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Abstract

Background: Non-coding RNAs (ncRNAs), which perform diverse regulatory roles, have been found in organisms
from all superkingdoms of life. However, there have been limited numbers of studies on the functions of ncRNAs,
especially in nonmodel organisms such as Kluyveromyces marxianus that is widely used in the field of industrial
biotechnology.

Results: In this study, we measured changes in transcriptome at three time points during the exponential growth
phase of K marxianus by using strand-specific RNA-seq. We found that approximately 60 % of the transcriptome
consists of NcRNAs transcribed from antisense and intergenic regions of the genome that were transcribed at lower
levels than mRNA. In the transcriptome, a substantial number of long antisense NncRNAs (lancRNAs) are differentially
expressed and enriched in carbohydrate and energy metabolism pathways. Furthermore, this enrichment is evolutionarily
conserved, at least in yeast. Particularly, the mode of regulation of mMRNA/lancRNA pairs is associated with mRNA
transcription levels; the correlation between the pairs is positive at high mRNA transcriptional levels and negative
at low levels. In addition, significant induction of mRNA and coverage of more than half of the mRNA sequence

by a lancRNA strengthens the positive correlation between mRNA/IancRNA pairs.

Conclusions: Transcriptome sequencing of K. marxianus in the exponential growth phase reveals pervasive
transcription of ncRNAs with evolutionarily conserved functions. Studies of the mode of regulation of mRNA/
lancRNA pairs suggest that induction of lancRNA may be associated with switch-like behavior of mRNA/IancRNA
pairs and efficient regulation of the carbohydrate and energy metabolism pathways in the exponential growth
phase of K marxianus being used in industrial applications.
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Background

The haploid and thermotolerant Kluyveromyces marxianus
is a non-conventional yeast species with several advanta-
geous metabolic properties over Saccharomyces cerevisiae,
such as fermentation ability at high temperatures, ability to
grow on various hexose and pentose sugars, production of
less ethanol in the presence of excessive sugar, and weak
glucose repression, which enables the fermentation of
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mixed sugars, such as hemicellulose hydrolysate and
inulin, at higher temperatures [1]. These properties
facilitate the development of efficient fermentation pro-
cesses utilizing K. marxianus. As a result, this Generally
Regarded As Safe (GRAS) species shows potential for
use as a cell factory with high capability for improving
biomass yields in industrially relevant biotechnological
applications. For example, K. marxianus has been uti-
lized for the reduction of lactose content in food prod-
ucts as well as for the production of ethanol, various
enzymes, heterologous proteins, aromatic compounds,
and bioingredients, and for bioremediation [2].

In order to engineer this species to be more suitable for
use in various applications, genetic resources, such as its
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genome and transcriptome, are required at the genomic
scale. K. marxianus is a member of the Saccharomyce-
tales; however, the genetics and metabolism of this yeast
are considered quite different from those of S. cerevisiae
from an evolutionary point of view [1]. For instance, the
mode of regulation of genes in the glycolysis and tricarb-
oxylic acid (TCA) cycle pathways differs between the two
yeast species, although they are largely conserved [3]. In
particular, regulatory mechanisms in metabolic networks
governing carbon assimilation have not yet been explored.
It has been established that transcriptional regulatory
networks, comprising of transcription factors and other
auxiliary components, control metabolic flexibility and
robustness in response to environmental conditions.
Therefore, a full understanding of the cellular response to
growth conditions as well as the roles of cognate regula-
tors, such as transcription factors, is necessary for the
elucidation of changes in transcript levels of metabolic
genes due to the effects of growth conditions.

Interestingly, genome-wide transcriptome analyses have
demonstrated that the eukaryotic genome is pervasively
transcribed [4], e.g., more than 85 % of the genome of S.
cerevisiae is transcribed [5]. This is due to a plethora of
previously unannotated non-coding RNAs (ncRNAs),
which are pervasively transcribed from intergenic and
antisense regions of annotated genes. As transcription re-
quires a large amount of cellular energy, nonfunctional
pervasive transcription may impose a metabolic and regu-
latory burden on cells. In accordance with this, diverse
functions of ncRNAs, such as in the modulation of gene
expression related with metabolism and pathogenesis,
have been revealed [4, 6]. However, there have been
few reports on the functional characterization of
ncRNAs in non-model yeast, despite accumulating evi-
dence of the roles of regulatory ncRNAs in model
organisms [6—8]. The evolutionary conservation of
antisense RNA (asRNA) has been reported between S.
cerevisiae and Saccharomyces paradoxus, which are in
the sensu stricto Saccharomycetales [9, 10]. Addition-
ally, the evolutionary conservation of long asRNAs
between five sensu stricto Saccharomycetales members
and Kluyveromyces lactis has been reported [11]. Thus,
the evolutionary conservation of pervasive ncRNA tran-
scription in budding yeasts suggests that these ncRNAs
perform important functions in these organisms [9, 10].

In order to examine the functions and extent of tran-
scription of ncRNA, we analyzed the transcriptomic
changes at three time points during the exponential
growth phase in K. marxianus by conducting strand-
specific RNA-seq. The results indicated pervasive ncRNA
transcription in the exponential growth phase. Addition-
ally, we performed enrichment analysis of differentially
expressed transcripts to demonstrate that long antisense
ncRNAs (lancRNAs) show functional associations with
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carbohydrate and energy metabolism. The correlation
between transcription levels in mRNA and lancRNA pairs
suggests potential mechanisms by which these RNAs
perform their functions.

Results

RNA-seq at the exponential growth phase

We are particularly interested in transcriptional regu-
lation at exponential growth phase where most bio-
mass production is accomplished. In order to measure
dynamic transcriptomic changes during exponential
growth in the non-model yeast K marxianus and
achieve further understanding of the cellular response
to the exponential growth conditions, we sequenced
total RNAs isolated at three time points corresponding
to early-exponential (EE), mid-exponential (ME), and
late-exponential (LE) growth phase, with two biological
replicates for each sample (Fig. 1a). We employed the
dUTP method for RNA-seq [12] and obtained
23,309,796 mapped reads for EL, 28,076,013 mapped
reads for ML, and 37,484,281 mapped reads for LL
(Additional file 1: Table S1) [13]. These corresponded
to 68.6 % of the genome being transcribed from one
strand of DNA and 17.2 % being transcribed from both
strands of DNA. Considering only the gene region,
68.8 % of the sense strand and 30.5 % of the antisense
strand were transcribed, and 24.8 % of the gene regions
were transcribed from both strands. Most of the
sequence reads were mapped to the sense strand of
protein coding genes (~70 %), intergenic regions
(~20 %), and antisense strand of protein coding genes
(~10 %) (Fig. 1b). A low number of sequence reads
(<1.2 %) were mapped to rRNAs, indicating that rRNA
depletion was successfully carried out. During cell
growth, the fraction of reads mapped to the sense
strand of protein coding genes was increased
(68.2 % — 71.0 % — 73.4 %), while that mapped to the
intergenic region was decreased (20.5 % —17.7 % —
16.3 %). The fraction of reads mapped to the antisense
strand of protein coding genes was almost unchanged
(9.5 % —10.3 % — 9.6 %). This result suggested that
not only mRNA, but also a substantial amount of
ncRNAs, were changed to achieve rapid cell growth in
the exponential phase. Hierarchical clustering of bio-
logical replicates showed that, overall, experimental
procedures were reproducibly conducted (Fig. 1c). In
particular, the transcriptional landscape of RNA-seq
indicated high strand-specificity and distinct transcrip-
tional expression patterns during cell growth (Fig. 1d).

Pervasive ncRNA transcription across the genome

We annotated 4839 protein coding genes from the K
marxianus genome using AUGUSTUS (Additional file 2:
Table S2) [13, 14]. Gene units were defined without
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Fig. 1 Genome-wide measurement of transcriptome during exponential growth phase. a—e EE, ME, and LE indicate early-exponential (EE),
mid-exponential (ME), and late-exponential (LE) growth phase, respectively. a K marxianus growth curve in YNB-u medium. RNA collection
points at exponential growth phase (EE, ME, and LE) are indicated by arrows. b Reads mapping fraction of the three experimental conditions
against location relative to gene classes. ¢ Heatmap of hierarchical clustering among the RNA-seq experiments of the two biological replicates
of the three experimental conditions, which was carried out by DESeq with variance-stabilizing transformation function. d RNA-seq profile of example
genomic region during cell growth. Data for each condition were normalized to RPM (reads per million reads) to make y-axes same scale

taking exon-intron structures into account, as the num-
ber of introns in the K. marxianus genome is less than
5 % [15]. Cmsearch program in Infernal version 1.1 [16]
yielded 273 RNA genes using Rfam data (Additional file
3: Table S3) [17]. Subsequently, we obtained transcrip-
tion units across the genome by transfrag method and
subsequent post-processing (Fig. 2a). Transfrag is de-
fined as contiguous genomic region actively transcribed
[18]. Briefly, we discarded transfrags of transcriptional
level lower than 1.34 (25 percentile) to reduce false posi-
tives in the detected transcripts. In addition, transfrags
overlapping with either the forward strand or reverse
strand of RNA genes were removed in order to focus on
the ncRNAs associated with protein-coding genes. We
then classified the transfrags into five RNA classes based
on their length (short: length <200 nt and long:
length >200 nt) [7], coding potential (non-coding: CPAT
coding potential <0.364 and coding: CPAT coding poten-
tial 20.364) (Additional file 4: Figure S1) [19], and loca-
tion relative to gene annotation (sense, antisense, and
intergenic) [7]: (1) mRNA (sense transfrag with coding
potential) (2) long antisense ncRNA (lancRNA), (3) long
intergenic ncRNA (lincRNA), (4) short antisense ncRNA
(sancRNA), and (5) short intergenic ncRNA (sincRNA).
We obtained 14,298 transfrags, corresponding to 5785
mRNAs (40.5 %; average length=~802 bp), 3067
lancRNAs (21.5 %; average length =~538 bp), 1430
lincRNAs (10.0 %; average length =~456 bp), 2726
sancRNAs (19.1 %; average length=~117 bp), and
1290 sincRNAs (9.0 %; average length=~117 bp)

(Fig. 2b; Additional file 5: Table S4). These data demon-
strate pervasive ncRNA transcription, which comprised
~60 % of transfrags with ~30 % of mapped reads (Fig. 1b).

Most ncRNA had a lower transcriptional level than
mRNAs, although both lancRNA and lincRNA had higher
transcriptional level than both sancRNA and sincRNA
(Fig. 2¢) [9, 10, 20]. The average length of mRNA trans-
frags was ~802 bp, which is about half the length of
protein-coding genes (average length = ~1545 bp) (Fig. 2d).
Among the protein-coding genes with mRNA transfrags
(78.3 %; 3788 genes), 66.7 % of genes had only one trans-
frag and 88.2 % of genes had no more than two transfrags.
In addition, the number of genes covered by transfrags in-
dicated that the majority of mRNA transfrags covered
more than 90 % of the gene annotation (Fig. 2e). Although
lancRNA and sancRNA transfrags covered much fewer
genes than mRNA transfrags, a substantial proportion
of the gene region was covered by lancRNAs. Approxi-
mately 40 % of lancRNAs covered more than 50 % of
the gene annotation while only ~2.5 % of sancRNA cov-
ered the same proportion. Taken together, no more
than two transfrags were detected for most genes, and
thus over-fragmentation of transcripts into multiple
transfrags was negligible.

In principle, the 5'- and 3'-end position of each trans-
frag represents the transcription start site (TSS) and
transcription termination site (TTS), respectively. These
genomic features enabled us to determine whether the
transfrags contained artifacts. In order to test this, we
compared mapped read enrichment for each RNA class
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of K. marxianus with those of S. cerevisiae, sampled at ex-
ponential phase [9]. The comparison showed that the
mapped read enrichment of all RNA classes was highly
similar to that of S. cerevisiae, suggesting that the trans-
frags are highly accurate and ncRNAs are pervasively tran-
scribed in K marxianus (Additional file 6: Figure S2).
Unexpectedly, lincRNAs and sincRNAs also showed high
levels of transcription at the opposite strand, with a much
lower transcriptional level than those of lancRNAs and
sancRNAs. The proportion of intergenic ncRNA region
covered by antisense transcription was ~26.0 %. In accord-
ance with this, several cases of antisense transcription in
ncRNAs have been reported [21, 22].

Regulatory roles of ncRNA

In order to investigate whether pervasive ncRNA transcrip-
tion at the exponential growth phase plays a functions, we
focused on mRNA, lancRNA, and sancRNA, as the func-
tions of genes within these RNA classes may be simply
inferred from gene annotation [20]. By using DESeq for EE
to ME condition and EE to LE condition (p-value < = 0.05),
we obtained 3572 differentially expressed transfrags, com-
prising of 2449 sense, 615 antisense, and 508 intergenic
transfrags (Additional file 7: Figure S3) [23]. From these
transfrag pairs, significantly enriched KEGG pathways were
separately obtained for sense and antisense strands (Fig. 3a)
[10, 24]. These results demonstrated enrichment of carbo-
hydrate metabolism, including glycolysis and amino acid

biosynthesis pathways as well as respiration pathways.
These pathways are important for the synthesis of funda-
mental cellular components and energy production to
fulfill energy requirements for rapid growth during the ex-
ponential phase [25, 26]. However, we observed gradual
inactivation of respiration-related pathways, such as the
TCA cycle and oxidative phosphorylation during cell
growth. The gradual inactivation of the pathways indicates
that aerobic condition had been changed to anaerobic con-
dition due to a decrease in dissolved oxygen levels [27].
This pathway enrichment pattern at the exponential phase
is consistent with the fact that K marxianus, being a
Crabtree-negative species, uses aerobic-respiration, thereby
producing energy from carbon sources [25]. Interestingly,
the enriched pathways could be categorized into three
groups based on the differential expression of sense,
antisense, or both strands. Each group showed distinct
functional associations; genes with differential expres-
sion of only the sense strand were mostly associated
with amino acid metabolism and energy production re-
lated to mitochondrial respiration, whereas those with
differential expression of antisense strands only, or both
strands, were associated with mostly carbohydrate metab-
olism. The asRNA-mediated regulation of carbohydrate
metabolism was mostly conducted by lancRNA (Fig. 3b).
In particular, several differentially expressed lancRNAs
were located in core carbohydrate metabolic genes, many
of which were found to be important for the regulation of
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Fig. 3 Enrichment of KEGG pathways. a Overlap of genes with mRNA, lancRNA, and sancRNA and their enriched KEGG pathways. Blue colored letters
indicate amino acid metabolism pathways and red colored letters indicate carbohydrate metabolism or energy metabolism pathways. b Heatmap of
significantly enriched KEGG pathways by differentially expressed sense and/or antisense transfrags. Amino acid metabolism pathways are
indicated in blue lettering and carbohydrate metabolism or energy metabolism pathways are indicated in red. Three consecutive rectangular
demonstrate transcriptional level of EE, ME, and LE conditions of sense and antisense transcription, respectively. ¢ Genes with differentially
expressed lancRNAs at core carbohydrate metabolic pathway. d RNA-seq profile near ACS. @ RNA-seq profile near ADH. f RNA-seq profile near MDH

their constituent pathways (Fig. 3c). There were three
genes in the glycolysis pathway, PFK, GAPDH, and ENO,
for which antisense transcription was significantly in-
duced. Antisense transcription of the PFK gene was
significantly induced under ME and LE conditions; how-
ever, transcription from the opposite sense strand was not
induced under these conditions. Considering PFK gene
encodes a rate-limiting enzyme of glycolysis in yeast and
human cancer cells, it is highly regulated at the transcrip-
tional level by ncRNA [28, 29]. We detected two GAPDH
homologs that showed significant induction of antisense
transcription at ME and LE conditions; however, no tran-
scription induction was observed in their sense strands.
The GAPDH gene encodes a key glycolytic enzyme and
functions as a metabolic switch to reroute carbohydrate
flux to protect against oxidative stress [30]. The ENO gene
encodes one of the most highly expressed glycolytic
enzymes in many organisms [31] whose activity is known
to be regulated by gene expression to a very low extent.
We found that the transcription from the sense strand of
the ENO gene was slightly reduced, while that from the
antisense strand was significantly induced. The antisense
strands of two genes, IDH and MDH, which encode en-
zymes of the TCA cycle, were significantly induced. The
IDH gene encodes a rate-limiting enzyme of the TCA
cycle. Antisense transcription of the IDH gene was signifi-
cantly induced while sense transcription was slightly
increased. MDH catalyzes the final step of the TCA cycle
(conversion of malate into oxaloacetate) [31, 32]. Anti-
sense strands were significantly induced in two MDH
homologs; however, antisense transcription was increased
in one homolog but decreased in the other. This suggests
that each homolog is under distinct antisense-mediated
transcriptional regulation.

We observed that three fermentation genes, PDC,
ADH, and ACS, showed significant induction of anti-
sense strands. Induction of the fermentation genes is
consistent with the inactivation of the TCA cycle and
oxidative phosphorylation genes in Crabtree-negative
species [27]. PDC encodes a key enzyme of alcoholic fer-
mentation, which cleaves pyruvate into carbon dioxide
and acetaldehyde, and is auto-regulated [33]. Antisense
transcription of the PDC gene was significantly induced
and sense transcription was concordantly increased with
antisense transcription. The antisense strands of three
ADH homologs, which are responsible for conversion

alcohol into aldehyde in S. cerevisiae, were significantly
induced. Two of the sense strands were significantly
induced and one was significantly repressed. The ACS
enzyme is responsible for the transformation of acetate
into acetyl-CoA. We detected differentially expressed
transfrags from two ACS homologs. In one homolog,
both strands were significantly induced whereas in the
other, only the sense strand was significantly induced.
The RPE enzyme, a constituent of the pentose phosphate
pathway, is responsible for the conversion of ribulose 5-
phosphate into xylulose 5-phosphate. Both the sense and
antisense strands of the RPE gene were differentially
expressed.

Among the genes described above, we selected three
genes, ACS, ADH, and MDH, for the investigation of their
antisense transcription pattern. RNA-seq profiles of the
genes demonstrated an increase in transcription from both
sense and antisense strands under ME and LE conditions,
which indicated concordant increase of transcriptional
level of mRNA/lancRNA pairs (Fig. 3d—f). Furthermore,
they showed obvious strand specificity, except in genes
with lancRNA. These demonstrate that their antisense
transcription is transcribed and their transcriptional level is
simultaneously increased indeed.

Mode of regulation of mRNA/lancRNA pairs
A given lancRNA can exert both positive and negative
regulation of its cognate mRNA [34, 35]. Accordingly,
we had observed both cases. In order to investigate
mode of regulation, we compared the transcriptional
levels of mRNA/lancRNA pairs, where either one or
both of the pairs were differentially expressed under EE,
ME, and LE conditions. LancRNAs regulate their target
by base-pairing [20] and this suggests that interaction
between mRNA and lancRNA may be associated with
the mode of regulation. Therefore, we hypothesized that
the following two factors are associated with mode of
regulation, (1) three differential expression types of
mRNA/lancRNA pairs, as follows: differentially expressed
mRNA/differentially expressed lancRNA pairs, differen-
tially expressed mRNA/non-differentially —expressed
lancRNA pairs, and non-differentially expressed mRNA/
differentially expressed lancRNA pairs, and (2) length
fraction of mRNA covered by lancRNA.

In order to test the former hypothesis, we compared
transcriptional levels of sense and antisense strands for
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each differential expression type separately, and found that
they showed distinct correlation patterns. Taking all the
mRNA/lancRNA pairs into account, our results showed
weak positive correlation between lancRNA and mRNA
which was consistent with findings in S. cerevisiae (Fig. 4a)
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[10]. Differentially expressed mRNA/differentially expressed
lancRNA pairs demonstrated strong positive correlation
whereas differentially expressed mRNA/non-differentially
expressed lancRNA demonstrated weak positive correlation
(Fig. 4b, c). The strong positive correlation indicates that
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transcriptional expression level of mRNA is co-regulated
with lancRNA for each mRNA/lancRNA pairs. Interest-
ingly, non-differentially expressed mRNA/differentially
expressed lancRNA pairs showed unexpected results
(Fig. 4d). Although a weak positive correlation was ob-
served when all the pairs were taken into account, they
showed obvious negative correlation at low mRNA tran-
scription level while positive correlation at high mRNA
transcription level. This shows that a certain threshold of
transcriptional level of cognate mRNA is important to
determine the mode of enhancing or repressing by lancR-
NAs. Thus, we concludes that this was the result of
switch-like behavior of lancRNA, as negative regulation at
low mRNA transcription levels could be interpreted as
ensuring the “off” state of mRNA transcription, and vice
versa [36]. Thus, our results suggest that the transcrip-
tional mode of regulation of lancRNA was influenced by
differential expression types of the pairs and mRNA tran-
scriptional levels.

In order to test the latter hypothesis, we compared the
transcriptional level of mRNA/lancRNA pairs in which
more than 50 % of an mRNA was covered by a lancRNA
(Fig. 4e). The result showed a positive correlation stron-
ger than that observed when the covering length fraction
was not considered (Fig. 4a). Furthermore, genes for
which more than 50 % of the mRNA was covered by a
lancRNA exhibited more obvious enrichment of carbo-
hydrate or energy metabolic pathways (Fig. 5a, b). These
data suggest that the covering length fraction is also an
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important factor in determining the transcriptional
mode of regulation of lancRNA.

Discussion

Pervasive ncRNA transcription, which has been demon-
strated in the model organism S. cerevisiae, is evolutionar-
ily conserved in the sensu stricto Saccharomycetales [9, 10].
Consistent with this, our results indicate that pervasive
ncRNA transcription, from antisense and intergenic re-
gions, also occurs in K. marxianus (Fig. 2b). It was found
that ncRNAs accounted for ~60 % of all identified trans-
frags. Additionally, 77.5 % of protein-coding transfrags
were found to possess either long or short ncRNAs at the
opposite strand. Similar length fractions of genes (73.4 %)
had ncRNAs at the opposite strand when only expressed
genes were considered. In S. cerevisiae, there are large
numbers of unannotated cryptic unstable transcripts
(CUTs) and Xrnl-sensitive unstable transcripts (XUTs),
which are destabilized after synthesis [37, 38]. Further-
more, CUTs are reported to be transcribed from both
intergenic and antisense regions [37]. These data suggest
that a large length fraction of ncRNAs in K marxianus
may be associated with CUTs and XUTs.

Our results show that lancRNA-mediated regulation
is enriched for carbohydrate metabolism pathways
(Fig. 3a, b). Enrichment analysis for lancRNAs covering
more than half of the protein-coding genes in S. cerevisiae
revealed a similar enrichment pattern of carbohydrate and
energy metabolic pathways (e.g. carbon metabolism,
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glycolysis/gluconeogenesis, and pyruvate metabolism at
mid-exponential phase) (Additional file 8: Figure S4) [10].
The evolutionary conservation of pathway enrichment
suggested that pervasive ncRNA transcription plays evolu-
tionarily conserved functions in K. marxianus [9, 10]. The
importance of these pathways for rapid growth via the
synthesis of fundamental cellular components and energy
production [25, 26] suggests that lancRNAs may play
major role in rapid growth during the exponential phase
through currently unknown mechanisms.

Elucidation of the mode of regulation of lancRNA may
provide insights into these unknown mechanisms. It is
generally accepted that lancRNAs positively or negatively
regulate their cognate mRNAs [34, 35]. A recent report
proposed that lancRNAs function as on/off switches,
thereby increasing the variability of gene expression [36].
Several cases of lancRNAs with on/off switch-like behav-
ior have been reported [39-42]. Our results showed that
mRNA/lancRNA pairs demonstrate inverse mode of
regulation according to the transcriptional level of
mRNA, especially in differentially expressed lancRNA/
non-differentially expressed mRNA pairs (Fig. 4d), al-
though the same trend was also observed in other types
of mRNA/lancRNA pairs (Fig. 4b, c). Therefore, the rela-
tionship between transcriptional levels of mRNA and
lancRNA involves switching mRNA transcriptional level
between on and off states. In other words, lancRNAs en-
hance the transcriptional level of their cognate mRNAs
if the mRNA transcriptional level is higher than certain
threshold, but repress this if it is lower. Therefore, our
results not only support the view of lancRNA function-
ing as an on/off switch, but also suggest that this repre-
sents a widely used mode of regulation, particularly in
carbohydrate and energy metabolism pathways. In
addition, our results showed that strong positive correl-
ation exists between transcriptional levels of mRNA/
lancRNA pairs, if both pairs are differentially expressed
or if the length fraction of mRNA covered by lancRNA
is more than 50 % (Fig. 4e). These data suggest that the
two factors are important for enhancing mRNA tran-
scriptional levels by a currently unknown mechanism.
Consistent with this finding, a recent study showed that
lancRNAs indeed play a role in enhancing mRNA tran-
scriptional levels in several cases [43]. Taken together,
our results suggest that a single lancRNA may play ei-
ther a switch-like roles or an enhancing role depending
on conditions such as the mRNA transcriptional level
and differential expression of mRNA. However, the mo-
lecular mechanisms underlying this mode of regulation
should be investigated in a specific candidate gene, as
our findings are based on observations of the mRNA/
lancRNA population. Besides, evolutionarily conserved
enrichment of lancRNA differential expression, and sev-
eral cases of lancRNA functioning as a switch for
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regulating mRNA in carbohydrate and energy metabolism
pathways suggest that the switch-like function of lancRNA
may be prevalent across a wide range of species.

Among genes with differentially expressed lancRNA,
PFK encodes an enzyme that catalyzes fructose 6-
phosphate (F6P) into fructose-1,6-bisphosphate (FBP)
with the release of energy via ATP hydrolysis. PFK is
one of the primary targets of glycolytic flux regulation
according to ATP demand, and this regulation is conserved
from bacteria to humans [44]. Reporter metabolites, such
as ATP for PFK, play an important role in monitoring the
environment or nutrient status by modulating the tran-
scriptional level of associated genes [45—47]. Most genes
with differentially expressed lancRNA are associated with
cofactors used as reporter metabolites. The ACS enzyme
also uses ATP whereas GAPDH, MDH, and PDC use
NAD, and IDH uses NADP as cofactor. Recent studies
show that long ncRNAs promote transcriptional poising of
the immediate-early response of inducible genes [48, 49].
Therefore, the transcriptional status of these genes may
serve as a good target for the regulation of glycolytic flux.
Additionally, lancRNAs may enable rapid and efficient
post-transcriptional switch in response to environmental
changes, in contrast to metabolic regulation or gene regu-
lation alone [44, 50]. Consistent with this, metabolic fluxes
mediated by glycolytic enzymes are regulated at the post-
transcriptional level [51, 52].

Conclusion

In conclusion, K. marxianus transcribes ncRNAs per-
vasively during exponential growth. Among the ncRNA
classes, lancRNAs are enriched for genes comprising
carbohydrate or energy metabolism pathways. Further
analysis of the correlation between mRNA and lancRNA
suggests that lancRNAs enable switch-like behavior of
their cognate mRNAs via transcriptional induction. Thus,
lancRNA-mediated regulation of mRNA represents a
mechanism for efficient regulation of carbohydrate and
energy metabolism pathways.

Methods

Strains and culture conditions

K. marxianus var. marxianus ATCC 36907 (KM?7) was ob-
tained from the Korean Collection for Type Culture
(KCTC) and grown in YBN-u media (0.67 % yeast nitrogen
base without amino acids, uracil deprived amino acids, and
2 % (w/v) dextrose) at 30 °C in a shaking incubator [53].
Samples were taken at three time points corresponding to
the EE (OD =~ 3), ME (OD =~ 7), and LE (OD =~ 10)
growth phases, with two biological replicates per sample.

RNA isolation
Cells were harvested by centrifugation and resuspended in
300 ul lysis buffer (20 mM Tris-HCI (pH 7.5), 140 mM
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NaCl, 5 mM MgCl,, and 1 % Triton-X). Next, the resus-
pended cells were lysed with 1 mL TRIzol (Invitrogen)
and incubated for 5 min at room temperature. After cen-
trifugation for 15 min at 3000 rpm, the supernatant was
transferred to a new tube and mixed with 200 ul of
chloroform for 2—3 min. After another 15 min centrifuga-
tion step, the supernatant was mixed with triple volume of
100 % ethanol or equal volume of isopropanol, 2 ul of
glycogen, and 3 M sodium acetate. After centrifugation
and resuspension, RNA was washed with 70 % ethanol.
After drying, RNA was resuspended in DEPC-treated
water. In order to confirm the quality of extracted RNA,
total RNA was visualized using agarose gel electrophor-
esis. The isolated RNA was incubated for 1 h at 37 °C with
4 U of rDNase I (Ambion) and 5 pl of 10x DNase I buffer
(Ambion) for removal of genomic DNA. The DNA-free
RNA was purified by phenol-chloroform extraction and
ethanol precipitation.

RNA-seq and data processing

Ribosomal RNA (rRNA) was removed by using Ribo-Zero
Magnetic Gold Kit (Human/Mouse/Rat) (Epicentre) ac-
cording to the manufacturer’s instructions. Two-hundred
nanograms of mRNA was then fragmented by using 10x
Fragmentation buffer (Ambion). The first strand cDNA
was synthesized using the Random primers (Invitrogen)
and SuperScript III Reverse Transcriptase (200 U/pl,
Invitrogen). The second strand synthesis was done with
Escherichia coli DNA polymerase (10 U/pl, Invitrogen), E.
coli DNA ligase (10 U/yl, Invitrogen), and E. coli RNase H
(2 U/yl, Invitrogen). The libraries for Illumina sequencing
were constructed using TruSeq™ DNA Sample Prep Kit
(Hlumina) according to the manufacturer’s instructions.
Briefly, the synthesized cDNA was end-repaired and 3'-
ends of the blunt fragments were adenylated for adapter
ligation. The adenylated DNA fragments were ligated with
[lumina adapters. A fraction of the adapter-ligated DNA
between 180 and 380 bp was size-selected from a 2 %
agarose gel after electrophoresis. Size-selected DNA was
purified by using MinElute Gel Extraction Kit (Qiagen)
according to manufacturer’s instructions, and eluted in 1x
TE buffer with low EDTA (10 mM Tris—HCl (pH 8.0),
0.1 mM EDTA) for the following enzyme reaction. For
degradation of the second strand, which contains dUTP
instead of dTTP, 1 U of USER enzyme (NEB) was added
to the purified DNA and incubated for 15 min at 37 °C.
After 5 min incubation at 95 °C for enzyme inactivation,
the library was enriched by PCR. The amplification was
monitored on a CFX96™ Real-Time PCR Detection System
(Bio-Rad) and stopped at the beginning of the saturation
point. The amplified library was purified by using Agen-
court AMPure XP beads and quantified using a Qubit 2.0
fluorometer (Invitrogen). Finally, validated DNAs were
sequenced using MiSeq (Illumina) and Miseq® V2 reagent
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kit of 50 cycles according to manufacturer’s manual.
Sequenced reads were mapped to the genome se-
quence from NCBI (AKFMO00000000.1) using CLC
genomics workbench (masking mode =no masking,
mismatch cost =1, insertion cost =3, deletion cost =3,
length fraction =0.8, similarity fraction=0.9, global
alignment = yes, non-specific match handling = map
randomly) after trimming of low quality regions [13].
RNA-seq depth profiles were produced by in-house
script and visualized using SignalMap (NimbleGen).

Gene annotation

Due to the lack of gene annotation in K. marxianus
genome, we predicted protein coding genes by using
AUGUSTUS with default parameters and trained with
gene set of K. lactis [54]. For RNA gene annotation,
we predicted genes using cmsearch of Infernal (1.1rc4)
and Rfam (version 12.0) [16, 17]. We discarded manually
apparent non-yeast entries, such as bacteria, originating
after discarding entries with p-value over 0.01. Gene name
was obtained by BLASTP homology search to fungal
proteome database.

Transfrag identification and functional analysis

In order to obtain transcriptional units, we identified
transfrags by combining RNA-seq results for all three
conditions. We merged nearby transfrags to reduce
over-fragmentation if the distance between them was
shorter than 40 bp. Nearby transfrags of distance range
from 40 to 100 bp were merged if p-value of Wilcoxon
rank test with two-sided was less than 1072, assuming
that they had statistically similar profiles. Finally, we dis-
carded transfrags with transcriptional expression levels
below 25 percentile transcriptional level from DESeq
analysis to obtain bona fide ncRNAs [23]. Predicted
transfrags were classified as sense, antisense, and inter-
genic, according to location, compared with annotated
genes. If a transfrag covered more than two gene annota-
tions, it was divided into multiple transfrags corresponding
to sense, antisense, and intergenic transfrags. This process
was conducted by in-house script and manual inspection
was followed. CPAT was used for calculation of coding po-
tential of transfrags and for the discrimination of ncRNAs
from protein-coding ones [19]. Cutoff value (0.364) for
discrimination was determined by R script within the
package as described, by using RNA genes as reference
non-coding genes [19]. Differentially expressed transfrags
were detected using DESeq [23]. For KEGG enrichment
analysis, we linked KEGG pathway information by hom-
ology search to SwissProt, which has links to KEGG
Orthology information, due to the lack of KEGG pathway
annotation for K. marxianus. A pathway with a p-value
lower than 0.01, as determined by two-tailed Fisher exact
test, was considered enriched with statistical significance.
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To compare transcriptional level of mRNA/lancRNA pairs
and mRNA/lincRNA pairs, we associated transfrag pairs if
their genomic locations are overlapped. Correlation be-
tween transcriptional level of mRNA/lancRNA pairs and
mRNA/lincRNA pairs were calculated by Pearson correl-
ation coefficient.

Availability of supporting data

The RNASeq dataset supporting the results of this art-
icle is available in the Gene Expression Omnibus
(GEO) repository, [http://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE70111].
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