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Abstract

Background: Affymetrix Axiom single nucleotide polymorphism (SNP) arrays provide a cost-effective, high-density,
and high-throughput genotyping solution for population-optimized analyses. However, no public software is
available for the integrated genomic analysis of hybridization intensities and genotypes for this new-generation
population-optimized genotyping platform.

Results: A set of statistical methods was developed for an integrated analysis of allele frequency (AF), allelic
imbalance (Al), loss of heterozygosity (LOH), long contiguous stretch of homozygosity (LCSH), and copy number
variation or alteration (CNV/CNA) on the basis of SNP probe hybridization intensities and genotypes. This study
analyzed 3,236 samples that were genotyped using different SNP platforms. The proposed AF adjustment method
considerably increased the accuracy of AF estimation. The proposed quick circular binary segmentation algorithm
for segmenting copy number reduced the computation time of the original segmentation method by 30-67 %.
The proposed CNV/CNA detection, which integrates Al and LOH/LCSH detection, had a promising true positive rate
and well-controlled false positive rate in simulation studies. Moreover, our real-time quantitative polymerase chain
reaction experiments successfully validated the CNVs/CNAs that were identified in the Axiom data analyses using
the proposed methods; some of the validated CNVs/CNAs were not detected in the Affymetrix Array 6.0 data
analysis using the Affymetrix Genotyping Console. All the analysis functions are packaged into the ALICE
(AF/LOH/LCSH/AI/CNV/CNA Enterprise) software.

Conclusions: ALICE and the used genomic reference databases, which can be downloaded from
http://hcyang.stat.sinica.edu.tw/software/ALICE.html, are useful resources for analyzing genomic data from
the Axiom and other SNP arrays.
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Background

With the advances in microarray technologies, a whole-
genome analysis of genotype and hybridization intensity
(HI) data of several million single nucleotide variations
and copy number variations (CNVs) has become possible
[1, 2]. On the basis of this whole-genome genotype and
HI data, the genomic profiles of individual-level allele fre-
quency (AF), allelic imbalance (Al), loss of heterozygosity
(LOH), long contiguous stretch of homozygosity (LCSH),
copy number alteration (CNAs), and CNVs can be in-
ferred accurately and precisely [3-7]. An integrated ana-
lysis of AF, LOH/LCSH, Al and CNVs/CNAs is useful for
characterizing the genomic patterns of individual genomes
and identifying typical chromosomal abnormality patterns
shared by a group of individuals [8, 9]. For example, can-
cer genomic studies have analyzed single nucleotide poly-
morphism (SNP) array data and reported that most of
patients with acute lymphoblastic leukemia carry a region
of copy-neutral LOH on Chromosome 9; CDKN2A
(9p21.3), which is located in the LOH region, had a focal
hemizygous or homozygous deletion [10—14]. Identifying
chromosomal abnormalities enables not only locating
disease-susceptibility genes, tumor-suppressor genes, and
oncogenes but also deciphering the underlying mecha-
nisms of cancers and other diseases, thus aiding clinical
prognosis and prediction and pursuing personalized medi-
cine and targeted cancer treatment [2, 15-22].

An AF indicates the proportion of an allele at a locus
and is crucial to genetic and genomic studies. AFs are of
two types: “population-level AF” which reflects the
proportion of an allele in a study population, and “in-
dividual-level AF,” which reflects the proportion of an
allele in a study individual [23]. Al denotes the imbalance
status of two alleles resulting from an admixture of hetero-
geneous cells and can be detected by comparing the rela-
tive intensities of the two alleles at a locus [24]. Cell
heterogeneity may result from chromosomal abnormalities,
such as aneuploidy, gene amplification or deletion, and
allelic loss or gain that are frequently observed in cancers,
in some of the cells [25—-29]. LOH, also called allelic loss, is
frequently observed in cancer patients and describes a bio-
logical phenomenon whereby the heterozygous status at a
genomic locus or region gets altered to a hemizygous or
homozygous status. LOH localization, also termed as
allelotyping [30], can be performed using a candidate-gene
approach [31, 32] or a genome-wide approach [33, 34]. An
LCSH is similar to LOH; however, it is observed more
frequently in general populations [35, 36]. An LCSH is fea-
tured by a continuum of homozygous loci and caused by
autozygosity, inbreeding, and evolutionary forces [37, 38].

CNVs indicate DNA variations in the number of copies
of genetic loci or gene [39] and have been studied during
the past decade [16, 19, 40, 41]. CNAs indicate alterations
in copy number (CN) compared with a normal reference,

Page 2 of 30

for example, CN loss and gain. CNVs/CNAs, which can
range from 1 kilobase (Kb) to several megabases (Mb) or
even a whole chromosome, are one of the most abundant
structural variations in the human genome. Several large-
scale genomic studies on CNVs [16, 17, 19, 42-45] and
CNV databases [46—48] have focused on building a blue-
print of CNVs in the human genome. CNVs/CNAs have
crucial applications in medical and population genomics.
In the case of medical genomics, CNVs/CNAs may
change gene function, dosage, and expression, thus
causing genomic instabilities in cancer patients [49, 50]
and increasing disease susceptibility to complex disorders
[51-53]. Nevertheless, CNVs/CNAs may also cause inter-
individual genetic variations and act as genetic markers
that silently affect phenotypic changes. In the case of
population genomics, CNVs can be used to study genetic
backgrounds in global populations [19, 43, 54], examine
genetic diversity [55], and infer human evolution on the
basis of ancient human genomes [22, 56]. Other applica-
tions include but are not limited to anthropological gen-
omics [57, 58] and regenerative medicine [59].

Various biotechnologies have been developed for detect-
ing CNVs/CNAs, with their corresponding strengths and
limitations [60, 61]. The approaches comprise target-
region approaches (e.g., fluorescent in situ hybridization
and spectral karyotyping) and genome-wide approaches
[e.g., array-comparative genomic hybridization (a-CGH)
and SNP arrays]. The latter approach, which is a powerful
untargeted technique for searching CNVs/CNAs without
a need of prior information, is becoming increasingly well
known. Genome-wide a-CGH provides a higher per-probe
signal-to-noise ratio than SNP arrays do. However, an a-
CGH experiment requires DNA from both case (patient)
and control (matched normal) samples and only provides
“locus-specific” hybridization intensities (i.e., total inten-
sity of two alleles at a locus). By contrast, SNP arrays
have several advantages. First, a SNP array experiment
does not require paired samples. Second, a SNP array
can provide both genotype information and allele-specific
hybridization intensities. Finally, the marker resolution of
SNP arrays is higher than that of a-CGH. These advan-
tages make SNP arrays powerful tools for simultaneously
studying CNVs/CNAs and other molecular features such
as AF, AL, and LOH/LCSH [15, 56, 62—64].

To account for the genetic heterogeneity in different
ethnic populations, new SNP arrays that comprise
population-specific SNPs have been recently developed.
The Affymetrix Axiom Genome-Wide Population-
Optimized Human Array is one of the most well-known
population-specific SNP genotyping platforms; Axiom
ASI, CEU, CHB, and PanAFR arrays were designed
for genetic studies on Asian, Caucasian, Han Chinese,
and African populations, respectively. Axiom arrays enable
a high-density and high-throughput population-specific
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genomic analysis at a lower cost and have a promising
power because of several merits. First, the Axiom array is
the most cost-effective SNP array compared with other
whole-genome SNP arrays used today. Therefore, the
Axiom array is especially suitable for large-scale whole-
genome studies that involve a large number of study indi-
viduals. Second, the Axiom array is featured by optimized
probe sets from the most recent genomic resources, includ-
ing the International HapMap project [43, 65, 66], dbSNP
database [67], and 1000 Genomes Project [42, 45], to
maximize population-specific genomic coverage. Third, 96
or 384 arrays per Axiom plate can be processed together
for genotyping experiments. This operational feature can
eliminate batch effect, which is caused by different time epi-
sodes of an experiment. Finally, the Axiom platform allows
for a customized SNP probe set design tailored to different
populations such as European [68], East Asian, African
American, Latino ethnicity [69], Japanese [70], and other
nonhuman species [71-76]. Because of this flexibility, the
Axiom array can optimize genome-wide coverage for a tar-
geted population genome and provide a promising whole-
genome screening. The Axiom platform has been broadly
applied for numerous large-scale genomic studies [77-81].
Axiom arrays have been applied for but are not limited to
the mapping of susceptibility loci [77-81], homozygosity
mapping [82, 83], anthropological investigation [84-88],
pharmacogenomic testing [89], and genome-wide scanning
using archived dried blood spot samples [90].

However, unlike other SNP arrays, such as Affymetrix
Array 6.0, the Axiom array was originally developed for
genotyping but not for CNV/CNA detection. This limita-
tion substantially hindered the applications of the Axiom
array in genomic research. The present study will prove
that quantitatively analyzing Hls using Axiom arrays is
possible and promising. In this paper, we propose new
statistical methods for analyzing AF, AI, LOH/LCSH,
and CNVs/CNAs on the basis of HI and genotype
data from the Affymetrix Axiom Genotyping Solution
platforms. We also developed the user-friendly software
ALICE (AF/LOH/LCSH/AI/CNV/CNA Enterprise) and
genomic reference databases. These achievements will
benefit studies that perform integrated analyses of
genome-wide AF, A, LOH/LCSH, and CNVs/CNAs using
Affymetrix Axiom Genotyping Solution platforms. ALICE
can also analyze data from other Affymetrix gene chips
and Ilumina bead chips of SNP; however, these additional
analysis functions are not emphasized in this paper.

Results

Evaluation of proposed coefficient of preferential
amplification or hybridization and linear interpolation
method adjustment for AF estimation

The individual-level AF was estimated by combining the
coefficient of preferential amplification or hybridization
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(CPA) with a linear interpolation method (LIM) (see
Individual-level AF estimation with a CPA + LIM adjust-
ment). We illustrate how this CPA + LIM adjustment
improved the accuracy of the intensity-based AF esti-
mates. For illustration, in the beginning, we selected a
female who was genotyped using both Affymetrix Array
6.0 and Axiom. The results of Array 6.0 were regarded
as a benchmark because Array 6.0 designs more SNP
probes (approximately 2.86 times) than Axiom does and
interrogates CN probes that are not provided by Axiom.
This sample had a Chromosome 23 abnormality but no
obvious chromosomal aberrations on the 22 autosomes
according to the CNVs/CNAs detected on the basis of the
Affymetrix Array 6.0 data analysis using the Affymetrix
Genotyping Console™ (GTC) software. We first compared
the intensity-based AF estimates with and without
incorporating the CPA + LIM adjustment across the
22 autosomes. Irrespective of the results of Array 6.0
(Fig. 1a and b) and Axiom (Fig. 1c and d), the adjusted
intensity-based AF estimates (Fig. 1b and d) had a clear pat-
tern of three genotypes and were closer to the genotype-
based AF estimates than the unadjusted intensity-based AF
estimates (Fig. la and c). We then examined the sex-
chromosome abnormalities. The AF pattern of the allele A
became much clearer and closer to the ideal AF values of 1
(AAA), 2/3 (AAB), 1/3 (ABB), and 0 (BBB) after applying
the proposed CPA + LIM adjustment (Fig. 1b and d).

Furthermore, we evaluated the performance of the
CPA + LIM adjustment on the basis of a large data set of
2,785 distinct samples that consisted of 367, 448, 1,013,
and 1,666 samples genotyped using Affymetrix 100 K,
500 K, Array 6.0, and Axiom, respectively; some of the
samples were genotyped using more than one genotyping
platform (see Sample materials and genotyping). These
samples were qualified as normal samples after carefully
examining and were used to construct the ALICE refer-
ence databases in this study. Details of the genomic refer-
ence databases are described in the ALICE genomic
reference databases section. Genotype-based AF estimates,
intensity-based AF estimates without a CPA + LIM adjust-
ment, and intensity-based AF estimates with a CPA + LIM
adjustment were obtained for each of the 2,785 distinct
samples using ALICE. Expectedly, the genomic patterns of
the genotype- and intensity-based AF estimates were simi-
lar in these normal samples. Box plots indicate that the
average absolute-value differences between the genotype-
and intensity-based AF estimates substantially decreased
after applying the CPA + LIM adjustment, especially for
the Array 6.0 and Axiom platforms (Fig. 2). The results
demonstrate that the CPA +LIM adjustment improved
the accuracy of AF estimation.

In the following subsections, we further evaluate the
performance of the ALICE software in the AF, AI, LOH/
LCSH, and CNV/CNA analysis. Fifteen additional samples
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with apparent chromosomal aberrations genotyped using
both Array 6.0 and Axiom were characterized. An ex-
ample of six-panel graphical results obtained using ALICE
for an individual is also presented (Additional file 1).

Whole-genome AF (First panel in the graphical output of
ALICE)

The whole-genome AF plots of the 15 samples indicate
that Array 6.0 and Axiom exhibited similar patterns of
AF in the same samples (Fig. 3). In terms of the clarity
of patterns of the three genotypes and those of chromo-
somal aberrations, Axiom was comparable or even more
stable than Array 6.0 in analyzing the first 13 samples.
These findings imply that Axiom is not only cost effect-
ive but also reliable for an intensity-based analysis. Array
6.0 outperformed Axiom in analyzing the 14™ and 15®
samples; more unexpected noisy points were observed in
Axiom than in Array 6.0.

Detection of Al (Second panel in the graphical output
of ALICE)

Of the 15 samples in Fig. 3, we picked three samples
(10, 5™ and 13™) that carried relatively small, medium,
and large regions of Al to demonstrate the performance
of Axiom in detecting Al using ALICE. AI was detected
using our proposed Al detector (see Single-point index
of AI detection and multipoint indices of AI, LOH/

LCSH, and CNV/CNA detection section). The 10" sam-
ple carried a relatively small region of Al on Chromo-
some 22, 22.54-23.63 Mb as identified by Array 6.0
(Fig. 4a) and 22.78-23.91 Mb as identified by Axiom
(Fig. 4b). The fifth sample carried a relatively medium-
sized region of Al on Chromosome 22, 24.58—29.98 Mb
as identified by Array 6.0 (Fig. 4c) and 24.03-30.34 Mb
as identified by Axiom (Fig. 4d). The 13™ sample carried
a relatively large region of Al on Chromosome 14,
80.18-104.81 Mb as identified by Array 6.0 (Fig. 4e) and
80.69-107.26 Mb as identified by Axiom (Fig. 4f). The
three aforementioned regions of Al were consistently de-
tected not only in the AF plot (first panel) but also in the
Al plot (second panel) by both Axiom and Array 6.0
(Fig. 4). The results demonstrate that both Axiom and
Array 6.0 can optimally detect regions of AI using ALICE.
Notably, the signals of Al in Axiom were stronger than
those in Array 6.0 in some cases. For example, the AF plot
of Array 6.0 (Fig. 4a) was noisier than that of Axiom
(Fig. 4b) for the 10™ sample. The noise had considerably
weakened the signal of the identified region of Al and in-
creased tiny regions of Al along the chromosome, which
was apparently false positive in Array 6.0. Similar noise
interference in Array 6.0 was also observed for the 13™
sample. The intact region of Al detected by Axiom was
consistent with the pattern of AF (Fig. 4f) but divided into
numerous small disjoint segments by Array 6.0 (Fig. 4e).
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Fig. 2 Box-whisker diagrams of the average absolute-value difference
between the genotype-based and intensity-based AF estimates. Panels
from left to right represent the results of the Affymetrix 100 K (n = 367),
500 K (n=448), Array 6.0 (n=1,013), and Axiom (n=1,666) arrays,
where n is the sample size. In each panel, the box-whisker diagrams on
the left- and right-hand sides summarize the results of the AF estimates
without the CPA + LIM adjustment (“Unadjusted”) and AF estimates
with the CPA +LIM adjustment (“Adjusted”), respectively. Each
box-whisker diagram summarizes the distribution of the average
absolute-value difference between the genotype- and intensity-based
AF estimates of whole-genome SNPs. The extreme values outside the
maximum plus a 1.5 interquartile range or the minimum minus

a 1.5 interquartile range are indicated by circles

Detection of LOH/LCSH (Third panel in the graphical
output of ALICE)

Of the 15 samples in Fig. 3, we picked three samples
(11™, 9™, and 3") that carried LOH/LCSH regions of
different lengths to demonstrate the performance of
Axiom in detecting LOH/LCSH using ALICE. LOH/
LCSH was detected using our proposed LOH/LCSH de-
tector (see Single-point index of LOH/LCSH detection
and multipoint indices of AI, LOH/LCSH, and CNV/
CNA detection section). The regions that exhibited
aberrant patterns in the AF plot (first panel) were also
concordantly detected in the LOH/LCSH plot (third panel)
by both Axiom and Array 6.0 (Fig. 5). The 11" sam-
ple carried a region of LOH/LCSH on Chromosome
2, 2.17-20.88 Mb as identified by Array 6.0 (Fig. 5a)
and 1.88-20.88 Mb as identified by Axiom (Fig. 5b).
The ninth sample carried two regions of LOH/LCSH on
Chromosome 12, 50.76—-84.06 Mb and 115.77-126.52 Mb
as identified by Array 6.0 (Fig. 5¢) and 48.84-89.83 Mb
and 115.53-126.71 Mb as identified by Axiom (Fig. 5d).
The third sample carried a region of LOH/LCSH ranging
from 14.37 to 47.53 Mb, corresponding to the whole q
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arm of Chromosome 21, as identified by Array 6.0 (Fig. 5e),
and from 10.87 to 48.09 Mb as identified by Axiom
(Fig. 5f). The results demonstrate that Axiom optimally
detected LOH/LCSH. Notably, the pattern of LOH/LCSH
in Axiom was more significant than that in Array 6.0. The
regions of LOH/LCSH in Array 6.0 (Fig. 5a, ¢, and e) were
interrupted by small proportions of heterozygous SNPs;
however, the proportions were higher than those in Axiom
(Fig. 5b, d, and f).

Detection of CNVs/CNAs (Fourth to sixth panels in the
graphical output of ALICE)

The three samples for evaluating Al detection (10™, 5%,
and 13™) and those for evaluating LOH/LCSH detection
(11, 9™ and 3") were also used to evaluate CNV/CNA
detection. CNVs/CNAs were detected using our proposed
CNV/CNA detector (see Single-point index of CNV/CNA
detection and multipoint indices of AI, LOH/LCSH, and
CNV/CNA detection section). Array 6.0, which combines
SNP and CN probes, identified a region of CN loss from
22.68 to 23.32 Mb on Chromosome 22 in the 10™ sample
(Fig. 4a), a region of CN loss from 24.84 to 29.88 Mb on
Chromosome 22 in the 5% sample (Fig. 4c), and two short
regions of CN loss close to the telomere of Chromosome
14 in the 13™ sample (Fig. 4¢). The results of Axiom also
indicated the same regions of CN loss as Array 6.0 did in
the 10™ and 5™ samples; the region in the 10™ sample
ranged from 22.60 to 23.76 Mb (Fig. 4b) and that in the
5™ sample ranged from 24.88 to 29.85 Mb (Fig. 4d). In
general, although the density of SNP probes in Array 6.0
is higher than that in Axiom, and CN probes are only in-
cluded in Array 6.0, the performance of Axiom is compar-
able to that of Array 6.0 in CNV/CNA detection using
ALICE. Nevertheless, a short region with CN loss, 106.6—
106.82 Mb, close to the telomere of Chromosome 14q,
was detected by Array 6.0 (Fig. 4e), but not by Axiom
(Fig. 4f). In this 0.22-Mb region, Array 6.0 designed 95
CN and 5 SNP probes; however, Axiom designed only 9
SNP probes. The CN loss was identified by the CN probes
in Array 6.0, but not by SNP probes. Thus, this CN
loss was not detected by Axiom. In the 11, 9 and 3™
samples, no CN gain or loss was detected by Array 6.0
(Fig. 5a, ¢, and e) or Axiom (Fig. 5b, d, and f), implying
that the regions of homozygosity resulted from LCSH or
copy-neutral LOH rather than deletion-type LOH.

Consistency in the results of Axiom and Array 6.0 in
analyzing a pure tumor tissue sample

In the previous subsections, we presented several examples
to demonstrate that Axiom can be a cost-effective and
reliable alternative to Array 6.0 for detecting chromosomal
aberrations based on transformed B-cell samples of healthy
individuals. Here, we compare the results of Axiom and
Array 6.0 based on a whole-genome analysis of a pure
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tumor tissue sample (see Sample materials and genotyping
section). We genotyped the pure tumor tissue sample and
compared the results of Axiom (Fig. 6) and Array 6.0
(Additional file 2). The results of Axiom and Array 6.0
were highly consistent (Fig. 6; Additional file 2). Moreover,
Axiom provided clearer patterns of AF and finer locations
of chromosomal aberrations than Array 6.0 did. For a fur-
ther numerical comparison, we defined the consistency

rate of CNV/CNA detection as follows: the consistency
rate C was defined as the proportion of lengths of the re-
gions that they were identified by Axiom and had an over-
lap ratio of > 50 % with the regions identified by Array 6.0.
Overall, the regions identified by Axiom and Array 6.0 were
highly consistent (C=93.8 %). The consistency rates were
as high as 97.1 % if we focused on the regions of > 0.5 Mb
and further increased to 98.5 % if we focused on the regions
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Fig. 4 lllustrative examples of the regions of Al identified using both Array 6.0 and Axiom. This figure presents three individuals with relatively
small-, medium-, and large-sized regions of Al identified using Array 6.0 and Axiom arrays. The midpoint of an identified region of Al is indicated
by an orange arrow on the top of the AF panel of the six subfigures. The figure format of this six-panel plot is provided in Additional file 1. a A
relatively small-sized region of Al, from 22.54 to 23.63 Mb, on Chromosome 22 is identified in the 10" sample using Array 6.0; b A relatively
small-sized region of Al, from 22.78 to 2391 Mb, is identified in the 101 sample using Axiom; c A relatively medium-sized region of Al, from 24.58 to
2998 Mb, on Chromosome 22 is identified in the 5™ sample using Array 6.0; d A relatively medium-sized region of Al, from 24.03 to 30.34 Mb, is
identified in the 5 sample using Axiom; e A relatively large-sized region of Al, from 80.18 to 104.81 Mb, on Chromosome 14 is identified in the 13"
sample using Array 6.0; f A relatively large-sized region of Al, from 80.69 to 107.26 Mb, is identified in the 13" sample using Axiom
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of >1 Mb. The overlap ratio tended to increase with the
length of the overlapped region (Additional file 3).

AF, Al, LOH/LCSH, and CNV/CNA analysis of admixed
samples of tumor cells and corresponding normal cells
An experiment involving admixed samples was designed
to investigate how Axiom performs in detecting
chromosomal aberrations. Admixed samples were pre-
pared by mixing p% of the DNA from the cancer cell
line and (100 - p)% of the DNA from the corresponding
blood cell line, and the admixture proportion p% ranged
from 0 to 100 with an increment of 10 (see Sample
Materials and Genotyping). Each sample was genotyped
using Axiom and analyzed using ALICE. Dynamic
patterns of whole-genome HI (Additional file 4) and AF

(Additional file 5) across 11 admixture proportions were
observed. The results revealed that in many cases, Al or
LOH/LCSH acted as a precursor of CNV/CNA. For ex-
ample, the sample containing 100 % pure tumor tissue
underwent a large CN loss in whole Chromosome 3p
and a large CN gain in whole Chromosome 3q. Al and
LOH/LCSH were observed when p% >20 %; however,
CNVs/CNAs became detectable when p% > 30 %.

We also deciphered the interrelationship between the
successful detection of chromosomal aberrations and
three influential factors: (1) admixture proportion, (2)
mean difference in HI values between the study sample
and normal reference, and (3) the length of the region
of CNVs/CNAs. We first identified regions of CN loss
and gain combined with AI or LOH/LCSH on the basis
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Fig. 5 lllustrative examples of the regions of LOH/LCSH identified using both Array 6.0 and Axiom. This figure presents three individuals with
regions of LOH/LCSH identified using Array 6.0 and Axiom arrays. The midpoint of an identified region of LOH/LCSH is indicated by an orange
arrow on the top of the AF panel of the six subfigures. The figure format of this six-panel plot is provided in Additional file 1. a A region of LOH/
LCSH, from 2.17 to 20.88 Mb, on Chromosome 2 is identified in the 11" sample using Array 6.0; b A region of LOH/LCSH, from 1.88 to 20.88 Mb,
is identified in the 11" sample using Axiom; ¢ Two regions of LOH/LCSH, from 50.76 to 84.06 Mb and from 115.77 to 126.52 Mb, on Chromosome
12 are identified in the 9™ sample using Array 6.0; d Two regions of LOH/LCSH, from 48.84 to 89.83 Mb and from 115.53 to 126.71 Mb, are identified
in the 9 sample using Axiom; e A region of LOH/LCSH, from 14.37 to 4753 Mb, on Chromosome 21 is identified in the 3'® sample using Array
6.0; f A region of LOH/LCSH, from 10.87 Mb to 48.09 Mb, is identified in the 3'® sample using Axiom

J

of the pure tumor tissue sample (i.e., p% =100 %). In
total, 553 regions of CNVs/CNAs were identified,
which comprised 176 and 377 regions of CN gain and
loss, respectively. This result was considered a bench-
mark for the other analyses at different admixture
proportions because the cancer cell line sample was
not contaminated by normal cells. We defined a suc-
cessful detection rate S(p) of chromosomal aberrations
at an admixture proportion of p% as a ratio of the
lengths of regions that were simultaneously identified
at an admixture proportion of p% and in the pure
tumor tissue sample.

First, S(p) increased with increasing p%. For CN gain,
S(p) increased from 6.34 to 95.55 % as p% was increased
from 10 to 90 % (pink right hatched bars in Fig. 7). The

increasing trend of S(p) had a positive slope coefficient
of 1.25 x 1072 [standard error (se) = 3.49 x 107%], and the
p value was 3.53 x 107* for the linear regression of S(p)
on p%. For CN loss, S(p) increased from 0.06 to 92.58 %
as p% was increased from 10 to 90 % (green left hatched
bars in Fig. 7). The increasing trend of S(p) had a posi-
tive slope coefficient of 1.26 x 1072 (se = 1.31 x 107%), and
the p value was 2.78 x 107! for the linear regression.
Second, S(p) was positively and negatively correlated
with the differences in HI for CN gain and loss, respect-
ively; here, the difference is that the HI of a study sample
subtracts the average HI of reference samples in ALICE
at each SNP probe. For CN gain, S(p) increased with an
increasing difference in HI; the increasing trend of S(p)
had a positive slope coefficient of 3.15 (se = 3.39 x 107),
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Fig. 6 A whole-genome six-panel plot of a cancer cell line sample genotyped using Axiom array. This figure depicts a six-panel plot that shows
the graphical results of the AF, Al, LOH/LCSH, and CNV/CNA analyses provided by ALICE. From top to bottom, the six-panel plot consists of the
AF plot, Al plot, LOH/LCSH plot, HI and CN segmentation plot, proportion plot of CNV/CNA, and statistical significance plot of CNV/CNA. The
details of the illustrations of each plot are provided in Additional file 1

and the p value was 3.43 x 10" for the linear regression
of S(p) on the difference in HI. For CN loss, S(p) increased
as the difference in HI became more negative, with a
positive slope coefficient of 2.07 (se = 2.30 x 107"), and
the p value was 6.18 x 10™*° for the linear regression.
Finally, S(p) was also positively correlated with the
length of the region of CNVs/CNAs. For CN gain, S(p)
increased with an increase in the length of the region of
CNVs/CNAs; the increasing trend of S(p) had a positive
slope coefficient of 0.29 (se = 2.02 x 1072), and the p value
was 4.18 x 107, For CN loss as well, S(p) increased with
an increase in the length of the region of CNVs/CNAs;
the increasing trend of S(p) had a positive slope coefficient
of 0.19 (se = 1.38 x 107%), and the p value was 6.05 x 107%.
We also examined the minimum admixture propor-
tion that enables a region of chromosomal aberration to
be detected (p,,;,,%). We investigated how p,,,;,, relates to
the difference in HI values and length of the region of
CNVs/CNAs. The results first indicated that p,,;, was
negatively correlated with the difference in HI values.
For a CN gain, p,,;, decreased with an increase in the
difference in HI values (Spearman correlation coefficient
was —0.53, with a p value of 5.44 x 107**). For a CN loss,

Pwmin decreased as the difference in HI values became more
negative (Spearman correlation coefficient was —0.16, with
a p value of 1.75 x 1073). Second, p,;,, was negatively corre-
lated with the length of the region of CNVs/CNAs when
the admixture proportion was higher than 50 % (Fig. 7).
For a CN gain, p,,; decreased with an increase in the
length of the region of CNVs/CNAs (Spearman correlation
coefficient was —0.54, with a p value of 9.03 x 107*°) (solid
circles in Fig. 7). For a CN loss, p,,;, decreased with an
increase in the length of the region of CNVs/CNAs
(Spearman correlation coefficient was —0.18, with a p value
of 3.89 x 1074 (solid triangles in Fig. 7).

Paired-sample analysis

In the previous subsections, we focused on an unpaired-
sample analysis. ALICE also provides a paired-sample
analysis function (see Methods). In this subsection, we
evaluated the performance of Axiom in conducting the
paired-sample analysis of ALICE. We reanalyzed the ad-
mixture samples, with the corresponding blood cell line
sample as a matched control. The six-panel plot of the
cancer cell line sample is provided in Additional file 6.
The analysis of the pure tumor tissue sample revealed
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403 regions of CNVs/CNAs in total, which comprised
127 and 276 regions of CN gain and loss, respectively.
Dynamic patterns of whole-genome HI (Additional file 7)
and AF (Additional file 8) among different admixture
proportions are presented. In general, the results of
the paired-sample analysis (Additional files 6, 7 and 8)
revealed patterns similar to but not identical from
those revealed by the unpaired-sample analysis (Fig. 6;
Additional files 4 and 5), for example, the fifth and
sixth quantitative polymerase chain reaction (qPCR)-vali-
dated regions (see Real-time qPCR validation section).
Similar to the unpaired-sample analysis, we deciphered
the interrelationship between S(p) and the aforementioned
three influential factors, and also examined how p,,;,
relates to the difference in HI values and length of
the region of CNVs/CNAs. The results showed the pat-
terns in the paired-sample and unpaired-sample analysis
were similar (Additional file 9).

Real-time gPCR validation
We selected six genomic regions of CNVs/CNAs de-
tected by ALICE for validation using real-time qPCR on

the basis of 11 admixed samples and 6 healthy controls
(see Real-time qPCR in the Materials and methods sec-
tion). Physical positions of the six genomic regions and
the results of qPCR are presented in Fig. 8. Regions 1
and 2 were consistently detected by the unpaired- and
paired-sample analyses of ALICE, as well as by the Affy-
metrix GTC software (http://www.affymetrix.com/estore/
browse/level_seven_software_products_only.jsp?productl
d=131535#1_1). The GTC can analyze Array 6.0 data;
however, it cannot provide a CNV/CNA analysis for
Axiom data. Region 1, ranging from 128,539,148 to
128,563,712 (24.564 Kb) on Chromosome 8, contained 16
SNPs. Both the unpaired- and paired-sample analyses
identified this region as a CN gain for all admixture pro-
portions of p% > 10 %. In the qPCR assay, the average CN
estimate of the six reference samples was 2.01 (se = 0.15).
The CN estimates of the admixed samples at p% =0 %,
10 %, 50 %, and 100 % were 2.00 (se=0.06), 5.35
(se =0.17), 19.43 (se =0.30), and 33.26 (se =0.08), re-
spectively. The CN estimates gradually increased with
an increase in the admixture proportion. Region 2,
ranging from 228,803,376 to 228,825,101 (21.725 Kb) on
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Fig. 8 Validation of CNV/CNA using real-time gPCR. Bar charts of CN estimates in six genomic regions are displayed. The bar chart for each genomic
region contains five bars, which show the mean CN estimate in the reference sample (‘Ref,” white open bar), the pure corresponding blood sample
("0," right hatched bar), admixed sample of 10 % (“10," vertical hatched bar), admixed sample of 50 % (“50," left hatched bar), and the pure cancer cell
line sample (“100," horizontal hatched bar). An error bar represents 1 se of the mean CN estimate. The value of the mean (se) CN estimate is indicated
on the top of each bar. The vertical axis represents the value of CN estimate. The index and chromosome of each genomic region are labeled at the
bottom of the bar chart, followed by the physical positions of the gPCR primer (labeled as “qPCR primer”) and CNV/CNA region detected using ALICE
(labeled as "ALICE"). The starting and ending positions are the first and second elements enclosed in a square bracket. For example, the starting and
ending positions of the gPCR primer of the first region are 128,548,712 and 128,548,812 bp. The detection results obtained using GTC ("GTC"), unpaired
analysis in ALICE ["ALICE (U)"], and paired analysis in ALICE ["ALICE (P)"] and the type of CNVs/CNAs are labeled at the top of the bar chart

Chromosome 2, carried 14 SNPs. Both the unpaired- and
paired-sample analyses identified this region as a CN loss
for all p% > 50 %. In the qPCR assay, the average CN esti-
mate of the six reference samples was 2.01 (se =0.17).
The CN estimates of the admixed samples at p% =0 %,
10 %, 50 %, and 100 % were 2.14 (se = 0.04), 1.91 (se =
0.11), 1.53 (se =0.11), and 0.93 (se = 0.05), respectively.
The CN estimates decreased with a gradual increase in
the admixture proportion.

Regions 3 and 4 were only detected by the unpaired-
and paired-sample analyses of ALICE, but not by GTC.
Region 3, ranging from 93,859,694 to 94,013,938
(154.244 Kb) on Chromosome 4, carried 17 SNPs. Both
the unpaired- and paired-sample analyses identified this
region as a CN gain at p% =90 %. In the qPCR assay,
the average CN estimate of the six reference samples
was 2 (se=0.10). The CN estimates of the admixed
samples at p% =0 %, 10 %, 50 %, and 100 % were 1.91
(se =0.03), 2.02 (se=0.03), 2.09 (se=0.06), and 2.22
(se =0.10), respectively. The CN estimates increased with
a gradual increase in the admixture proportion. Region 4,
ranging from 71,610,835 to 71,632,750 (21.915 Kb) on
Chromosome 15, carried 11 SNPs. The unpaired-sample
analysis identified this region as a CN loss at p% =20 %.
The paired-sample analysis also identified this region as a
CN loss at p% > 30 %. In the qPCR assay, the average CN
estimate of the six reference samples was 2.01 (se = 0.20).
The CN estimates of the admixed samples at p% =0 %,
10 %, 50 %, and 100 % were 0.99 (se=0.02), 0.81
(se =0.06), 0.42 (se=0.02), and approximately 0 (se =0)

(i.e, a homozygous deletion), respectively. The CN
estimates gradually decreased with an increase in the
admixture proportions.

Regions 5 and 6 were detected only by the unpaired-
or paired-sample analysis of ALICE, but not by GTC. Re-
gion 5, ranging from 66,999,646 to 67,033,086 (33.440 Kb)
on Chromosome 6, carried 14 SNPs. This region was
detected only by the unpaired-sample analysis but not
by the paired-sample analysis or GTC. The unpaired-
sample analysis identified this region as a CN loss at all
admixture proportions (ie., p% >0 %). In the qPCR
assay, the average CN estimate of the six reference sam-
ples was 2 (se =0.12). The CN estimates of the admixed
samples at p% =0 %, 10 %, 50 %, and 100 % were 0.99
(se=0.17), 1.02 (se=0.06), 0.94 (se=0.20), and 0.97
(se =0.09), respectively. The paired-sample analysis did
not identify this region as CN loss, because this one-copy
loss had occurred since p% = 0 %. Thus, the admixed sam-
ples themselves did not have any CNVs/CNAs; however,
they exhibited a CN loss relative to the six reference sam-
ples. The result suggests that this CNV/CNA is caused by
germline mutations.

The final region (Regions 6), ranging from 95,129,190
to 95,147,310 (18.120 Kb) on Chromosome 14, carried
11 SNPs. This region was detected only by the paired-
sample analysis but not by the unpaired-sample analysis
or GTC. The paired-sample analysis identified this re-
gion as a CN gain when p% =70 %. In the qPCR assay,
the average CN estimate of the six reference samples
was 2 (se=0.13). The CN estimates of the admixed
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samples at p% =0 %, 10 %, 50 %, and 100 % were
1.95 (se=0.22), 2.19 (se=0.13), 2.23 (se=0.16), and
2.27 (se=0.12), respectively. The CN estimates gradually
increased with an increase in the admixture proportion.
This cancer patient sample had a relatively lower CN in-
tensity at p% =0 % than the mean CN intensity of the six
reference samples. This explains why this CN gain was de-
tected by the paired-sample analysis but not by the
unpaired-sample analysis. The CN intensities of this cancer
patient sample at p% =0 % did not differ significantly from
those of the six reference samples, implying that the CNV/
CNA is because of somatic and not germline mutations.

CN segmentation

We analyzed the 11™ sample in Fig. 3 as an example to
illustrate the ideas of the original CBS algorithm [91, 92]
and quick CBS algorithm in ALICE (see CN segmenta-
tion in the Materials and methods section). This sample
carried a region of LCSH ranging from 1.88 to 20.88 Mb
on Chromosome 2 (Additional file 10A and B). The original
CBS algorithm required 88 s for the segmentation, which
resulted in numerous short segments of the LCSH and
non-LCSH regions (the third panel in Additional file 10A).
By contrast, the quick CBS algorithm required only 9 s for
the segmentation. The LCSH region was separated into
several segments, and the non-LCSH regions downstream
of the position of 20.88 Mb were grouped into the
same segment (the fourth panel in Additional file 10A).
A detailed analysis of the LCSH region reveals that
the segments obtained by the original CBS algorithm
(the third panel in Additional file 10B) and quick CBS
algorithm (the fourth panel in Additional file 10B) have a
reasonably consistent pattern.

We further compared the performance of the original
and quick CBS algorithms in terms of computational
time, the number of segments, and the length of seg-
ments on the basis of 11 admixed samples from a cancer
patient mentioned in the previous subsections and 15
noncancerous samples with apparent chromosomal
aberrations shown in Fig. 3. The analysis of the 11
admixed samples revealed that the average computa-
tional time per sample was 1.46 and 0.47 min for the
original and quick CBS algorithms, respectively. The
average number of segments was 1,351.73 and 350.53
for the original and quick CBS algorithms, respectively,
and the average length of segments was 2.19 and
21.9 Mb, respectively. The analysis of the data set of
the 15 noncancerous samples revealed that the average
computational time per sample was 1.50 and 1.04 min
for the original and quick CBS algorithms, respectively.
The average number of segments was 1,580.73 and
911.09 for the original and quick CBS algorithms, re-
spectively, and the average length of segments was 1.82
and 3.56 Mb, respectively.
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Simulation procedures

We conducted a simulation study to evaluate the per-
formance of Axiom arrays in detecting CNVs/CNAs
using the ALICE software. To mimic real data struc-
tures, genotypes and HI values were generated on the
basis of real genotypes and HI values of 1,666 normal
samples genotyped using Axiom (The genome assembly
of GRCh37/hgl9 was employed). These samples were
used to construct the Axiom reference databases in the
ALICE software (see ALICE genomic reference data-
bases section). Our simulation study considered several
simulation parameters for generating data, including the
type of CNVs/CNAs, effect size, and admixture propor-
tion. In addition, we considered several settings for
CNV/CNA detection, including window sizes (i.e., the
number of SNPs in a sliding window) and the numbers
of consecutive significant SNPs in a sliding window. In
total, 10,000 simulations were performed to evaluate the
false positive rate (FPR) (i.e., type 1 error) and true posi-
tive rate (TPR) (i.e., power) of a single-point and multi-
point CNV/CNA analysis. The schema of this simulation
study is depicted in Fig. 9.

First, we considered three scenarios of CNVs/CNAs
that ALICE aimed to detect: CN loss, CN gain, and CN
neutral. The scenarios of CN loss and gain were de-
signed to evaluate the TPRs of our CNV/CNA detection,
and the scenario of CN neutral was designed to evaluate
the FPR. We designed a “template region” of 2,001 SNPs
for each of the three scenarios of CNV/CNA as follows:
(1) for detecting CN loss, we chose a non-pseudo-
autosomal region of the p-arm of chromosome X of a fe-
male (two copies); (2) for detecting CN gain, we chose a
non-pseudo-autosomal region of chromosome X of a
male (one copy); and (3) for detecting CN neutral, we
chose a region of Chromosome 2 of a male or female
(two copies). A shorter “target region” containing N =
11, 51, 101, and 501 CN-loss, CN-gain, and CN-neutral
SNPs was arranged in the middle of the template region
of 2,001 SNPs.

Second, genotypes and HI values were generated
under different effect sizes, r. Let 4;, and ¢, denote the
genotype-specific sample mean and standard deviation
of HI values of the i™ SNP with genotype g in the gen-
omic reference databases of ALICE. The procedures for
data generation for the three scenarios of CNVs/CNAs
are described as follows: (1) In the scenario of CN loss,
genotypes and HI values of a SNP from female samples
(two copies) were replaced by genotypes and HI values
of the same SNP from male samples (one copy) in the
target region on chromosome X. Only variations with
one copy and HI values satisfying <, ,—r0;, were col-
lected; (2) In the scenario of CN gain, genotypes and HI
values of a SNP from male samples (one copy) were re-
placed by genotypes and HI values of the same SNP
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from female samples (two copies) in the target region on
chromosome X. Only variations with two copies and HI
values satisfying 24;, +r-6;y were collected. In these
two scenarios, we considered r=.25, 0.5, 1, 1.5, 2, 3, and
4. The larger the value of 7, the larger was the effect size;
(3) In the scenario of CN neutral, the effect size should
be zero (i.e., r=0). Genotypes and HI values of a SNP
from male or female samples (two copies) were ran-
domly replaced by genotypes and HI values of the
same SNP from other samples (two copies) in the target
region. To exclude outliers, only SNPs with two copies
and HI values ranging from fi;,-3-0,, to f;, + 30
were collected.

Finally, in a practical situation, cell admixture (e.g.,
normal cell contamination - tumor cells are contami-
nated with adjacent normal cells) or noise interference
because of environmental or other uncontrollable factors
may occur in sample preparation. Let g% denote the
proportion of an admixture with normal cell contamin-
ation or noise interference in this simulation. The larger
the proportion of noise interference, the higher will be
the data variation. For example, we generated the HI
values for an admixture of a one-copy loss and copy
neutral by mixing data from the following two sources:
(1) (100 - )% of HI values were sampled from the SNPs
on chromosome X of a male, and their HI values
were </, ,~1-0;g and (2) g% of HI values were sampled

from the SNPs on chromosome X of a male, and their HI
values ranged from f; ,~2-0;4 to fi;, +2-0;4. We consid-
ered the simulation experiments without noise interfer-
ence (g% =0 %) and with noise interference (g% =25 %).
Original genotypes and HI data in the target region of Ny
SNPs were replaced by the newly generated genotypes and
HI data.

ALICE provides single-point and multipoint CNV/
CNA analysis. For a multipoint CNV/CNA analysis, a
sliding-window approach was employed to scan CNVs/
CNAs in the human genome chromosome by chromo-
some. We considered four window sizes in the multi-
point CNV/CNA analysis: w=11, 51, 101, and 501.
CNVs/CNAs that involve consecutive significant SNPs
may be more reliable than CNVs/CNAs that have only a
single significant SNP. We considered CNVs/CNAs that
contain at least the number of consecutive significant
SNPs (n.) =1, 2, 3, 4, and 5 in the multipoint CNV/CNA
analysis. The case n, =1 means that the CNV/CNA sig-
nal is not restricted to several consecutive SNPs.

On the basis of the aforementioned simulation param-
eters and settings of the CN detection method, we calcu-
lated the SNP-level and region-level FPR and TPR in a
single-point and multipoint CNV/CNA analysis, respect-
ively. Here, a SNP-level FPR was calculated as a propor-
tion of the event that a CN-neutral SNP was wrongly
identified as a CNV/CNA in 10,000 simulations. A SNP-



Huang et al. BMC Genomics (2016) 17:266

level TPR was calculated as a proportion of the event
that a true CN-loss (CN-gain) SNP was correctly identi-
fied as a loss (gain) in 10,000 simulations. The region-
level FPR and TPR were further calculated by averaging
the SNP-level FPRs and TPRs for SNPs in a target re-
gion, respectively.

Simulation results

FPR of single-point CN detection

The results of FPRs in the single-point CNV/CNA
analysis are summarized in Fig. 10a. Noise interfer-
ence inflated the FPRs. The FPRs exceeded the sig-
nificance level of 0.05 before a Bonferroni correction;
however, they became stable and were under control
after a Bonferroni correction. Therefore, our subse-
quent investigations only focused on the results that
had Bonferroni corrections.

TPR of single-point CN detection

The results of TPRs in the single-point CNV/CNA ana-
lysis for CN loss and gain are summarized in Fig. 10b
and ¢, respectively. First, the TPR increased with an in-
crease in the effect size. For example, for CN loss, when
the effect size increased from r=0.25 to 4, the average
TPRs increased from 6.24 to 50.37 % under noise interfer-
ence of g% =0 % and from 4.73 to 37.82 % under g% =
25 %. Similarly, for CN gain, when the effect size increased
from r=0.25 to 4, the average TPRs increased from 4.56
to 51.65 % under g% = 0 % and from 3.42 to 38.82 % under
q% =25 %. Finally, the TPRs decreased with an increase in
the proportion of noise interference (Fig. 10b and c).
For example, for CN loss and effect size r=4, when
q% increased from 0 to 25 %, the average TPRs de-
creased from 50.37 to 37.82 %. Similarly, for CN gain,
when g% increased from 0 to 25 %, the average TPRs
decreased from 51.65 to 38.82 %.
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FPR of multipoint CN detection

The results of region-level FPRs after a Bonferroni
correction in the multipoint CNV/CNA analysis for
q% =0 % and 25 % are summarized in Figs. 11a and 12a,
respectively. First, the FPRs inflated with an increase
in the proportion of noise interference (¢%). When
the data was free of noise interference (i.e., g% =0 %),
the FPR was well controlled below a value of 0.05.
However, the FPR became out of control when g% in-
creased to 25 %. Second, a proper choice of window
size (w) and the number of consecutive significant
SNPs (7.) can reduce the FPR in CNV/CNA detection.
When g% =0 %, any n. from 1 to 5 is favorable for w =11,
51, 101, and 501 (Fig. 11a). When g% = 25 %, n. > 3 is rec-
ommended for w=11, 51, and 101, and #.>4 is recom-
mended for w =501 (Fig. 12a).

TPR of multipoint CN detection

The results of region-level TPRs in the multipoint CNV/
CNA analysis after a Bonferroni correction are summa-
rized: for g% =0 %, the results are shown in Fig. 11b and
¢ for CN loss and gain, respectively; g% =25 %, the re-
sults are shown in Fig. 12b and c for CN loss and gain,
respectively. First, an increasing proportion of noise
interference (q%) reduced the TPR. Second, the TPR of
the multipoint CNV/CNA analysis was higher than that
of the single-point CNV/CNA analysis. Third, the TPR
decreased with an increase in the required number of
consecutive significant SNPs (n.). Exceptions occurred
only when the window size (w) was significantly larger
than the number of SNPs in the target region (N7). Fi-
nally, a larger w tended to increase TPR except for that
w was significantly larger than N7 However, as men-
tioned in the previous subsection, an over-large window
size increased the FPR, especially for the data with noise
interference (Fig. 12a).
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We further evaluated the effect of w on the length of
the identified chromosomal aberration. Under the prem-
ise of a well-controlled FPR, for each w, we selected a
minimum 7, which attained the maximum TPR over
different values of Ny as follows: for g% =0 %, we
recommend 7.=1 or 2 for w=11 and 51 and n,=2
for w=101 and 501; and for g% =25 %, we recommend
n.=3 for w=11, 51, and 101 and n.=4 for w=>501.
The TPRs under the abovementioned suboptimal set-
tings are summarized in Fig. 13a for g% =0 % and
Fig. 13b for g% =25 %. The results suggest that
although the use of a large w helped gain a high TPR, it
led to an over-wide region of chromosomal aberration
(green and blue curves in Fig. 13). By contrast, the use of
small w not only reduced the TPR but also accurately
located the region of chromosomal aberration (red and
orange curves in Fig. 13).

Finally, we recommended the following optimal settings
of (w, n,) for Ny=11, 51, 101, and 501. For g% =0 %, we
recommend (w, n.) = (11, 2). The average FPR ranged from
1.12 to 1.12 %, and the average TPR ranged from 94.08 to
99.39 % (Table 1). For g% = 25 %, we recommend (w, 1,) =
(51, 3). The average FPR ranged from 2.19 to 2.19 %, and
the average TPR ranged from 42.09 to 94.03 % (Table 1).

ALICE software

ALICE, programmed in R and R-GUI, is the software with
a user-friendly interface for an integrated genomic analysis
of AF, LOH/LCSH, Al and CNV/CNA. The software, ref-
erence databases, library files for APT, annotation files, test
examples, and user manual can be downloaded from the
ALICE homepage (http://hcyang.stat.sinica.edu.tw/soft
ware/ALICE.html). ALICE consists of three main compo-
nents—“Main Functions” (Additional file 11), “Genome
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Browser” (Additional file 12), and “Aberration Integration”
(Additional file 13). The software structure is depicted in
Fig. 14.

The first component “Main Functions” provides a
whole-genome analysis of AF, LOH/LCSH, Al and
CNV/CNA. It has five functions, which are described
in brief as follows:

Type of analysis: ALICE supports both the unpaired-
and paired-sample analyses.

Input/output path: (1) Users should specify the directory
in which they save the data to be analyzed. Moreover,
users should download the annotation files, reference
databases, and library files for Affymetrix Power Tools
(APT) software (http://www.affymetrix.com/estore/part
ners_programs/programs/developer/tools/powertools.affx)
from the ALICE homepage and save them in the input

directory. (2) All numerical and graphical results and a log
file will be saved automatically in the user-specified output
directory.

Data format: (1) Users should specify a genotyping
platform in their analysis. (2) Users can choose to pro-
vide (a) the Affymetrix CEL files, (b) Genotype/Intensity
text files exported by the Affymetrix GTC or Illumina
BeadStudio, or (c) the. RData files from their previous
ALICE analysis.

Statistical analysis: (1) For intensity data preprocessing,
users can choose to run (a) log, transformation, (b) chip
effect removal, or (c¢) quantile normalization. (2) For
CNV/CNA segmentation, users can adjust five critical
tuning parameters in the CBS algorithm [91, 92]: (a) sig-
nificance level for the test of change point, (b) minimum
number of markers in a segmentation region, (c) number
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of permutations for p value calculation in the test of
change point, (d) the proportion of data trimming for re-
moving outliers, and (e) cut-off for HI values of significant
segments. In addition, uses can choose to use the original
or quick CBS algorithm. (3) For AI/LOH/LCSH/CNV/
CNA detection, users should specify the following: (a) the
type of references (genotype-specific or nongenotype-
specific) used in constructing the reference confidence
interval, (b) the confidence level used in single-point and
multipoint tests for AI/LOH/LCSH/CNV/CNA detection,
(c) the window size and number of consecutive significant
markers in genome scan, and (d) the upper bound level of
references used in a multipoint test for AI/LOH/LCSH/
CNV/CNA detection. According to the aforementioned
user settings, a window will pop up to remind the users
about which reference database should be saved in the in-
put directory by clicking the “Run” button.

Output: (1) The numerical output includes: (a) raw.-
RData files of genotype and intensity data of all samples,
(b) the APT output files, (c) the data description file

about the parameter settings in the analysis, and (d) the
output of an individual sample, which contains the re-
sults of single-point and multipoint detections for Al,
LOH/LCSH, and CNV/CNA. In addition, consecutive
significant markers identified by the single-point analysis
or overlapping significant windows identified by the
multipoint analysis will be joined and reported in the
output. (2) The graphical output includes the following:
(a) individual-sample plots and (b) cross-sample plots.
In the individual-sample plots, users can select to draw a
genome-wide AF and six-panel plots for each individual.
The genome-wide six-panel plot includes the following:
(i) the AF plot, (ii) the AI plot, (iii) the LOH/LCSH
plot, (iv) the HI and CNV/CNA segmentation plot,
(v) the CNV/CNA plot, and (vi) the p value plot of
CNV/CNA detection (Additional file 1). In the cross-
sample plot, users can select to draw the following:
(i) the AI plot, (ii) the LOH/LCSH plot, and (iii) the
CNV/CNA plot (see Additional file 14 as an example
of the LOH/LCSH plot).

Table 1 Average FPRs and TPRs under the suggested settings of (w, n,) for the data without and with noise interference

Level of noise interference Suggested setting®

FPR and TPR
(Simulation scenario)

Number of SNPs in the target region

w, nJ Np=11 Ny=51 Ny=101 Ny=501
Without noise interference (g% =0 %) (11, 2) Average FPR (neutral) 112 % 112 % 112 % 112 %
Average TPR (loss) 95.55 % 94.08 % 95.39 % 9543 %
Average TPR (gain) 99.39 % 96.69 % 95.59 % 95.83 %
With noise interference (g% = 25 %) (51, 3) Average FPR (neutral) 219 % 2.19 % 2.19 % 2.19 %
Average TPR (loss) 42.09 % 8545 % 94.03 % 93.54 %
Average TPR (gain) 5067 % 89.37 % 92.81 % 93.55 %

2w Window size, n. Number of consecutive significant SNPs, FFRs False positive rates, TPRs True positive rates, Ny Number of SNPs in the target region
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The second component “Genome Browser” provides a
detailed visualization of the regions of AF, Al, LOH/
LCSH, and CNV/CNA. First, users should specify the in-
put and output directories specified in the previous
ALICE analysis. They should then provide information
on the group and ID of the samples of interest, the target
genomic region, genetic markers (SNP or SNP + CNV/
CNA), and the analysis plots comprising the following: (i)
the AF plot, (ii) the AI plot, (iii) the LOH/LCSH plot, (iv)
the CNV/CNA segmentation plot, (v) the CNV/CNA plot,
and (vi) the p value plot of CNV/CNA detection. Genes
located in the specified region of interest will be shown at

the bottom of this interface. Moreover, the results of single-
sample or multiple-sample visualization will be saved auto-
matically to the prespecified output directory.

The final component “Aberration Integration” provides
an integrated display of the numerical and graphical out-
puts of AF, AIl, LOH/LCSH, and CNV/CNA. Similar to
the procedures in the second component, users should
select the input and output directories specified in the
previous ALICE analysis and a single-sample or multiple-
sample integration with the following settings: (1) genetic
markers (SNP or SNP + CNV/CNA), (2) analysis method
(single-point or multipoint analysis), (3) types of genomic
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aberrations, namely (a) AI+LOH/LCSH, (b) AI+CNV/
CNA, (c) LOH/LCSH + CNV/CNA, and (d) AI+LOH/
LCSH + CNV/CNA. The graphical and numerical outputs
will be provided accordingly.

ALICE genomic reference databases

We constructed the ALICE reference databases on the
basis of the following conditions: (1) Ethnic group: Han
Chinese population, other populations (African, Caucasian,
and Asian populations), and the combined population; (2)
SNP array: Affymetrix 100 K, 500 K, Array 6.0, Axiom
CHB 1, and Illumina HumanHap 550 K; (3) Data format:
CEL-based data, which is provided only for the Affymetrix
platform, and genotype or intensity-based data for the
Affymetrix (GTC) and [lumina (BeadStudio) platforms; (4)
Window size and the number of consecutive significant
markers: (w, n,) = (11, 2) and (51, 3); (5) Log,-scale
transformation: the HI data with or without a log,-scale
transformation; (6) Chip effect removal: mean or median;
and (7) Quantile normalization: the HI data with or
without an adjustment using a quantile normalization.
A combination of three of the preprocessing conditions
(i.e., the fifth, sixth, and seventh conditions) leads to eight
databases, DB_1-DB_8, for each combination of ethnic
groups, SNP arrays, data formats, window size, and the
number of consecutive significant markers.

Discussion
Axiom arrays, such as Axiom CHB 1, are widely used for
conducting population-specific genomic studies. However,
no CN probes have been designed for the Axiom arrays.
Originally, Axiom arrays were developed for SNP geno-
typing, but not for CNV/CNA analysis. In this study, we
developed ALICE for an integrated analysis of whole-
genome HI and genotype data using Axiom arrays. The
results of the real data analyses (Figs. 1, 2, 3, 4, 5, 6 and 7;
Additional files 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10), qPCR assays
(Fig. 8), and simulation studies (Figs. 10, 11, 12 and 13) re-
veal that the Axiom array optimally performs the inte-
grated analysis of AF, LOH/LCSH, Al and CNVs/CNAs.
Although this paper mainly discusses the Affymetrix
Axiom platform, ALICE also supports data analyses con-
ducted using other Affymetrix SNP arrays, such as Array
6.0, and Illumina SNP arrays, such as Illumina 550 K.
The analysis procedures for the non-Axiom platforms
are detailed in the User Manual of ALICE: brief version
(http://hcyang.stat.sinica.edu.tw/software/ALICE/Version
1.0/Brief_Guide_for_Default Example.pdf) and full version
(http://hcyang.stat.sinica.edu.tw/software/ ALICE/Version
1.0/User%20Manual.pdf). Array 6.0 is another premier
SNP array of Affymetrix, Inc., which has been broadly
used in genomic studies. The main differences between
Axiom and Array 6.0 are as follows: (1) DNA prepar-
ation (the total amount of genomic DNA and range of
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DNA fragments), (2) probe design (ligation, probe se-
quence, probe length, and the number of replicates of
probe pairs), (3) marker contents (the number of SNPs,
inclusion of CN probe, and source databases), and (4)
genotyping experiment (inclusion of control sample,
number of samples in a chip, and experimental cost).

First, regarding DNA preparation, Axiom requires
100-200 ng of genomic DNA, which is less than that re-
quired by Array 6.0, 500 ng. After restriction enzyme di-
gestion, the DNA fragments of Axiom (25-125 base
pairs) are shorter than those of Array 6.0 (200-1,100
base pairs). Second, regarding probe design, Axiom uses
on-chip and solution probes that are linked together by
ligating if they perfectly match the same target DNA,
whereas Array 6.0 uses only on-chip probes that
hybridize to the target DNA. In Axiom, only one on-
chip probe is designed for detecting non-C/G and non-
A/T polymorphisms; however, two on-chip probes are
designed for detecting C/G and A/T polymorphisms. In
Array 6.0, two probes are designed that are complemen-
tary to an individual allele of a SNP. The lengths of
Axiom on-chip and solution probes are 30 and 9 mer,
respectively, while that of an Array 6.0 probe is 25 mer.
Axiom uses two-color labeling of solution probes to dis-
tinguish SNP alleles, whereas Array 6.0 uses only single-
color labeling of target DNA for detecting signals.
Axiom designs two replicates of probe pairs, and Array
6.0 designs 3—4 replicates.

Third, regarding marker contents, Axiom provides ap-
proximately 640,000 SNPs, whereas Array 6.0 provides ap-
proximately 906,600 SNPs and 946,000 CN probes. Axiom
collects markers from the Axiom Genomic Databases
(http://www.affymetrix.com/support/technical/sample_
data/axiom_db/axiomdb_data.affx), which contain web-
validated and fully annotated SNPs in the International
HapMap Project [43, 65, 66], 1000 Genomes Project
[42, 45], and dbSNP database [67]; Array 6.0 collects
markers from the International HapMap Project and the
Database of Genomic Variants [93]. Finally, regarding the
genotyping experiment, Axiom includes one control sam-
ple in a plate and simultaneously genotypes 96 or 384
samples in the same plate; Array 6.0 genotypes each sam-
ple or chip individually. The genotyping cost of Axiom is
much lower than that of Array 6.0. The average genotyp-
ing cost for one sample is approximately 3,400 NTD for
Axiom and 13,400 NTD for Array 6.0 in the National
Center for Genome Medicine (http://ncgm.sinica.edu.tw/
affymetrix_user_01.html).

The longer probe sequences and two-color ligation de-
signs in Axiom compared with those in Array 6.0 have
increased the sensitivity and specificity of signal detec-
tion and ability to differentiate between the HI measures
of two alleles. In addition, the higher flexibility in de-
signing SNP contents and lower experimental cost allow
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researchers to obtain a content-optimum solution and
perform a cost-effective experiment for a population-
specific genomic study. These advantages have attracted
numerous researchers to conduct large-scale genetic or
genomic projects using Axiom arrays [77-79, 81, 94-96].
Lu et al. conducted a genome-wide association study on
coronary artery disease-genotyped 1,034 patients and
4,245 controls using Axiom CHB 1 arrays [77]. Shi et al.
conducted a genome-wide association study on cervical
cancer and genotyped 1,364 patients and 3,028 controls
using Axiom CHB 1 arrays [78]. In addition, we are con-
ducting the Taiwan Biobank Project in Taiwan, which aims
to collect 200,000 normal controls and 100,000 disease pa-
tients (http://www.twbiobank.org.tw/). All the samples will
be genotyped using the Axiom TWB arrays, which we de-
signed for the Taiwan population. The analysis functions
and software developed in this study will significantly en-
hance the utilities of Axiom arrays in medical and popula-
tion genomics.

We developed single-point and multipoint statistical
methods on the basis of confidence intervals and hy-
pothesis testing for detecting the regions of CNVs/
CNAs. Our methods incorporate information on Al and
LOH/LCSH into the CNV/CNA analysis to increase the
accuracy and efficiency of adjusted HI data, CN segmen-
tation, and CNV/CNA detection. This new implementa-
tion was not considered in previous CNV/CNA analyses.
First, the method uses information on Al for processing
HI data. After scale normalization, chip effect removal,
and quantile normalization, the influence of aberrant-
probe perturbation was adjusted. The HI values of all
SNPs in a sample are subtracted from the average HI of
non-Al SNPs. The AI SNPs must be excluded from the
calculation of the average because their HI values are in-
terfered by chromosomal aberrations [6] or poor data
quality [97]. After normalization, the HI values of different
samples become comparable. A zero value, large positive
value, and large negative value of HI reflect the statuses
“no CNV/CNA,” “CN gain,” and “CN loss,” respectively.

In addition, we developed an efficient segmentation
method for detecting the range of CNVs/CNAs. Studies
have reported that CBS can detect CNVs/CNAs, accur-
ately determine their boundaries, and optimally control
the FPR [98-100]. However, CBS has two major limita-
tions [98—101]. First, CBS requires a very intensive com-
putation. Second, CBS does not use allelic information,
because CBS was originally developed for a-CGH data
segmentation. To overcome the two limitations, we devel-
oped a quick CBS algorithm to enhance the performance
of CBS. The new algorithm incorporates Al, LOH/LCSH,
and allelic information and assigns higher weights to the
SNPs that exhibit a stronger signal for chromosomal aber-
rations. Several real data analyses reveal that compared
with the original CBS algorithm, the quick CBS algorithm
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can provide reasonable results and save approximately
30 % and 67 % of computational time in the analyses of
cancer and noncancerous samples, respectively.

We also evaluated the performance of our CNV/CNA
detections by conducting simulation studies. For the
whole-genome single-point CNV/CNA detection, adjust-
ments for multiple tests such as Bonferroni corrections
are required. The simulation results indicated that the
FPR was optimally controlled. However, the TPR was low
when the effect size was small (Fig. 10). Thus, we devel-
oped the multipoint methods for increasing the TPR of
the single-point method. In the multipoint methods, a
chromosome is partitioned using overlapping sliding win-
dows, and SNP markers in the same sliding window are
integrated to detect CNVs/CNAs. The simulation results
indicated that window size and the number of consecutive
significant SNPs are the two main factors affecting the
FPR and TPR. In general, using a large window increases
the TPR; however, it also increases the FPR and overesti-
mates the lengths of the regions of CNVs/CNAs (Figs. 11,
12 and 13). Using a larger number of consecutive signifi-
cant SNPs reduces the FPR; however, it also reduces the
TPR (Figs. 11 and 12). We therefore recommend two opti-
mal settings for the scenarios with and without noise
interference on the basis of the results in Figs. 11, 12 and
13. However, the users are still recommended to attempt
more window sizes according to the features in their own
studies. The analysis can be initiated using a slightly larger
window to identify a relatively large region of chromo-
somal aberrations. Thereafter, smaller windows can be
used gradually to finely map the exact region of chromo-
somal aberrations and determine the accurate boundaries
of chromosomal aberrations.

Our method considers several procedures to avoid po-
tential false positive findings. First, ALICE uses a Bonfer-
roni correction to adjust for the multiple-testing problem.
Second, ALICE requires a detected CNV/CNA to satisfy
the following criteria: (1) its window-based aberrant
proportion (WAP) value should be higher than that
from a reference database and (2) its Bonferroni-corrected
p value should be significant in the multipoint analysis.
Third, ALICE can control consecutive significant
SNPs in a CNV/CNA. In addition, the real data analysis of
admixed samples indicated that AI and LOH/LCSH may
be the precursors of CNVs/CNAs. A region of CNVs/
CNAs is more reliable if Al and LOH/LCSH are also de-
tected in the same region. Finally, the CBS analysis can aid
in detecting CNVs/CNAs and determining the boundaries
of the regions of CNVs/CNAs. The results of our simula-
tion and real data analysis revealed that the FPR can be
optimally controlled.

Recently, Affymetrix, Inc. launched the Axiom CNV
Summary Tool (http://www.affymetrix.com/catalog/prod
820008/AFFY/Axiom%26%23174%3B+CNV+Summary
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+Tools+Software#1_1) and cooperated with commercial
software, Nexus Copy Number software, from BioDiscov-
ery, Inc. to detect CNVs/CNAs. The performance of the
commercial tool for the Axiom array data was not evalu-
ated using rigorous simulation studies. The method was
not developed according to the data characteristics of
Axiom and cannot use population-specific genomic refer-
ence databases, which are crucial for genomic studies. In
addition, the annual software expense may increase
budget loading and limit the broad use. ALICE is the first
freeware that offers an integrated analysis of AF, Al, and
LOH/LCSH and the detection of CNVs/CNAs for the
Axiom platform on the basis of genotype and HI data.

In ALICE, the detection of AI, LOH/LCSH, and CNVs/
CNAs relies on genomic reference databases. We have
completed the ALICE databases for Axiom CHB 1.
Currently, we are constructing the databases for Axiom
CHB 2, TWB, and other populations using data from pub-
lic databases such as Gene Expression Omnibus [102] and
the Database of Genotypes and Phenotypes [103]. These
resources will become available on the ALICE homepage
in the near future.

Conclusions

The Affymetrix Axiom SNP arrays provide a high-
density and high-throughput genotyping solution for a
population-optimized analysis at a lower cost. However,
there was no free software available for an integrated
analysis of AF, Al, LOH/LCSH, and CNV/CNA. In this
paper, we introduce the ALICE software developed for
Axiom and other SNP arrays. ALICE consists of the
CPA + LIM method for an AF adjustment, the single-
point and multipoint methods for an integrated analysis of
A, LOH/LCSH, and CNV/CNA detection, and the CBS
algorithms for CNV/CNA segmentation. In addition,
ALICE is featured by a user-friendly interface that pro-
vides several genomic reference databases and a conveni-
ent genomic browser for visualizing the analysis results.
The accuracy, reliability, and efficiency of ALICE have
been carefully evaluated by (1) the simulation studies, (2)
real data analyses of genomic data sets of normal samples,
cancer cell samples, and admixed samples of cancer
cell lines and the corresponding blood cell line, and
(3) validation using qPCR assays. We believed that
ALICE will provide a powerful statistical and bioinformat-
ics tool for analyzing the modern SNP arrays in medical
and population genomics.

Methods

Sample materials and genotyping

In this study, 3,236 unrelated samples were collected
from the following three sources: (1) 3,025 from Taiwan
Han Chinese Cell and Genome Bank [104], (2) 210 from
the International HapMap Project II [66], and (3) one
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from a metastatic small-cell lung cancer cell line and the
corresponding blood cell line from American Type
Culture Collection (http://www.atcc.org/). All the sam-
ples were genotyped using at least one of the following
Affymetrix gene chips: the Affymetrix Human Mapping
100 K Array Set, Affymetrix Human Mapping 500 K
Array Set, Affymetrix Genome-Wide Human SNP Array
6.0, Affymetrix Axiom Genome-Wide CHB 1 Array
Plate (Affymetrix, San Diego, CA, USA), and Illumina
HumanHap550-Duo v3 Genotyping BeadChip (Illumina
Inc., San Diego, CA, USA). For brevity, we have used
“Affymetrix 100 K,” “500 K,” “Axiom,” “Array 6.0,” and
“Illumina 550 K” throughout this paper. The data sheets
and genotyping manuals for these SNP chips can be
downloaded from the Technical Documentation Down-
load web page on the Affymetrix (http://www.affymetrix.
com/support/technical/index.affx) and Illumina websites
(http://www.illumina.com/). All the participants involved
in the genomic projects signed informed consent forms.

For the first source, we included the arrays that passed a
genotyping quality examination performed using SAQC
software [97] and had no apparent chromosomal aberra-
tions. In total, 367, 448, 1,013, 1,666, and 854 samples
were genotyped using Affymetrix 100 K, 500 K, Axiom,
Array 6.0, and Illumina 550 K, respectively. All these
samples were used for constructing the ALICE genomic
reference databases of our own population of Taiwan
for different genotyping platforms. The 1,666 samples
genotyped using the Axiom arrays were also used in a
simulation study for a TPR and FPR analysis. In addition
to the normal unrelated samples, we analyzed 15 extra
samples, which were genotyped using both Axiom and
Array 6.0 and exhibited apparent chromosomal aberra-
tions, for comparing the results between the Axiom and
Array 6.0 platforms.

For the second source, we studied 210 unrelated sam-
ples, which consisted of the following: (1) 60 African-
descendant Yoruba samples from Ibadan, Nigeria, (2) 60
European-descendant samples from CEPH Utah residents
in USA, and (3) 90 East-Asian-descendant samples, com-
prising 45 Han Chinese in Beijing and 45 Japanese in
Tokyo. All the samples were genotyped using Affymetrix
100 K, 500 K, and Array 6.0. Their genotypes, intensities,
and CEL files were downloaded from the HapMap website
(http://hapmap.ncbi.nlm.nih.gov/). All the samples were
used for constructing the ALICE genomic reference
databases of African, European, and Asian populations
for different genotyping platforms.

For the final source, a metastatic small-cell lung can-
cer cell line (NCI-H2171) and the corresponding blood
cell line (NCI-BL2171) were purchased from ATCC.
NCI-H2171 is a hypodiploid cell line that carries mul-
tiple chromosomal deletions and duplications. The gen-
omic DNA of the cancer cell line (p%) was mixed with
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that of the blood cell line [(100 - p)%] in an admixture
experiment. The admixture proportion p% ranged from
0 to 100 %, with increments of 10 %. All the 11 samples
were duplicated and genotyped using Axiom, whereas
the pure cancer cell line and blood cell line were geno-
typed using Array 6.0. The 11 admixed samples were
used to evaluate the effect of admixture proportion on
unpaired- and paired-sample integrated analyses of AF,
Al, LOH/LCSH, and CNV/CNA and on the real-time
qPCR-based validation experiments.

Ethics, consent and permissions

All the participants involved in the genomic projects
signed informed consent forms. This study was approved
by Human Subjects Research Ethics, Academia Sinica
[AS-IRB01-11077 (08039)].

Extraction of HI

Self-developed R functions in ALICE were used to pre-
pare the HI, genotype, and annotation data for different
SNP array platforms. For the Affymetrix Axiom plat-
form, ALICE can read data from two types of data files,
the probe result files (*.CEL) and the “log2 ratio and
strength data” files (*.TXT). In the case of the probe
result files, ALICE generates batch codes (*.BAT) to
call the “—summaries” command in the “apt-probeset-
genotype” module of the APT software. Then, the
whole-genome allele-specific HI and genotype data of
all individuals is saved in the files AxiomGT1.sum-
mary.txt and AxiomGT1.calls.txt, respectively. The file
sizes can be too large to read if the number of study
individuals is large. To overcome the bottleneck in
reading the large amount of data, ALICE uses the
filehash package in R language to dump the files into
a hard drive. Finally, for each individual, the HI,
genotype, and annotation information is combined
and saved in an R workspace file (*.RData) for down-
stream data analysis.

In the case of the “log2 ratio and strength data” files
(*TXT) generated from the Affymetrix Genotyping
Console™ (GTC) software (http://www.affymetrix.com/
estore/browse/level_seven_software_products_only.jsp?
productld=131535#1_1) by each individual, ALICE con-
verts the log ratio and strength values into the allele-
specific HI values of two alleles as follows: Let S denote
the arithmetic mean of the log,-scale HI values of two
alleles (i.e., “Strength”) and L denote a log,-scale ratio of
the HI of allele A to that of allele B (i.e., “Log Ratio”).
The S and L data of every SNP are provided in a * TXT
file. ALICE solves a system of two mathematical equa-
tions to derive the HI values of alleles A and B, that is,
(hahp), as follows: hy=25+%L and hzy=25"%%L. For
each individual, the HI, genotype, and annotation data
are saved in an R workspace file (*. RData) for the

Page 22 of 30

downstream data analysis. The extraction of HI values
for other SNP array platforms is detailed in the User
Manual of ALICE.

Preprocessing of HI

HI reflects a relative CN. For a SNP, the total HI is ob-
tained by summing the HI values of two alleles. In
addition to SNP probes, several SNP array platforms
provide CN probes for measuring the CN. For example,
Affymetrix Array 6.0 simultaneously provides more than
906,600 SNP and 946,000 CN probes. For a CN probe,
the HI is measured by averaging the HI values of the
replicates of the same CN probes. We used several
optional data preprocessing procedures to normalize
HI values, namely: (1) scale normalization by taking a
log, transformation; (2) chip effect removal by sub-
tracting the mean or median from the HI and then
dividing by the standard deviation of HI of all SNPs
in the same array; (3) quantile normalization for re-
moving technical variation in the probes [105]; and
(4) removal of aberrant-probe perturbation as follows:
Suppose that there are M autosomal SNPs. Let s; de-
note the HI value of the i™ autosomal SNP probe
after the first three steps. Event A; indicates that the
i™ autosomal SNP is in a status of allelic balance
(refer to the Background section for the definition of
allelic balance). The final HI value of the m™ auto-
somal SNP probe is calculated as follows:

> sl
Sl

where the indicator function I[A;] equals unity if the
event A; is held; otherwise, it equals zero.

ALICE detects chromosomal abnormalities by examin-
ing the patterns of AF, Al, and LOH/LCSH on the basis
of the raw HI data and those of CNVs/CNAs on the
basis of the final HI data. The graphical results are sum-
marized in a six-panel figure: AF plot, Al plot, LOH/
LCSH plot, HI and CN segmentation plot, CNV/CNA
plot, and p value plot (Additional file 1). The following
subsections describe the statistical methods used in each
of the six subfigures.

b = Sm —

Individual-level AF estimation with a CPA + LIM adjustment
AFs are of two types: population-level AF and individual-
level AF [4, 6]. This paper focuses on the individual-level
AF; therefore, throughout this paper, we have omitted the
word “individual-level” when discussing AF. ALICE esti-
mates an AF using a two-step procedure that integrates
the CPA [106] and LIM [107]. Let 4;,, denote the relative
HI of allele A of the m™ SNP of the /™ individual and
n,,(¢) denote the number of individuals who had genotype
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g on the m™ autosomal SNP in the normal reference sam-
ples, where genotype g is AA, AB, or BB. In the first step,
we estimate the AF of allele A of the m™ autosomal SNP
with an adjustment for CPA as follows:

7 hi,m
e B + Km‘(l_hi,m)

where the CPA is calculated as follows [23, 106]:

B 1 1, (AB) hi,m My, (AB)
= S (AB) 2.4 1=hipy 1y (AB)-1

hi,m 1 1y (AB) l’l,’7m
[1-;,,,,,1 " 1m(AB) Zizl 1—hi,m] '

In the second step, we further calibrate the AF using
the LIM. Across the normal reference samples, the aver-
age of the genotype-specific AFs for genotype g on the
m™ autosomal SNP is written as follows:

X

— 1 nu(g) »
him(@) =——3 " him(g).

M (g)

The CPA + LIM AF is calculated as follows:

1, if iy u(AA) <h;,,
1 1 hy—hiw(AB) - -
- if hy,(AB) <h;,,<h;,(AA
. 2" i (Ad) o pAB) T e @B) = (44
Sim= e m(BB) if iy (AB) < h;,,< hym(BB)
2 1y u(AB)-h (BB)’
0, if i, ,,< hy u(BB)

Single-point index of Al detection
On the basis of the CPA + LIM AF estimates, ALICE in-
corporates our previous confidence interval approach [6]

1 1 (g)
i (g) Zi:l Sim

and S+.,Vn(g) = |:7lm(2>1 Zln;nl(g) <fi’m - f+’m(g))2:| :

denote the genotype-specific mean and standard devi-
ation of the CPA + LIM AF estimates of the m'™ auto-
somal SNP in the normal reference samples,
respectively. Notation A. stands for an AI analysis and
SP stands for a single-point analysis. In an unpaired-
sample analysis, the confidence intervals of AF of the
m™ autosomal SNP for genotypes AA, AB, and BB can
be constructed as follows:

to detect Al for a SNP. Let £, (¢) =
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crisyan) = {h,m<AA>—zlis+,m<AA), 1}
3M

CIAB) = [ 48) -2 S.laB). ] (48
oM
2 a Sep(aD)
et

Crisr (BB) = [o, FomlBB) 2 a ~s+.m<BB>}
3

(2)

where Z, indicates the a quantile of a standard normal
distribution and M is the number of SNPs on the
chromosome where the m™ SNP is located. Our single-
point Al is defined as follows:

7 A, A, A,
Jise { 1, if f,,, & CIST(AA), CISF(AB), or CIS (BB)
im

0, otherwise

Thus, the m™ SNP of the i™ individual is classified as
ALif I7%5P = 1; otherwise, it is a non-AI SNP.

In a paired-sample analysis, the norms of normal refer-
ence are changed from the independent normal reference
samples to the paired-normal tissue samples. The AI de-
tector can be derived by replacing the sample mean and
standard deviation of the CPA +LIM AF estimates in
Equation (2) by the AF estimate and standard deviation of
the paired-normal tissue sample. Because a paired-sample
analysis considers only one of the three confidence inter-
vals in Equation (2) according to the genotype of the SNP
in the paired-normal tissue sample, Z; _ 4/335 Z1 - a/ear and
Z1 _a3m should be replaced by Z; _yan Z1 - w20 and

Z1 _ o in the three confidence intervals (ie., CI fzfnp (4A),

CI f:fnp (AB), and CI f:fnp (BB)) in Equation (2), respectively.

Single-point index of LOH/LCSH detection

ALICE incorporates the confidence interval approach [6]
to detect the status of LOH and LCSH. Notation &
stands for an LOH/LCSH analysis. In an unpaired-
sample analysis, the confidence interval of LOH/LCSH
of the m™ autosomal SNP can be constructed as follows:

CI75P(AB) = [7+_m(AB) ~Z1-5-S+m(AB), f ,(AB) + Z1_2 S+ m(AB)|.
(3)
Our single-point LOH/LCSH detector is defined as follows:

1750 (AB) = 1, if f,, ¢ CIT (AB)
0, otherwise ’

Thus, the m™ SNP of the i™ individual is classified as
LOH/LCSH if I;3°(AB) = 1; otherwise, it is a non-LOH/
LCSH SNP.
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In a paired-sample analysis, the norms of normal
reference are changed from the independent normal
reference samples to the paired-normal tissue sam-
ples. The LOH/LCSH detector can be derived by re-
placing the sample mean and standard deviation of
the CPA + LIM AF estimates in Equation (3) by the
AF estimate and standard deviation of the paired-
normal tissue sample.

Single-point index of CNV/CNA detection

ALICE considers the following two types of confidence
interval approaches for detecting CN gain and loss:
genotype-specific and nongenotype-specific methods.
First, we discuss an unpaired-sample analysis based on
the genotype-specific method. Let

= 1 M (8)
t+,m(g) = n (g) Zi:lg ti‘m and

& mlg) = [ﬁ S (4 F (@)

1/2

denote the genotype-specific mean and standard devi-

ation of hybridization intensities of the m™ autosomal
SNP in the normal reference samples, respectively. Nota-
tion C stands for a CNV/CNA analysis. The genotype-
specific confidence intervals of CNVs/CNAs of the m™
autosomal SNP for genotypes AA, AB, and BB can be
constructed as follows:

CISR@) = [Erm(@)-Z1sy 1m(@)s Eonl@) + Z1o G m@)] -
(4)

Our single-point genotype-specific CNV/CNA detector
is defined as follows:

Lo iftin> Lem@ +Z @ 0inlg)

C,SP . - M
Liw @) =~ iftin < Len(@)-Z a0 m(g) -
2M
0 otherwise

Thus, the m™ SNP of the i individual is classified as
a CN gain iflf‘,ﬁp(g) =1 and as a CN loss iflf;ip(g) =-1;
otherwise, this SNP has no CNVs/CNAs. The adjusted

p value for the statistical test of CNVs/CNAs after the
Bonferroni correction can be calculated as follows:

pin” = min{2(1-0(257)) M1},

where Zg’,ip = (tim—t+m(g))/0+m(g) is the test statistic

and ®(-) is the cumulative distribution function of
standard normal distribution.
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Second, we discuss an unpaired-sample analysis
based on the nongenotype-specific method. Let

_ " ~ " - 1/2
Lym = ﬁz;;lti,m and o, = [ﬁ Z;’:I (ti,m_t+,m)21|

denote the nongenotype-specific mean and standard
deviation of hybridization intensities of the m™ auto-
somal SNP in the normal reference samples, respect-
ively. The nongenotype-specific confidence intervals
of CNVs/CNAs of the m™ autosomal SNP can be
constructed as follows:

C,SP < ~ — ~
crost = [t+7m—zl,ﬁa+,m, EomtZisGoml. (5)

Our single-point nongenotype-specific CNV/CNA
detector is defined as follows:

1, lf ti,m > Z+’m +Z a .6'+,m
1

oM
Izc,riP = —l,if ti,m < Z+,W1_Z a a-er
1-——
2M

0, otherwise

Thus, the m™ SNP of the i™ individual is classified as
a CN gain if Ilcyip =1 and as a CN loss if Ilcrip =-1;
otherwise, this SNP has no CNVs/CNAs. The adjusted
p value for the statistical test of CNVs/CNAs after the
Bonferroni correction can be calculated as follows:

Pl = min{2(1-0(25))-m,1},
where Zf ,’fp = (ti,m - ZJM,,) /G4 m is the test statistic.

Furthermore, in a paired-sample analysis, the norms of
normal reference are changed from the independent
normal reference samples to the paired-normal tissue
samples. The CNV/CNA detector can be derived by re-
placing the sample mean and standard deviation of
hybridization intensities by the mean and standard devi-
ation of hybridization intensities of the paired-normal
tissue sample in Equation (4) for the genotype-specific
method and in Equation (5) for the nongenotype-
specific method.

Multipoint indices of Al, LOH/LCSH, and CNV/CNA
detection

A sliding-window multipoint approach was used to scan
chromosomes to detect chromosomal aberrations as fol-
lows: First, all SNPs were ordered according to their
physical positions on a chromosome. If a SNP array also
provides CN probes, they are included but analyzed sep-
arately. Let an anchor denote a marker of interest and
be located in the middle of a window. A window was
constructed by collecting the anchor marker and its
flanking markers; here, we considered an equal number
of markers from the upstream and downstream of the
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anchor. Regarding the notation, a window anchored at
the m™ marker with a size of w=2v+1 is denoted as
W, 2v+ 1) ={m-v, - m-1,mm+1, -, m+v}. The
anchor was sequentially shifted from the starting marker
to the ending one until all markers on a chromosome
were scanned completely. Let & = A, %, or C denote Al,
LOH/LCSH, or CNV/CNA, respectively. Notation MP
denotes a multipoint analysis. We define our sliding-
window multipoint statistic, which is a WAP, as follows:

&SP
J

6MP(V ) o §
1 Me 2V+ 1 xe{m-v.m-v+1, - m,...m+v-1,m+v} ix

where 7, is the number of consecutive significant SNPs
in a window under AI, LOH/LCSH, or CNV/CNA, and

<‘ P _ Z H &SP
[ =1, ..., z=x-n+lx-n.+l+1, ... x+1-1 Ii,z >0

where the 1nd1cator function I[A,] equals unity if the
event A; is held; otherwise, it equals zero. If a SNP
array also provides CN probes, the WAPs of the CN
probes can be calculated similarly and independently of
SNPs.

We proposed two procedures for evaluating the sig-
nificance of a WAP statistic. The first procedure is a
confidence interval method. First, we calculate the WAP
statistics for AI, LOH/LCSH, and CNV/CNA for the test
sample and all the normal reference samples. Next, we
smoothen the WAPs using the local regression LOESS
function [108] for every sample; Wﬁ;’MP(v, n.) is used to
indicate the smoothed WAP. If a SNP array also pro-
vides CN probes, the WAPs of the SNP and CN probes
are arranged according to the order of their physical po-
sitions and then smoothed. Third, for each type of
chromosomal aberration, the smoothed WAPs of all
normal reference samples are ordered, and the Q%-
quantile of the smoothed WAPs (denoted as Q ¢, MP(V, ne))
are obtained (Q% =95 %, 97.5 %, and 99 % in thlS paper).
Finally, a region is detected as a chromosomal aberration
if the smoothed WAP of the test sample exceeds the Q%-
quantile of the smoothed WAP of all normal reference
samples. Therefore, the first multipoint detector is defined
as follows:

I‘FMP(V ne, 1) =I\W 6FMP(V n) > Q ‘FMP(V ne)|.

The second procedure is a hypothesis-testing method.
First, we again calculate the WAP statistics for AI, LOH/
LCSH, and CNV/CNA for the test sample and all the nor-
mal reference samples. Second, we calculate the mean and
standard deviation of the WAP statistics for AI, LOH/
LCSH, and CNV/CNA for all the normal reference sam-

(v,n.) and S5 (v, n,)). Finally, we
conduct a hypothesis testing on the basis of the test statis-
tic as follows:

ples (denoted as /4;( MP
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Wz(,(r;lMP(Va l’lc) ”fryp(w nc) + AL/[

Sf MP(

Zi"(v,me) = .
) e

The adjusted p value after the Bonferroni correction is
written as follows:

p:(,qup(v, n) = min{ [I—CD (Zf;yp(v, ”c))} M, 1}.

Therefore, the second multipoint detector is defined
as follows:
If;flwp(v, ne,2) = I[ f,flwp(v, ne) < 0.05}
In a real data analysis, users can consider I‘gmp (v, nc, 1),
I5MP (v, n, 2), or their combination I5;""(v, 1) = Iy (v,

ng, 1 )xf P, n,, 2).

CN segmentation

ALICE provides two methods for CN segmentation: the
original CBS algorithm [91, 92] and our proposed quick
version of CBS. In the original CBS, all SNPs on a
chromosome are arranged in the order of their physical
positions. The starting and ending SNPs are connected
to form a circle, where the connecting point is called 0.
Two SNPs at physical positions A and B are chosen,
where 0 <A <B. The two average HI values of SNPs in
the region of A — B and the average HI value of SNPs in
the region of B—0— A are calculated separately. A
permutation test is used to analyze the difference in the
two averages. If the difference is statistically significant,
the region is partitioned into segments A —B, B—0
and 0 — A. The procedure is recursively applied to all
the segments until they cannot be further partitioned
under some prespecified conditions.

Based on our experience, a large proportion of CNVs/
CNAs are located in a region of Al and/or LOH/LCSH,
and the CNV/CNA signal is more stable if a CNV/CNA is
concomitant with AI and/or LOH/LCSH. We developed a
quick CBS algorithm that uses the Al and LOH/LCSH sig-
nals from ALICE, which the original CBS algorithm did
not use. The quick CBS performs segmentation proce-
dures only in the regions of AI and LOH/LCSH. To give
importance to the differential marker, the quick CBS as-
signs higher weights to SNPs that exhibit a stronger signal
of chromosomal aberration. Let dy,, = Win'"(v,n) -
Q‘( MP(y 1) denote the difference in the WAP statistics
between the test and normal reference samples. The dif-
ference is rescaled to a value between -1 and 1 as follows:

36 & & &
di,m (d - me) / (Ci,max _Ci,min )_1’

where cfmm and cfmm are the minimum and maximum
of {df,,m=1, -, M}, respectively. The weight for the
m™ SNP of the i individual is calculated as follows:
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Wim
M )
Zm:l Wi,m

where w;,, = 1071° + max{dfm,dfm}«l[max{d;‘m,dfm} > O].

A weighted ¢ test statistic based on weight w; , is used
to analyze the difference in the averages of two segments
in a region of Al or LOH/LCSH. A permutation test,
which randomly shuffles the data in two segments, is
used to calculate an empirical p value. If the empirical p
value is significant, the region of Al or LOH/LCSH is
segmented. It is noted that the quick CBS takes a long
time if there are many small scattered regions of Al and
LOH/LCSH. Hence, we recommend using the quick
CBS when b/a <5 %, where a denotes the total number
of regions of Al and LOH/LCSH fragments on a
chromosome and b denotes the number of regions of Al
and LOH/LCSH fragments that are shorter than 1 % of
the length of the same chromosome.

Wi,m =

Real-time gPCR

Primer pairs specific to genomic sequences of the candi-
date regions were designed using Primer Express
(Applied Biosystems, Foster City, CA, USA), and the pri-
mer sequences are provided in Additional file 15. Quan-
titative genomic PCR was performed using SYBR green
master mix (Applied Biosystems). For each reaction,
2 ng of gDNA was used as a template. The thermal cyc-
ling conditions were as follows: initial denaturation at
95 °C for 10 min, followed by 40 cycles of denaturation
at 95 °C for 15 s, and combined annealing and extension
at 60 °C for 1 min. The fluorescence signals were re-
corded at the end of the extension period of each cycle.
The PCRs were performed on an ABI PRISM 7900 Se-
quence Detector (Applied Biosystems). All reactions
were performed in triplicate. The MPP4 gene locus on
Chromosome 2 served as an internal control in this
study. Let T'targer, and T'vppy; denote Ct values of the tar-
get gene and MPP4 of the i replicate of the DNA sam-
ple in the test, where /=1, 2, and 3 and Ryge: and
Ryipps denote the average Ct values of the target gene
and MPP4 of six healthy controls without any detectable
CNVs/CNAs at the target regions, respectively. The esti-
mated DNA CN and se of the target region in a haploid
genome were obtained by calculating the mean and

standard deviation of 2_[(T‘“ge‘i_TMPP‘*t)_ (Rearger~Rutees )| over
the triplicate samples.

Availability of supporting data

The data sets supporting the results of this article are
included within the article and its additional files. HI
and genotype data of the samples in the International
HapMap Project can be downloaded from the HapMap
homepage (http://hapmap.ncbinlm.nih.gov/). ALICE and
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the used genomic reference databases can be downloaded
from the ALICE homepage (http://hcyang.stat.sinica.edu.
tw/software/ALICE.html).

Additional files

Additional file 1: A whole-genome six-panel figure of the fifth sample
in Fig. 3, which is genotyped using Axiom. This figure depicts the AF, Al,
LOH/LCSH, and CNV/CNA analyses provided by ALICE. From top to
bottom, the six-panel plot consists of the AF plot, Al plot, LOH/LCSH plot,
HI'and CN segmentation plot, proportion plot of CNV/CNA, and statistical
significance plot of CNV/CNA. The details of each panel are described as
follows: (1) In the AF plot, the vertical axis is the estimated AF, ranging
from 0 to 1, and the horizontal axis is the physical position (Mb) on a
chromosome. Each point denotes a SNP probe; blue and red points
indicate non-Al and Al SNPs, respectively. (2) In the Al plot, the vertical axis is
the proportion of Al SNPs, ranging from 0 to 1, and the horizontal axis is the
physical position (Mb) on a chromosome. The light-red (deep-red) curve
indicates the proportion of Al SNPs in sliding windows for the sample before
(after) a smoothing spline. The light-blue (deep-blue) curve indicates the 95 %
quantile of the proportions of Al SNPs in sliding windows for normal control
samples before (after) a smoothing spline. The red bar at the top of the Al plot
signifies a region of Al; thus, the deep-red curve is higher than the deep-blue
curve. The deeper the red color in the bar, the higher is the proportion of Al
SNPs in sliding windows. (3) In the LOH/LCSH plot, the vertical axis is the
proportion of LOH/LCSH SNPs, ranging from 0 to 1, and the horizontal axis is
the physical position (Mb) on a chromosome. The light-red (deep-red) curve
indicates the proportion of LOH/LCSH SNPs in sliding windows for the sample
before (after) a smoothing spline. The light-blue (deep-blue) curve indicates
the 95 % quantile of the proportion of LOH/LCSH SNPs in sliding windows for
normal control samples before (after) a smoothing spline. The red bar at the
top of the LOH/LCSH plot signifies a region of LOH/LCSH; thus, the deep-red
curve is higher than the deep-blue curve. The deeper the red color in the bar,
the higher is the proportion of LOH/LCSH SNPs in sliding windows. (4) In the
HI'and CN segmentation plot, the vertical axis is the Hl value, and the
horizontal axis is the physical position (Mb) on a chromosome. Each point
denotes a SNP probe (or a CN probe in Array 6.0); a light-blue point indicates
the Hl value of a marker, and a deep-blue point indicates the HI value of an
Al SNP. Red and green segments obtained from the circular binary algorithm
indicate segments of CN gain and loss, respectively. (5) In the proportion plot
of CNV/CNA, the vertical axis is the proportion of CNV/CNA, ranging from 0
to 1, and the horizontal axis is the physical position (Mb) on a chromosome.
Each point denotes a SNP probe (or a CN probe in Array 6.0). The light-red
(deep-red) curve indicates the proportion of CN gain in sliding windows for
the sample before (after) a smoothing spline. The light-green (deep-green)
curve indicates the proportion of CN loss in sliding windows for the sample
before (after) a smoothing spline. The light-blue (deep-blue) curve indicates
the 95 % quantile of the proportions of CNV/CNA in sliding windows for
normal control samples before (after) a smoothing spline. The green (red)
bar at the top of this plot signifies a region that satisfies the following criteria:
a) the proportion of CN loss (gain) in the sample is higher than that in the
normal reference samples and b) p value of this region is statistically
significant. The deeper the green (red) color in the bar, the higher is
the proportion of CN loss (gain) in sliding windows. (6) In the statistical
significance plot of CNV/CNA, the vertical axis is the adjusted p value (in a
scale of —logy), and the horizontal axis is the physical position (Mb) on a
chromosome. Each point denotes a SNP probe (or a CN probe in Array 6.0);
a gray point represents the p value of a probe from a single-point
association analysis. A blue point represents the p value from a multipoint
association analysis, and the p value does not reach statistical significance. A
green (red) point indicates a p value from a multipoint association analysis,
and the p value reaches statistical significance of CN loss (gain). The green
(red) bar at the top of this plot signifies a region that satisfies the following
criteria: a) the proportion of CN loss (gain) in the sample is higher than that
in the normal reference samples and (b) p value of this region is statistically
significant. The deeper the green (red) color in the bar, the higher is
the p value (in a scale of —log;o) of CN loss (gain) in sliding windows.
(TIFF 857 kb)
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Additional file 2: A whole-genome six-panel figure for the unpaired-
sample analysis of a cancer cell line genotyped using Array 6.0. This figure
shows the results in the unpaired-sample analysis of a pure cancer cell
line sample genotyped using Array 6.0. From top to bottom, the six-panel
plot consists of the AF plot, Al plot, LOH/LCSH plot, HI and CN segmentation
plot, proportion plot of CNV/CNA, and statistical significance plot of
CNV/CNA. The details of the illustrations of each plot are provided in
Additional file 1. (TIFF 1223 kb)

Additional file 3: Relationship between the length of the overlapped
region and the overlap ratio. The vertical axis is the overlap ratio (%), and
the horizontal axis is the length of the overlapped region (Mb). Each
point denotes a region that was identified by Axiom and overlapped
with the region identified by Array 6.0. The red line is a regression curve
estimated by a local polynomial regression fitting. The histogram in the
bottom and histogram in the right-hand side summarize frequency
distributions of the length of the overlapped region and the overlap ratio,
respectively. (TIFF 204 kb)

Additional file 4: Dynamic patterns of HI of the admixed samples
obtained using an unpaired-sample multipoint analysis. This figure provides
a whole-genome Hl plot of the admixed samples genotyped using Axiom
and analyzed using unpaired multipoint detection. From top to bottom, each
panel represents an admixed sample with a proportion of 0 %-100 % of
cancer cell line DNA, with an increment of 10 %. In each HI plot, the vertical
axis is the value of Hi, and the horizontal axis is the physical position (Mb) on
a chromosome. A red point indicates a SNP probe that detected a CN gain
with Al and/or LOH; a green point indicates a SNP probe that detected a CN
loss with Al and/or LOH; and a yellow point indicates a SNP probe without
CNV/CNA but with Al and/or LOH. The SNPs not included in the
abovementioned situations are colored in gray. (TIFF 5891 kb)

Additional file 5: Dynamic patterns of AF of the admixed samples
analyzed using an unpaired-sample multipoint analysis. This figure
provides a whole-genome AF plot of the admixed samples genotyped
using Axiom and analyzed using unpaired multi-point detection. From top
to bottom, each panel represents an admixed sample with a proportion of
0 %-100 % of cancer cell line DNA, with an increment of 10 %. In each AF
plot, the vertical axis is the value of AF, and the horizontal axis is the physical
position (Mb) on a chromosome. A red point indicates a SNP probe that
detected a CN gain with Al and/or LOH; a green point indicates a SNP
probe that detected a CN loss with Al and/or LOH; and a yellow point
indicates a SNP probe without CNV/CNA but with Al and/or LOH. The SNPs
not included in the abovementioned situations are colored in gray.

(TIFF 8220 kb)

Additional file 6: A six-panel figure for the paired-sample analysis of a
cancer cell line genotyped using Axiom array. This figure shows the
results in the paired-sample analysis of a pure cancer cell line sample
compared with that of the corresponding normal blood cell line. From
top to bottom, the six-panel plot consists of the AF plot, Al plot, LOH/LCSH
plot, HI'and CN segmentation plot, proportion plot of CNV/CNA, and
statistical significance plot of CNV/CNA. The details of the illustrations of
each plot are provided in Additional file 1. (TIFF 1144 kb)

Additional file 7: Dynamic patterns of HI of the admixed samples
analyzed using a paired-sample multipoint analysis. This figure provides a
whole-genome Hl plot of the admixed samples genotyped using Axiom
and analyzed using paired multipoint detection. From top to bottom, each
panel represents an admixed sample with a proportion of 0 %-100 % of
cancer cell line DNA, with an increment of 10 %. In each HI plot, the vertical
axis is the value of HI, and the horizontal axis is the physical position (Mb) on
a chromosome. A red point indicates a SNP probe that detected a CN gain
with Al and/or LOH; a green point indicates a SNP probe that detected a CN
loss with Al and/or LOH; and a yellow point indicates a SNP probe without
CNV/CNA but with Al and/or LOH. The SNPs not included in the
abovementioned situations are colored in gray. (TIFF 5737 kb)

Additional file 8: Dynamic patterns of AF of the admixed samples
analyzed using a paired-sample multipoint analysis. This figure provides a
whole-genome AF plot of the admixed samples genotyped using Axiom
and analyzed using paired multipoint detection. From top to bottom, each
panel represents an admixed sample with a proportion of 0 %-100 % of
cancer cell line DNA, with an increment of 10 %. In each AF plot, the vertical

axis is the value of AF, and the horizontal axis is the physical position (Mb)
on a chromosome. A red point indicates a SNP probe that detected a CN
gain with Al and/or LOH; a green point indicates a SNP probe that detected
a CN loss with Al and/or LOH; and a yellow point indicates a SNP probe
without CNV/CNA but with Al and/or LOH. The SNPs not included in the
abovementioned situations are colored in gray. (TIFF 8015 kb)

Additional file 9: Paired-sample analysis. (DOCX 270 kb)

Additional file 10: An example of a similarity in segmentation detection
using the original and quick CBS algorithms. This figure depicts the AF plot,
LOH/LCSH plot, and two HI and CN segmentation plots obtained using the
original and quick CBS algorithms. (a) The results of Chromosome 2 of the
1™ sample in Fig. 3. An LCSH region, from 0.66 to 22.57 Mb, which was
identified using ALICE, is marked by a yellow rectangle. (b) The results of the
LCSH region from 0.66 to 22.57 Mb of Chromosome 2 of the 117 sample in
Fig. 3. (TIFF 1975 kb)

Additional file 11: The interface of ALICE software—The component
“Main Functions”. (TIFF 212 kb)

Additional file 12: The interface of ALICE software—The component
"Genome Browser”. (TIFF 167 kb)

Additional file 13: The interface of ALICE software—The component
“Aberration Integration”. (TIFF 178 kb)

Additional file 14: The cross-sample plot of the multipoint LOH/LCSH
analyses of the three samples used in Fig. 5. The plot comprises four
panels: (a) The top-left panel is a cross-sample and cross-chromosome plot.
The vertical axis is the index of study samples, and the horizontal axis is the
physical position (Mb) on each of the 23 chromosomes. The blue and red
bars represent SNPs without and with LOH/LSCH, respectively. (b) The
top-right panel is a histogram of cross-chromosome aberration frequency.
The vertical axis is the index of study samples, and the horizontal axis is the
cross-chromosome aberration frequency of the corresponding samples. The
pink (skyblue) background represents that the genetic gender of a sample is
female (male). The histogram represents the aberration frequency of
LOH/LCSH SNPs across the chromosomes of the corresponding samples.
() The bottom-left panel is a histogram of the cross-sample aberration
frequency. The vertical axis is the cross-sample aberration frequency of a
SNP, and the horizontal axis is the physical position (Mb) on each of the
23 chromosomes. The purple line represents the aberration proportion
of samples carrying the SNPs with LOH/LCSH. (d) The bottom-right panel is
the legend of the genetic gender that is used in panel (b), where the pink
(skyblue) background represents that the genetic gender of a sample is
female (male). (TIFF 1656 kb)

Additional file 15: Sequence information of the primers used for gPCR.
(XLSX 11 kb)

Abbreviations

a-CGH: Array-comparative genomic hybridization; AF: Allele frequency;

Al: Allelic imbalance; ALICE: AF/LOH/LCSH/AI/CNV/CNA Enterprise;

CBS: Circular binary segmentation; CN: Copy number; CNA: Copy number
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