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Analysis of weighted co-regulatory
networks in maize provides insights into
new genes and regulatory mechanisms
related to inositol phosphate metabolism
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Abstract

Background: D-myo-inositol phosphates (IPs) are a series of phosphate esters. Myo-inositol hexakisphosphate
(phytic acid, IP6) is the most abundant IP and has negative effects on animal and human nutrition. IPs play
important roles in plant development, stress responses, and signal transduction. However, the metabolic pathways
and possible regulatory mechanisms of IPs in maize are unclear. In this study, the B73 (high in phytic acid) and
Qi319 (low in phytic acid) lines were selected for RNA-Seq analysis from 427 inbred lines based on a screening of IP
levels. By integrating the metabolite data with the RNA-Seq data at three different kernel developmental stages
(12, 21 and 30 days after pollination), co-regulatory networks were constructed to explore IP metabolism and its
interactions with other pathways.

Results: Differentially expressed gene analyses showed that the expression of MIPS and ITPK was related to
differences in IP metabolism in Qi319 and B73. Moreover, WRKY and ethylene-responsive transcription factors (TFs)
were common among the differentially expressed TFs, and are likely to be involved in the regulation of IP
metabolism.
Six co-regulatory networks were constructed, and three were chosen for further analysis. Based on network
analyses, we proposed that the GA pathway interacts with the IP pathway through the ubiquitination pathway, and
that Ca2+ signaling functions as a bridge between IPs and other pathways. IP pools were found to be transported
by specific ATP-binding cassette (ABC) transporters. Finally, three candidate genes (Mf3, DH2 and CB5) were
identified and validated using Arabidopsis lines with mutations in orthologous genes or RNA interference (RNAi)-
transgenic maize lines. Some mutant or RNAi lines exhibited seeds with a low-phytic-acid phenotype, indicating
perturbation of IP metabolism. Mf3 likely encodes an enzyme involved in IP synthesis, DH2 encodes a transporter
responsible for IP transport across organs and CB5 encodes a transporter involved in IP co-transport into vesicles.

Conclusions: This study provides new insights into IP metabolism and regulation, and facilitates our development
of a better understanding of the functions of IPs and how they interact with other pathways involved in plant
development and stress responses. Three new genes were discovered and preliminarily validated, thereby
increasing our knowledge of IP metabolism.
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Background
Inositol phosphates (IPs) are a series of phosphate esters
of myo-inositol (Additional file 1: Figure S1). IPs are
abundant in the natural environment and have multiple
biological functions [1]. IP3 [2] and other inositol poly-
phosphates—including IP6 [3], IP7 [4] and IP8 [1]—are
important messengers. IP6 also plays important roles in
RNA editing [5], transcription [6], DNA repair [7] and
the stress response [8]. In humans, IP6 showed signifi-
cant inhibition and regulation of cancer cell growth [9].
IP5 functions as a ligand in the COI1-JAZ signaling
pathway [10] or as a substrate for the production of
other secondary metabolites, including components of
the cell wall [11] and raffinose [12].
Grain crops store excess phosphate as a single com-

pound, inositol hexaphosphate (IP6), also known as
phytic acid, which accounts for ~65–85 % of the total
phosphate in grain crop seeds [13]. IP6 has been re-
ported to be an inhibitor of the absorption of mineral
nutrients such as zinc and iron [14] by animals in-
cluding humans because of a lack of phytase in their
digestive system [15]. Moreover, the excrement of
grain-fed livestock containing IP6 can lead to phos-
phorus pollution [16].
The reduction of phytic acid content is a major goal of

plant-breeding programs that aim to improve the nutri-
tional quality of crops. Efforts to breed low-phytic-acid
(lpa) crops have focused on the genes involved in IP me-
tabolism and compartmentation [17–21], while the regu-
latory pathways for IP synthesis and accumulation have
received scant attention [22, 23]. Moreover, although
high IP6 content in seeds was thought to be unnecessary
for plant development [24], many lpa mutants showed a
lethal phenotype [25] or recessionary agronomic traits
[26], including reduced yield and reduced resistance to
stress. However, the molecular mechanism(s) underlying
these phenotypes of lpa plants, and the roles played by
IPs in plant physiology remain unclear, owing to a gener-
ally poor understanding of the synthesis and biological
functions of IPs in plants [27]. Thus, further research
into the functions of IPs is warranted.
The synthesis of IPs involves sequential phosphoryl-

ation of the inositol ring [28]. Plants have two main IP
synthesis pathways (Additional file 1: Figure S2). The
first is the lipid-dependent pathway, which is the main
source of the secondary messenger Ins(1,4,5)P3. IP3 is
then phosphorylated by inositol phosphate multikinase
to form IP6. The second pathway is lipid-independent
and is considered the main source of IP6 in seeds. Sev-
eral steps in this pathway are unknown, e.g., no genes or
proteins have been identified as responsible for the con-
version of IP1 into IP2. IP metabolism in maize is poorly
understood. Three genes were identified as responsible
for IP metabolism in maize using a reverse-genetics

technique. A maize lpa2 mutant was created by muta-
tion of the ZmIpk gene. ZmIpk encodes an inositol
phosphate kinase and is homologous with Arabidopsis
Ins(1, 3, 4)P3 5/6-kinase [17]. The maize line lpa3 is
a Mu-insertion mutant in which an increased level of
myo-inositol and decreased levels of other IPs were
caused by a mutation in MIK, which encodes a pfkB
carbohydrate kinase-family protein named myo-inosi-
tol kinase. This protein catalyzes the production of
myo-inositol monophosphate from myo-inositol and
ATP [29]. Another low-phytic-acid maize mutant,
termed lpa1, harbored a mutation in a multidrug
resistance-associated protein (MRP) ATP-binding cas-
sette (ABC) transporter, the exact molecular function
of which remains unclear [19, 25]. Such findings in-
crease our understanding of IP metabolism. However,
further information regarding the metabolic pathways
and molecular functions of IPs is needed.
Some genes involved in IP metabolism are present as

more than one copy or as multiple splice variants. Inter-
estingly, only one of those copies or splice variants is im-
portant for IP accumulation in seeds [18, 30], while
others play roles in physical development, e.g., the gene
encoding myo-inositol 1-phosphate synthase (MIPS) is
required for the suppression of cell death [31]. Other
than participating in the metabolism of IPs, some genes
encode multifunctional proteins involved in the regula-
tion of complex physiological processes [26, 32], e.g.,
MIPS-silenced soybean lines show inhibited seed devel-
opment [20]. Thus, it is necessary to explore the regula-
tion of IP metabolism and establish the link between IPs
and these important physiological processes.
Systems biology approaches are powerful tools for ex-

ploring the links between co-regulated genes and metab-
olites. Metabolite abundance is controlled by gene
expression and enzyme activities. Thus metabolite data
can be combined with those of gene expression by
means of correlation and other distance analyses [33].
Moreover, the coordinated expression pattern of a set of
genes indicates the functional links among them and
genes associated with the same metabolic pathway are
likely to be co-expressed [34]. The network method fa-
cilitates exploration of candidate genes and the regula-
tory mechanisms of a pathway [35]. Modules [33, 36],
which contain information regarding which biological
processes are related to the candidate genes or metabo-
lites, can be extracted from a co-expression network.
Thus, construction of a co-expression network of

genes related to IPs has two advantages: first, complete
coverage of all expressed functional genes, which pro-
vides information on those related to both metabolism
and regulation; and second, identification of relation-
ships between IP metabolism and other biological path-
ways. Weighted gene co-expression network analysis
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(WGCNA) [37] is more effective than other network
construction methods, and weighted networks are more
robust and accurate than un-weighted networks [38].
In this study, we constructed gene co-expression net-

works related to each IP by integrating transcriptome
and metabolite data to explore the regulatory mechan-
ism of IP metabolism. Key nodes between IP metabolism
and other biological pathways were implied from the
network. Three candidate genes were also predicted
based on the gene co-expression network and validated
by biological experiments.

Results and discussion
Determination and analysis of IP levels in maize seeds
IP6 screening in a maize germplasm collection
We screened an inbred maize collection [39] to select
inbred lines with significant differences in phytic acid
content. Four hundred twenty-five content values were
obtained after removing abnormal values. The average
content of phytic acid phosphors (PAP, phosphate in
phytic acid) in this inbred maize collection was 3.9 mg/
g, slightly higher than the 3.0 mg/g reported previously
[13]. Ultimately, 24 line-pairs with stable IP6 content ra-
tios (~2 times) were obtained (Methods, Additional file
2: Table S1). The PAP content of low phytic acid (LPA)
lines ranged from 2.4 mg/g to 2.5 mg/g, and that of high
phytic acid (HPA) lines from 4.0 to 5.4 mg/g (Additional
file 1: Figure S3). B73 (HPA), Lv28 (HPA), Qi319 (LPA),
and CIMBL141 (LPA) were selected for further monitor-
ing of dynamic changes in IP levels because they were
elite inbred lines used for breeding and genetic research,
and the IP6 content ratios in their seeds was ≥ 2.

Dynamic changes in IP levels in maize kernels at different
developmental stages
To explore the dynamic changes and distributions of the
various IPs, we collected whole fresh seeds and embryos

of maize at different developmental stages (6, 12, 18, 21,
24, and 30 days after pollination, DAP) and determined
their IP levels by LC-MS/MS. We first examined each IP
in the whole seeds of four inbred lines—B73 (HPA),
Lv28 (HPA), CIMBL141 (LPA) and Qi319 (LPA)—to ex-
plore the dynamic changes in IP levels as a function of
developmental stage.
IP4–IP6 levels were undetectable or very low in

whole seeds at earlier developmental stages. Thus,
we next compared the IP1–IP3 levels in seeds at the
aforementioned developmental stages (Fig. 1). The
results showed that IP1 displayed similar accumula-
tion trends in each inbred line, with peaks at 12-
21DAP. Moreover, the peak value of IP1 in B73
(12DAP) was 9 days earlier than in Qi319 (21DAP).
IP3 showed a steady trend in B73, but underwent
significant fluctuations in CIMBL141 and Qi319. IP2
levels declined continuously in B73, but in Qi319
peaked at 12DAP. It is also worth noting that IP2
and IP3 showed a sustained increasing trend in Lv28
(Fig. 1).
We next determined IP levels in embryos (E) and

compared them with the IP levels in whole seeds (W) of
B73 and Qi319. The results showed that IPs accumu-
lated mainly in embryos, as indicated by content ratios
considerably greater than 1 (E/W > 1, Fig. 2). Moreover,
IPs with higher phosphate numbers—such as IP4 and
IP6—were not detected before 21DAP in whole seeds
(Fig. 3). For example, in contrast with B73, IP4 was not
detected before 21DAP in Qi319 (Fig. 3a); IP6 was first
detectable in embryos at 21DAP, and its levels were
significantly higher in embryos than in the whole kernels
(Fig. 3b, c). Interestingly, in the fresh samples, the IP6
level in B73 was slightly lower than that in Qi319,
despite B73 being a high-phytic-acid content line. IP5
was detected in all embryos but its levels were signifi-
cantly lower at 21DAP in B73 and Qi319 (Additional file

Fig. 1 Dynamic changes in IP1 (left), IP2 (middle) and IP3 (right) in the seeds of four maize inbred lines. DAP: days after pollination. Data for IP1,
IP2 and IP3 were normalized and plotted in R to assess the trends in IP levels. Maize inbred lines: B73 (red), CIMBL141 (green), Lv28 (blue), and
Qi319 (violet)
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1: Figure S4), which may be related to the abundances of
IP4 and IP6.
In summary, our data showed that IPs accumulated

mainly in embryos, and the fact that IP4 and IP6 were
not detected before 21DAP in whole seeds (Fig. 3)
suggests that phytic acid was synthesized sequentially in
the embryo, and that the stages of IP synthesis are
associated with different developmental stages of the
embryo. In maize, the compartment in which phytic acid
is synthesized has been reported [29], however, our data
confirmed that, at the metabolite level, IP6 accumulates
mainly in the embryo.
Taking into consideration the abundance and distri-

bution of each IP, these results indicated clear sam-
pling points for RNA-Seq analysis. We therefore
subjected embryos of B73 and Qi319 (Lv28 and
CIMBL141 were not selected because they were not
growing well in the field, and were susceptible to
diseases and insect pests) at 12, 21 and 30DAP to
RNA-Seq and microRNA-Seq analyses to explore the
regulation of IP metabolism. Data-mining workflows
are shown in Additional file 1: Figure S5.

Transcriptome analysis of B73 and Qi319
Alternative splicing and differentially expressed gene (DEG)
analysis
To further understand the regulation of IP metabolism,
we performed RNA-Seq analyses of maize embryos at
different developmental stages. To verify that the gene
expression patterns were consistent with previous
reports, we determined the expression levels of three
known genes—MIK (GRMZM2G361593) [29], ITPK-1
(GRMZM2G456626) [17] and ABC transporter
(GRMZM5G820122) [19]—by qRT-PCR (Additional file
1: Figure S6). MIK expression in Qi319 peaked at about
21DAP, similar to the findings of Shi et al. [29]. In
contrast, MIK expression in B73 declined continuously.
The expression levels of ITPK-1 and ABC transporter were
similar to that of MIK, but exhibited different expression
patterns. Moreover, the greater expression of the three
genes in B73 at 12DAP is likely related to the earlier
detection of IP4 (Additional file 1: Figure S6, Fig. 3a).
Alternative splicing (AS) plays important roles in gene

functions [40] and is the main source of protein diversity
[41]. For instance, OsLpa1 has three splices in rice, but

Fig. 2 Relative abundance of IP1 (left), IP2 (middle) and IP3 (right) in the embryo and whole kernels of B73 and Qi319. DAP: days after pollination.
E/W, ratio of IP content in the embryo (E) versus that in the whole kernel (W). E/W > 1 indicates that the IP is mainly accumulated in the embryo

Fig. 3 Distribution and abundance of IP4 and IP6 in the embryo and whole seeds of B73 and Qi319. DAP: days after pollination. a IP4 abundance
in the embryos of B73 and Qi319. b IP6 distribution comparing the embryo with the whole kernel of B73. c IP6 distribution comparing the
embryo with the whole kernel of Qi319. n.d., not detected
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only the longest transcript is responsible for the phytic
acid content of seeds [18]. IP metabolism genes also
have specific AS modes (Additional file 1: Figure S7).
The gene encoding inositol 1,4,5-triphosphate 5-
phosphatase (EC 3.1.3.56) (GRMZM2G004301) has
splice sites at the first exon (alternative first exon,
AFE) and the last exon (alternative last exon, ALE).
This AS mode was present in B73 but not in Qi319.
In B73, ITPK-2 (GRMZM2G179473) exhibited two
variants: 3' alternative splicing (alternative 3' splice
site, 3AS) and exon skipping (ES) at 12 and 30DAP,
while at 21DAP, only 3AS was present. Interestingly,
only 3AS of ITPK-2 was detected by RNA-Seq at
30DAP in Qi319. Therefore, the variation in AS
modes observed among the inbred lines at different
developmental stages is likely related to the metabolic
differences between B73 and Qi319 (Additional file 1:
Figure S7).
The different abundances of each IP among plant tis-

sues would be due to differences in the expression levels
of the corresponding genes. To gain an increased under-
standing of the differences in IP metabolism, we com-
pared gene expression levels between the B73 and Qi319
lines. Genes with fold changes (FCs) > 2 and FDR < 0.01
were considered to be DEGs.
In general, a greater number of DEGs was found

among the genetic backgrounds, rather than the devel-
opmental stages. In total, 1481 genes were differentially
expressed in the embryos at all time points (Additional
file 1: Figure S8). Gene ontology (GO) annotations of
the DEGs indicated that they were enriched in the
“metabolic process”, “binding”, “catalytic activity” and
“transporter activity” categories (Additional file 1: Figure
S9A-C). Cluster of Orthologous Groups of proteins
(COG) annotation showed that ~500 DEGs were
enriched in the “Carbohydrate transport and metabol-
ism”, “Transcription” and “Signal transduction mechan-
ism” categories (Additional file 1: Figure S9E-F).
We also mapped the DEGs to KEGG pathways

(Entry: map00562, p < 0.05, multiple hypothesis-based
testing) (Additional file 1: Figure S10). MIPS and
ITPK-1 were differentially expressed in Qi319 and
B73 at all time points. MIPS (EC 5.5.1.4) catalyzes
the conversion of glucose-6-phosphate (G6P) to
myo-inositol 3-phosphate (IP1), the first step in IP
synthesis (Additional file 1: Figure S10A-C). The
differential expression of MIPS implied that the
metabolic differences between B73 and Qi319 began
at the first step of IP synthesis. ITPK-1 catalyzes the
conversion of IP3 to IP4 and was upregulated at
12DAP but downregulated at 21DAP and 30DAP in
B73 (Additional file 1: Figure S10A-C), which was
consistent with the qRT-PCR results (Additional file
1: Figure S6). This expression pattern was likely

related to the appearance of IP4 in the embryo
(Fig. 3a). In addition, some inositol transporter genes
and inositol triphosphate 5-phosphase genes were
also differentially expressed in B73 and Qi319 (Add-
itional file 1: Figure S11).

Differentially expressed transcription factors and microRNAs
To our knowledge, no transcription factors (TFs) in-
volved in the regulation of IP metabolism have been re-
ported to date. We extracted 303 TF genes from the
DEGs (Additional file 3), including 13 novel assembled
genes.
Some of the differentially expressed TFs were consist-

ently up- or down-regulated in B73 or differentially
expressed at different developmental stages (Additional
file 1: Figure S12A). Those TFs were enriched in four
families according to their molecular functions (Add-
itional file 1: Figure S12B)—WRKY, MYB, bHLH and
ethylene-responsive TFs. WRKY family genes are actively
involved in abiotic/biotic stress and hormone responses,
e.g., gibberellic acid, GA [42] and ~30 WRKY genes were
persistently differentially expressed during all develop-
mental stages assessed in this study. MYB and bHLH
domain-containing TFs are associated with the regula-
tion of plant development, the stress response, and tem-
poral regulation of gene expression [43]. Twenty MYB
genes were sustainably differentially expressed. Ethylene-
responsive TFs are involved in primary and secondary
metabolite regulation, and were (40 genes) differentially
expressed mainly at 12DAP (Additional file 1: Figure
S12B). These results provide resources for further re-
search into IP related TFs.
MicroRNA-Seq analyses showed that five differentially

expressed microRNAs in B73 and Qi319 targeted IP-
related genes (according to the GO annotation and
microRNA target prediction, Table 1). Three of these
candidate microRNAs had predicted stem-loop struc-
tures, and their expression tended to be negatively corre-
lated (e.g., GRMZM2G135978 was negatively correlated
with zma-miR393c-5p, Pearson coefficient = −0.67) with
that of their target genes (Additional file 1: Figure S13).

Weighted gene co-expression network construction and
analysis
The abundance of each IP in B73 and Qi319 embryos
showed similar patterns with the expression of known
genes (Additional file 1: Figure S4, Figure S6). To explore
the regulation of IP metabolism and discover new genes
involved in IPs, we first constructed gene co-expression
networks weighted with metabolite data (WGCNA
method, Additional file 1: Figure S15). Ultimately, six IP-
related gene co-regulation modules (correlation coeffi-
cient > 0.8, p < 0.01) were extracted from the whole
transcriptome (Table 2 and Additional file 1: Figure S14,
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Figure S15), three of which (“magenta2”, “cornsilk” and
“dodgerblue4”) were subjected to further analysis. The
networks were compressed using the Power Graph
method [44], cutting nodes with low connectivity and
merging the shared edges to form power edges. The com-
pressed ratio of each network ranged from 75 to 92 %
(Additional file 2: Table S2). The networks were decoded
based on guide-genes and metadata analyses using plugins
embedded in Cytoscape (see Methods).

NADH: ubiquinone oxidoreductase gene co-regulated with
ITPK in the “magenta2” network
ITPK-1 was co-expressed with the NADH:ubiquinone
oxidoreductase (EC 1.6.5.3) gene (GRMZM2G084914,
node MJ2, correlation coefficient = 0.88, p-value = 8 × 10
−3), metal-binding protein gene (GRMZM2G092867,
node ME2, correlation coefficient = 0.59, p-value = 2 × 10
−3), UDP-glycosyltransferase gene (AC199541.4_FG004,
node ME1, correlation coefficient = 0.51, p-value = 3 × 10
−3), and a VQ-motif (interacting with WRKY TFs) [45]
-containing protein gene (AC194056.3_FG008, node
MG, correlation coefficient = 0.65, p-value = 1 × 10−3) in
the “magenta2” network, which was negatively correlated
with IP6 (−0.87, p-value = 3 × 10−4) and IP4 (−0.87, p-
value = 2 × 10−3; the sub-network 1 of “magenta2”, Fig. 4a
and Additional file 4). As described above, the correl-
ation of ITPK-1 with the VQ-coding gene suggested a
mechanism by which WRKY TFs regulate the expression
of genes related to IP metabolism.

NADH:ubiquinone oxidoreductase consumes or pro-
duces NADH and functions as a key enzyme in oxidative
phosphorylation and the electron transport chain [46,
47]. The relationships between IP metabolism and
NADH have not been discussed previously. Although it
is known that NADH is required for catalysis by MIPS
of glucose 6-phosphate to form inositol monophosphate
[48], why the expression of ITPK-1 and IP4/IP6 was cor-
related with that of the NADH:ubiquinone oxidoreduc-
tase gene is unclear. The IP3 receptor interacted with
NADH to release Ca2+ [49, 50], and Voronina et al. re-
ported that the NADH level was related to Ca2+ signal-
ing [51], which was directly modulated by the NAD
+/NADH redox state [52]. Therefore, the correlation of
ITPK-1 expression with that of the NADH:ubiquinone
oxidoreductase gene essentially reflects the co-regulation
of redox homeostasis (NADH) and Ca2+ signaling, and
implies that sequential changes in IP3 levels will in turn
affect IP metabolism.

Interaction of the gibberellic acid signaling pathway with IP
metabolism in the “magenta2” network
We extracted another sub-network from “magenta2”
using a gene (GRMZM2G154565, node Ma1) annotated
as “1-phosphatidylinositol 4,5-bisphosphate phospho-
diesterase” (a member of the phospholipase C gene
family) as a guide-gene (Fig. 4b, and Additional file 4,
the sub-network 2 of “magenta2”). This network over-
lapped through four nodes (ME2, MI, MJ1, and MJ2)
with the first sub-network mentioned above (Fig. 4a).
Phospholipase C (PLC, node Ma1) is involved in Ca2+

signal transduction [53, 54] and IP metabolism [55] by
releasing IP3 from phosphatidylinositol. The PLC gene
was correlated with node ME2 (correlation coefficient =
0.86, p-value = 1 × 10−2), which was also correlated with
ITPK-1 (Fig. 4a). This indirect interaction is consistent
with the roles of PLC and ITPK-1 in IP metabolism.
F-box protein and metal ion transporter genes lie in the

regulation center between the PLC gene and the P-loop–
containing protein gene (GRMZM2G123544, node Mf3).
Some small molecules, e.g., auxin, can bind to F-box
protein and mediate ubiquitination to regulate protein
function at the posttranslational level [56, 57]. Interest-
ingly, two gibberellic acid (GA)-related genes, i.e., node
Mc1 (GRMZM2G070068) and Md1 (GRMZM2G013016),

Table 1 Candidate microRNAs and their predicted target genes

Gene ID microRNA GO annotation of target gene

GRMZM2G085568 2_5358452 Type I inositol 1,4,5-trisphosphate 5-phosphatase 12

GRMZM2G085568 4_5805098

GRMZM2G085568 7_2680918

GRMZM2G108767 2_5300476 1-phosphatidylinositol-3-phosphate 5-kinase FAB1A

GRMZM2G135978 zma-miR393c-5p Transport inhibitor response 1-like protein, inositol hexakisphosphate binding

Table 2 Gene co-expression modules related to each inositol
phosphate

Metabolite Module name Correlation type coefficient p-value

IP1 dodgerblue4 Positive 0.87 3 × 10−4

IP2 salmon1 Negative −0.98 4 × 10−4

IP2 burlywood2 Positive 0.96 3 × 10−4

IP3 burlywood2 Positive 0.86 3 × 10−4

IP4 magenta2 Negative −0.87 2 × 10−3

IP5 cornsilk Positive 0.91 1 × 10−4

IP6 steelblue4 Positive 0.81 2 × 10−4

IP6 cornsilk Positive 0.86 3 × 10−4

IP6 magenta2 Negative −0.87 3 × 10−4
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were also in contact with node Mf3 by sharing the Mb1,
ME2, and MJ1 nodes, which were also in contact with the
PLC gene (Fig. 4b).
The finding that the PLC gene shared nodes with GA-

related genes is noteworthy. Metadata analyses showed
that the GA signaling pathway has biological relation-
ships with inositol phosphates. IP6 is hydrolyzed by phy-
tase in the presence of GA during seed germination [58],
and some lpa mutant crop lines show a reduced germin-
ation phenotype [27, 59]. Murthy et al. [60] found that
phosphatidylinositol metabolism was altered by GA in
the aleurone layer of barley. Microarray data analysis
showed that IP metabolism genes also responded to GA
and ABA induction in rice [61]. Fleet et al. [62] reported
that Arabidopsis 5ptase mutants were hypersensitive to
paclobutrazol (a GA synthesis inhibitor), suggesting a re-
lationship between elevated IP3 levels and decreased GA
signal transduction. Therefore, rather than a direct inter-
action, it is reasonable that GA-related genes and IP-
related genes were co-regulated by nodes Mb1 (F-box
protein gene), ME2 (metal ion-binding protein gene)
and MJ1 (putative phospholipase gene) in this sub-
network. Thus, this network predicts the potential
mechanism and key nodes of the interactions between
IPs and GA.
Several other genes also contacted the guide gene by

sharing nodes Mb1 and ME2, including a P-loop containing
(IPR027417) protein-coding gene (GRMZM2G123544,
node Mf3). A P-loop domain is also present in the Lpa1
ABC transporter [19, 63]. Node Mf12 (GRMZM2G146041)

is another P-loop-containing protein-coding gene, which
was further from the guide gene compared with node Mf3.
Therefore, we selected Mf3 as the first candidate gene
involved in IP metabolism. Mf3 likely encodes an enzyme
because it lacks a predicted transmembrane domain but
contains an ATPase domain (IPR027417).

Carbohydrate-related transporter genes in the “cornsilk”
network
The “cornsilk” network was correlated with both IP5
(correlation coefficient = 0.91, p-value = 1 × 10−4) and IP6
(correlation coefficient = 0.86, p-value = 3 × 10−4). Interest-
ingly, many transporter genes (10 nodes, >30 %) and
transcription factor genes (15 nodes, 50 %) were in this
network (Fig. 5, and Additional file 5).
Unexpectedly, the multidrug resistance-associated

ATP-binding cassette (ABC) transporter gene
(GRMZM5G820122, ZmMRP4) [19, 25] was not in
this network, despite its similar expression pattern
to those of ITPK-1 and MIK. Many identified ABC
transporters are multi-role and have various sub-
strates, including lipids, ABA, and other hormones
[64–66]. The low-phytic-acid phenotype of lpa1 mu-
tants or transgenic lines in rice [63], maize [19, 25,
67], and soybean [63, 68, 69] suggest that other un-
known transporters are also responsible for IP trans-
port between cells or organs. This may explain the
lack of a correlation between ZmMRP4 expression
and IP6 level.

Fig. 4 Sub-networks of “magenta2”. a sub-network 1 of “magenta2”. b sub-network 2 of “magenta2”. Thick circles are power nodes and genes in
green circles are connected to each other; thick lines are power edges, and the fine gray lines are common edges. Red, nodes related to inositol
phosphate or possible candidate genes; green diamonds, transcription factors; violet nodes, other inositol phosphate-related genes; and blue
nodes, other genes without direct inositol phosphate-related annotation. The sub-networks were manually redrawn to clarify the nodes and
edges. The original network and node annotations are shown in Additional file 4
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Most transporter genes in this network were related to
carbohydrate metabolism. Representative genes in-
clude a UDP-galactose transporter (GRMZM2G089630,
node CD2), carbohydrate/inositol-transporters (GRMZM
2G063824, GRMZM2G064437, nodes CA1 and CC1), and
a glycerol-3-phosphate transporter (GRMZM2G078757,
node CC4).
The correlation between IP6 levels and the expression

of carbohydrate transporters (correlation coefficient
ranged from 0.51 to 0.95, p-value < 4 × 10−3) would
imply some interesting biological relationships. Metabol-
ite profiling of rice showed that galactose and galactinol
levels were increased in lpa mutant lines [70]. In fact,
MIPS consumes glucose 6-phosphate and NADPH to
generate inositol monophosphate, producing UDP-
glucose as a by-product. UDP-glucose is then converted
into UDP-galactose. Therefore, the correlation between
IPs and UDP-transporters would indicate the presence
of metabolic cooperativity between IPs and UDP-
galactose. IP6, or possibly other IPs, affects carbohydrate
metabolism and composition by an unclear mechanism,
e.g., several lpa mutants of maize exhibited decreased
starch content [67]. In a study of the pleiotropic effects
in the lpa1 mutant, neither the total starch content nor
the amylose/amylopectin ratio was altered, but the struc-
ture and size of granules differed from those in the wild

type [71]. Thus this network illustrates the possible
interactions between IPs and carbohydrate metabolism.
Raboy hypothesized that ion transporters are involved

in IP6 transport to vesicles [27]. Indeed, an H+ trans-
porter gene (GRMZM2G075900, node CB5) was also
identified in this network. Lemtiri-Chlieh et al. found
that ABA increased IP6 levels, and that IP6 was a potent
Ca2+-dependent inhibitor of K+ traffic into guard cells
[72]. IP6 accumulated mainly in vacuoles and its accu-
mulation was enhanced when cells were grown in the
presence of high concentrations of inorganic phosphates
containing K+, Ca2+, or Zn2+ [73]. H+-transporters are a
type of H+-translocating pyrophosphatase. Takasu et al.
found that IP6 could directly interact with and inhibit H
+-pyrophosphatase activity [74]. The H+-transporter
(node CB5, GRMZM2G075900) was likely involved in
the translocation of IP6 into vesicles and therefore CB5
was selected as a candidate gene for further study.

Specific ABC transporters and IP compartmentation
IP1 was correlated with the “dodgerblue4” network (correl-
ation coefficient = 0.87, p-value = 3 × 10−4), which contained
the myo-inositol kinase (MIK) gene (GRMZM2G361593,
node DA1) (Fig. 6a, Additional file 6, sub-network 1 of
“dodgerblue4”). Similar to the “magenta2” network, MIK
expression was correlated with that of an ubiquitin-related

Fig. 5 Sub-network of “cornsilk”. All symbols are as in Fig. 4, except that violet nodes indicate transporter-related genes. The original network is
shown in Additional file 5
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gene (GRMZM2G136313, node DB1, correlation coeffi-
cient = 0.78, p-value = 1 × 10−3). This implies that the
protein ubiquitination pathway plays an important role in
the regulation of IP metabolism. Two ABC transporter
family genes (GRMZM2G009464, GRMZM2G072850;
nodes DC2 and DC3) were also correlated with a ubiquitin-
related gene (node DB1, correlation coefficients were 0.86
and 0.65 respectively, p-value < 1 × 10−2). The interaction
between DB1 with the two ABC transporters (nodes DC2
and DC3) and MIK (node DA1) supports the hypothesis
that specific transporters are responsible for the transport of
inositol or inositol monophosphate to the embryo from
other organs [27]. In bacteria, some ABC transporters bind
specifically to inositol [75]. A soybean Mrp1 mutant exhib-
ited reduced seed inositol levels and altered ABA sensitivity.
Moreover, its Mrp2 paralog was unable to complement the
mutant phenotype [63]. This suggests that ABC transporters
play multiple roles and that specific ABC transporters are
responsible for inositol/inositol phosphate transport.
The purple acid phosphatase (PAP)-like gene

(GRMZM5G881649, node DJ1, Fig. 6b, Additional file 6,
sub-network 2 of “dodgerblue4”) was co-expressed with
the OsLpa1-like gene (GRMZM2G342327, node DH3,
correlation coefficient = 0.90, p-value = 5 × 10−3) and an
ABC transporter-like gene (GRMZM5G874955, node
DH2, correlation coefficient = 0.93, p-value = 5 × 10−3).
PAP is an acid phosphatase with phytase activity [76].
Overexpression of the PAP gene in Arabidopsis activated
Ca2+ signaling [8], indicating a relationship between PAP
and IP metabolism. Thus, the correlation between node
DH2 with OsLpa1-like (DH3) and PAP (DJ1) was not-
able. Moreover, node DH2 was also in contact with an
ethylene-responsive transcription factor (GRMZM5G830365,
node DF2), which was in turn in contact with two IP-related
genes (nodes DE1 and DE2). Therefore, node DH2
(GRMZM5G874955) was selected as a candidate gene for
further study to confirm whether it is involved in IP
transport.

Interestingly, similar to the “magenta2” network, a
GA-related gene (GRMZM5G861082) was directly/
indirectly in contact with that of a type C ABC trans-
porter gene (GRMZM2G145446), a phosphatidylinositol
4-kinase gene (GRMZM2G137558), and an ABC trans-
porter 5-like (ZmMRP5) gene (GRMZM2G105570). This
suggested an interaction of IP metabolism or Ca2+ sig-
naling with the GA pathway.

Validation of the candidate genes
To assess the network, we selected three candidate genes
for further validation. We use node names to represent
each candidate gene (Table 3). According to the network
information, we predicted that gene Mf3 from “magenta2”
would be involved in IP metabolism as an enzyme, gene
DH2 from “dogerblue4” would be responsible for IP
transport across organs, and gene CB5 from “cornsilk”
would be related to IP co-transport into vesicles.
We analyzed the expression profiles of the three candi-

date genes in maize embryo (Additional file 1: Figure S16).
The Mf3 and DH2 genes showed expression patterns
similar to those of ITPK-1 and MIK, respectively. GFP-
fused transient transformation in maize protoplasts
showed that Mf3 was expressed in the cytoplasm, DH2 in
the plasma membrane, and CB5 in vesicles, which is
consistent with their expected molecular functions (Fig. 7).
To further validate the function of each candidate gene,

we obtained T-DNA insertion mutant lines of Arabidopsis
orthologs of DH2 (orthologous to AT1G15520; insertion
line SALK_013945) and CB5 (orthologous to AT1G16780;
insertion line SALK_044701) (Additional file 1: Figure
S17). IP metabolism was found to be perturbed in these
two Arabidopsis insertion lines, levels of almost all
IPs—with the exception of IP3—were decreased in both
mutant lines (Fig. 8). The IP6 level was significantly
decreased in SALK_013945 (~30 %) and SALK_044701
(~20 %) compared with in Clo-0. Interestingly, the IP1
level in SALK_044701 was similar to that in Clo-0, but
was decreased by ~23 % in SALK_013945. These differ-
ences in the IP levels in insertion lines suggest that the
DH2 and CB5 genes play different roles in IP metabolism.
Taken together with the GFP-fused transient transform-
ation data, these results suggest that DH2 and CB5 partici-
pate in IP transport across organs and co-transport into
vesicles, respectively.
To validate the function of Mf3, we ligated an Mf3

cDNA segment into pCAMBIA3301 with a ubiquitin
(UBI) promoter. The transcript produced from the seg-
ment formed a hairpin structure (for RNA interference,
RNAi). The construct was transformed into maize to
produce Mf3-knockdown lines (Fig. 9a, RT-PCR valid-
ation of the knockdown levels of Mf3), and the IP levels
in the knockdown lines were then determined (Fig. 9b).
Results showed that, the expression level of Mf3 in the

Fig. 6 Sub-networks of “dodgerblue4”. a sub-network 1 of "dodger-
blue4". b sub-network 2 of "dodgerblue4". The nodes indicated by
green circles are ABC transporter genes and the node in dark blue is the
OsLpa1-like gene. Other symbols are as in Fig. 4. The original network is
shown in Additional file 6
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transgenic lines was reduced approximately three- to
five-fold compared with the segregated negative trans-
genic lines. The IP1 level increased almost two-fold in
the RNAi transgenic lines, but the IP2 level showed no
significant difference. However, the levels of IP3–IP6
decreased significantly in the RNAi lines. That of IP6
decreased ~30 % compared to the transgenic negative
lines. Taken together with the GFP-fused transient
transformation results, the findings suggest that the
product of the Mf3 gene functions as an enzyme in IP
metabolism.

Conclusions
To explore the regulatory mechanism of IP metabolism,
we screened two inbred lines with significantly different
IP6 levels (B73 and Qi319) from a maize germplasm col-
lection and carried out RNA-Seq and microRNA-Seq
analyses.
Transcriptome analyses showed that IPK/ITPK expres-

sion was upregulated at 12DAP in B73 compared with

Qi319, while most known genes were downregulated in
B73 after 12DAP. However, MIPS and ITPK showed
continuously different expression patterns between the
two lines. The differences in gene expression patterns
were related to the abundance of IPs (particularly IP4
and IP6) in embryos, suggesting a different pattern of IP
metabolism regulation between the B73 and Qi319 in-
bred lines.
Several transcription factors, especially WRKY and

ethylene-responsive transcription factors, would be in-
volved in the regulation of IP metabolism. Moreover,
three microRNAs, which would be involved in IP metab-
olism regulation were identified. These findings will
facilitate further research into IP metabolism.
To assess the implications of our data, six co-regulated

networks were constructed. These networks have the
potential to uncover the function and mechanism of
regulation of IP metabolism.
The networks suggest Ca2+ as the bridge and core

node between IP metabolism and other pathways, and

Table 3 Candidate genes selected from the gene co-expression networks

Gene code MaizeGDB ID From module Annotation Orthologous T-DNA line

Mf3 GRMZM2G123544 magenta2 IPR027417 NA NA

CB5 GRMZM2G075900 cornsilk IPR004131 AT1G16780 SALK_044701

DH2 GRMZM5G874955 dodgerblue4 IPR027417; IPR013525 AT1G15520 SALK_013945

Fig. 7 Transient transformation of maize protoplasts with GFP-fusion constructs. Bar = 10 μm. Three candidate genes: Mf3, GRMZM2G123544; DH2,
GRMZM5G874955; CB5, GRMZM2G075900. GFP: pRTL2 vector
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Fig. 8 Inositol phosphate levels in seeds of Arabidopsis T-DNA insertion lines. Bar represents the standard error. At least three individuals from
each insertion line were used for IP determination. Differences in the mean levels of IP in Clo-0, Salk_013945 and Salk_044701 were tested using
one-way ANOVA. Significant differences were labelled as “a”, “b” and “c” (p < 0.05). Lines without significant differences were labelled with the
same alphabet or unlabelled. HM: homozygote
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inositol-phosphate-related genes were linked with
GA-related genes through ubiquitin-related genes or
specific transporter genes (see networks “magenta2”
and “dodgerblue4”). This information will facilitate
investigation of the interactions of IPs with GA. We
also inferred several carbohydrate/inositol trans-
porters and specific ABC transporters as responsible
for inositol or IP transport across organs.
Three new candidate genes were extracted from

the networks and validated experimentally. Gene
mutations in Arabidopsis and gene knockdown in
maize showed that the candidate genes were indeed
involved in IP metabolism. The Mf3 gene (“ma-
genta2” network) encodes an enzyme, DH2 (“dodger-
blue4” network) encodes an ABC transporter
responsible for cross-organ transport of IP, and the
product of the CB5 gene (“cornsilk” network) is re-
lated to the co-transport of IP into vesicles.

Methods
Plant materials and IP determination
Four hundred seventy-five maize inbred lines (an inbred
maize collection) were cultivated in Sanya (Hainan, 2012),
Sanya (Hainan, 2013) and Shunyi (Beijing, 2013), and
mature seeds were harvested. IP levels were determined by
liquid chromatography coupled with tandem mass spec-
trometry (LC-MS/MS). Significant differences in IP6 con-
tent were evaluated by calculating IP6 content ratios as the
function Q= abs[log2(xi/xj)], where “abs” is the absolute
value of log2(xi/xj), and xi and xj are the IP6 contents of
each inbred line. Then, a t-test was performed (p < 0.05 was
considered to indicate an unstable Q value) by using the Q
value to screen the inbred line pairs with stable Q value
(Q > 0.58) in phytic acid content. Four maize inbred lines
with significant differences in phytic acid (IP6) con-
tent—B73 (high in phytic acid, HPA), Qi319 (low in phytic
acid, LPA), Lv28 (HPA), and CMBIA141 (LPA)—were first

Fig. 9 Inositol phosphate levels in maize RNAi lines. a RT-PCR of Mf3 in maize RNAi lines. E1, E2 and E3, different transgenic events/lines; WT,
wild-type, negative lines segregated from transgenic lines; GAPDH, glyceraldehyde 3-phosphate dehydrogenase gene (used as a reference gene).
b IP levels in seeds of maize transgenic lines. E1, E2 and E3 represent RNAi transgenic lines. **, significant differences between E1, E2 or E3 and
WT (negative transgenic lines) were determined using Student’s t-test (p < 0.01)
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monitored for dynamic changes of each IP in the develop-
mental embryo and kernels. Only B73 and Qi319 were used
for RNA-Seq analysis because Lv28 and CIMBL141 were
not growing well in the field and were susceptible to dis-
eases and insect pests. Seeds and embryos used for IP mon-
itoring and RNA-Seq analysis were collected from the field
(Shunyi, Beijing, 2013) at various days after pollination
(DAP, 6DAP, 12DAP, 18DAP, 21DAP, 24DAP, and 30DAP).
Dynamic changes in IP levels in the fresh samples were de-
termined by LC-MS/MS.

RNA-Seq and microRNA-Seq
Embryos of B73 and Qi319 (12DAP, 21DAP, and 30DAP)
were subjected to RNA-Seq and microRNA-Seq analyses.
Total RNA was isolated from embryos using an RNeasy
Plant Mini Kit (74904; Qiagen, Germany) according to the
manufacturer’s protocol. MicroRNA was extracted using an
miRNeasy Mini Kit (217004; Qiagen, Germany).
Approximately 35 μg of total RNA were used for

cDNA synthesis and library construction. All libraries
were sequenced using the Illumina HiSeq 2500 platform.
Small RNAs were first isolated from total RNA using
6 % agarose gels, and then purified. A library was then
constructed using the Multiplex Small RNA Library Prep
Set for Illumina (NEB).

Annotation and statistics
Reference maize genome sequences were downloaded
from Gramene (B73 AGPv3, http://gramene.org/). Pro-
tein sequences were downloaded from Uniprot (http://
www.uniprot.org/). ID mapping for DNA and protein se-
quence matching was accomplished using R (ver. 3.1.2).
Statistical analyses were conducted using R. Gene anno-
tation based on BLAST was performed using Blast2GO
[77]. The blast E-value was set as 1 × 10−3, and the E-
Value-Hit-Filter was set as 1 × 10−6 in Blast2GO.

Read alignment and assembly
For RNA-Seq, all reads from each sample were aligned to
the reference genome of maize using TopHat2 [78]. Briefly,
reads were first aligned to the reference genome by using
Bowtie [79] to identify splice junctions between exons and
then the aligned reads were subjected to Cufflinks [80] to
assemble those reads into sample-specific transcriptomes
using alignment coordinates.
For microRNA-Seq, high-quality reads were aligned to

the GenBank and Rfam [81] databases to remove ncRNAs,
with the exception of miRNAs. miRNAs were identified
using miRDeep2 software [82]. Target prediction for known
and unknown miRNAs was performed as reported previ-
ously using TargetFinder software [83]. Briefly, miRNA se-
quences were matched to the reference mRNA FASTA
sequences and potential targets were computationally

predicted by the match/mismatch-scoring ratio. Only pre-
dicted targets with scores less than four were considered
reasonable.

Gene/miRNA differential expression analysis
Gene expression levels were computed and expressed as
reads per Kb per million fragments (RPKM), which was
defined as:

RPKM ¼ total exon reads
� mapped reads millionsð Þ exon length Kbð Þ½ �:

Differential gene/miRNA expression was analyzed
using DESeq [84]. DEGs were identified by calculating
the fold-change ratios (FC) between samples. Genes with
FC ≥ 2 and FDR < 0.01 were considered differentially
expressed and their levels of up- and down-regulation
were expressed as logarithms of FC (log2FC).

Alternative splicing analysis
Various types of alternative splicing (AS)—exon skipping
(ES), intron retention (IR), mutually exclusive exon (MEE),
alternative first exon (AFE), alternative last exon (ALE), al-
ternative 5’ splice site (5’AS) and alternative 3’ splice site
(3’AS)—were analyzed using Cufflinks. The novel spliced
exons were identified by comparing the sequenced gene
model with the annotated locus. The detected novel AS
models were visualized using SpliceGrapher [85], giving a
diagram view.

Novel transcripts analysis
All reads from RNA-Seq were first assembled using
TopHat2 and Cufflinks. Exons and junctions that over-
lapped or were adjacent to the existing annotated tran-
scripts were filtered out. Finally, the remaining exons were
extended and merged. The novel assembled transcripts
were future filtered according to their size (coding se-
quence > 150 amino acids). The novel transcripts were an-
notated using Blast2GO.

Network construction and analysis
RNA-Seq gene expression data were filtered such that
genes with more than three missing values or 0 were fil-
tered out. Ultimately, 15,536 genes were filtered out and
26,264 genes were retained for further processing.
Gene correlation coefficients (Spearman’s coefficient, ρ)

were calculated using the WGCNA R package [86], but the
maximum block size was set as 3500 to save running time,
and the threshold for network output was set as 0.5 to
achieve more stringent connectivity of nodes in the net-
work. Co-expressed genes were clustered by applying TOM
and DynamicTreeCut functions to form different co-
expression modules. A unique color was assembled to
name each module. Correlations of IPs with modules were
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calculated using the cor() function in R and the significance
of the correlations was evaluated by t-tests. Correlation
coefficients > 0.80 and p-values < 0.01 were considered to
indicate a significant correlation.
Modules that were significantly correlated with IPs were

extracted and exported to Cytoscape (ver. 2.8, http://
www.cytoscape.org/) for network visualization and editing
[87, 88]. Hub genes were identified using the cyotHubba
plugin for Cytoscape [89]. Network compression was
conducted by the Power Graph method [44, 90, 91] and the
networks were compressed according to the linkage of
nodes.
To understand the implications of the gene co-expression

network, we carried out a literature search using the “Agilen-
tLiteratureSearchPlugin” (ver. 2.78, http://apps.cytoscape.org/
apps/) and MiMI Plugin [92] for Cytoscape. Nodes and stud-
ies were sorted using the key words “inositol”, “phytic acid”,
“phytate”, and “phosphatidylinositol.” Functional elements
were extracted according to the GO annotation and litera-
ture containing the above-mentioned key words.
Key nodes and candidate genes were selected according to

guide-genes found to be involved in IP metabolism in maize.
The guide-genes were:MIK (GRMZM2G361593) [29], ITPK
(GRMZM2G456626) [17], MIPS (GRMZM2G155242) [93],
and ABC transporter (GRMZM5G820122) [19].
We used the following principles to screen candidate

genes: first, candidate genes and inositol phosphate-related
genes should share the same key node/hub gene; secondly,
the distance from guide-gene/inositol phosphate-related
gene to the candidate gene should be less than 4 [94]; and
third, the co-regulated genes that correlated with the guide-
genes and candidate genes should be in power nodes. It
was considered optimal if conserved domains present in
known proteins—including carbohydrate kinase PfkB,
IPR011611; P-loop-containing, IPR005337; and P-loop
containing nucleoside triphosphate hydrolase, IPR027417
domains—were also present in the proteins encoded by
candidate genes. Genes differentially expressed in the B73
and Qi319 lines were also considered.

Quantitative RT-PCR
Total RNA was extracted with TRIzol reagent (TaKaRa,
Dalian, China) according to the manufacturer’s instructions.
Total RNA (100 ng) was used for first-strand cDNA syn-
thesis using EasyScript One-Step gDNA Removal and
cDNA Synthesis SuperMix (TRANSGEN, Beijing China).
Quantitative reverse transcription-polymerase chain reac-
tion (qRT-PCR) was performed using TransStart Green
qPCR SuperMix (TRANSGEN, Beijing, China). Primers
used for qRT-PCR are listed in Additional file 7.

Validation of candidate genes
For convenience, candidate genes were named using the
node name of the containing module.

GFP fusion expression was carried out to assess the sub-
cellular localization of each candidate gene in the maize
protoplast. Protoplasts of maize B73 were prepared accord-
ing to Yoo et al. [95] using etiolated seedlings, but the time
required for protoplast isolation was reduced to 3 h, and
~30 μg of plasmid DNA was used for transient transform-
ation. CDS of candidate genes were ligated into pRTL2 to
form a C-fusion GFP construction using restriction en-
zymes (Additional file 7).
Due to the limited maize mutant resources available, we

obtained Arabidopsis thaliana lines containing T-DNA in-
sertions in genes orthologous to the candidate genes
(Additional file 1: Figure S17) from ABRC (https://abrc.o-
su.edu/). IP levels in seeds of the insertion lines were de-
termined by LC-MS/MS (at least three individuals of each
insertion line were used for IP determination). Gene
names and the corresponding Arabidopsis mutant lines
are listed in Table 3. Mutant test primers are listed in
Additional file 7. The T-border primer was LBa1: 5'-
TGGTTCACGTAGTGGGCCATCG-3'. T-DNA insertion
effects were tested by RT-PCR using cDNAs of siliques at
20 days after flowering. Primers used for RT-PCR are
listed in Additional file 7.
The maize Mf3 gene was evaluated by RNAi technology.

The conserved sequence of Mf3 was reversed and forward-
linked to a rice intron to form a hairpin structure and then
digested with HindIII and SacI from pTCK303 and linked
into pCAMBIA3301, which had been digested with HindIII
and BstEII. The 35S promoter and the GUS coding se-
quence were then replaced by the Mf3 RNAi segment
(Additional file 1: Figure S18). Primers for Mf3 segment
cloning are listed in Additional file 7. The final expression
plasmid vector was transformed into GV3103 (Agrobacter-
ium tumefaciens) and then transfected into an immature
embryo of HiII, induced into callus, regenerated seedling
under selection stress of glufosinate.
In total, five transgenic events were obtained, three

of which (based on RT-PCR results in transgenic
lines) were used for IP determination. T1 seeds (5–
10) of each transgenic line were ground singly using
a Geno/Grinder 2010 (Molecular Devices, Sunnyvale,
CA USA). A portion of the powder (30 mg) was
used for IP determination and the remainder for
PCR screening of positive transgenic individuals. Mf3
knockdown levels were validated by RT-PCR in T1
seedlings of RNAi lines.

Availability of supporting data
RNA-Seq data used in this study have been deposited
into the NCBI Sequence Read Archive (SRA, http://
www.ncbi.nlm.nih.gov/sra/) under accession number
SRP065818 (SRR2907733, SRR2908040, SRR2908041,
SRR2908042, SRR2908043, and SRR2908044).
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