -3. Negative set, all other minor alleles. (PDF 4 kb)
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Bp: basepair; LLR: logarithm likelihood ratio; MAF: minor allele frequency;
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Cambridge reference sequence; Ti/Tv: transition to transversion.
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