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Abstract

Background: Nematodes are the most numerous animals in the soil. Insect parasitic nematodes of the genus
Heterorhabditis are capable of selectively seeking, infecting and killing their insect-hosts in the soil. The infective
juvenile (IJ) stage of the Heterorhabditis nematodes is analogous to Caenorhabditis elegans dauer juvenile stage,
which remains in ‘arrested development’ till it finds and infects a new insect-host in the soil. H. indica is the most
prevalent species of Heterorhabditis in India. To understand the genes and molecular processes that govern the
biology of the IJ stage, and to create a resource to facilitate functional genomics and genetic exploration, we
sequenced the transcriptome of H. indica IJs.

Results: The de-novo sequence assembly using Velvet-Oases pipeline resulted in 13,593 unique transcripts at N50
of 1,371 bp, of which 53 % were annotated by blastx. H. indica transcripts showed higher orthology with parasitic
nematodes as compared to free living nematodes. In-silico expression analysis showed 30 % of transcripts
expressing with ≥100 FPKM value. All the four canonical dauer formation pathways like cGMP-PKG, insulin,
dafachronic acid and TGF-β were active in the IJ stage. Several other signaling pathways were highly represented in
the transcriptome. Twenty-four orthologs of C. elegans RNAi pathway effector genes were discovered in H. indica,
including nrde-3 that is reported for the first time in any of the parasitic nematodes. An ortholog of C. elegans tol-1
was also identified. Further, 272 kinases belonging to 137 groups, and several previously unidentified members of
important gene classes were identified.

Conclusions: We generated high-quality transcriptome sequence data from H. indica IJs for the first time. The
transcripts showed high similarity with the parasitic nematodes, M. hapla, and A. suum as opposed to C. elegans, a
species to which H. indica is more closely related. The high representation of transcripts from several signaling
pathways in the IJs indicates that despite being a developmentally arrested stage; IJs are a hotbed of signaling and
are actively interacting with their environment.

Background
Nematodes are the most abundant metazoans on earth
and show remarkable diversity in their ecological and
feeding habits [1]. Although notorious as parasites and
pathogens of humans, animals, and plants, the majority
of nematodes are beneficial to us as they recycle nutrients
in soils and oceans [1, 2]. Another beneficial nematode
group known as entomopathogenic nematodes (EPNs)

encompass two genera, Steinernema, and Heterorhabditis.
These EPNs symbiotically associate with gram-negative
gammaproteobacteria, Xenorhabdus, and Photorhabdus,
respectively [3]. Because of their ability to kill insects rap-
idly and amenability to mass production, they are widely
used for the biological control of the insect pests of crops
[4–6]. The EPNs are models to study animal-microbe
symbiosis [7–10], nematode parasitism [11] and ecology
[12, 13].
The infective juvenile (IJ) stage of the Heterorhabditis

spp. is a developmentally arrested stage analogous to the
dauer stage of the C. elegans [14], and infective L3 stage
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of many animal parasitic nematodes [15]. IJs are the only
EPN stage found in nature outside the insect-host, and
are capable of surviving tough environmental conditions
in the soil for long periods of time. The nematodes in
the IJ stage do not feed or grow until they find a new
insect-host, and they possess a remarkable ability to ac-
tively search, follow and infect their insect-host in the
soil environment [16, 17]. IJs are known to show differ-
ent kinds of parasitic behaviors [18]. They can be desic-
cated to quiescence or frozen in liquid nitrogen [19, 20],
and then be revived back to life. Thus, there is a possi-
bility to extend the lifespan/delay life cycle. Because of
this remarkable environmental toughness of the IJs, all
the EPN formulations, presently available in the market,
are based on this stage. An extensive body of research
exists on the genes, pathways, and processes involved in
aging in the free-living nematode, C. elegans [21–23]. A
similar understanding of genes that increase the lifespan
in EPNs would be directly beneficial in extending the
shelf-life of EPN IJs, and IJ based formulations to im-
prove their use as a pest control product [24–26].
Genomic tools and technologies have allowed the re-

searchers to uncover the amazing biology of nematodes
[27–29]. The genome of the EPN, Heterorhabditis bac-
teriophora TTO1-M31e strain has been sequenced [30]
and is available in the public domain. Additionally, the
expressed sequence tags (ESTs) of H. bacteriophora
GPS-11 strain [31, 32] and transcriptome of the adult
stage of H. bacteriophora TTO1-M31e were published
earlier [33]. Large amount of information is available on
molecular biology of the dauer/developmentally arrested
L2 and L3 stages of various nematodes, such as free-living
C. elegans and C. briggsae [34–38], insect-associated Pris-
tionchus [39, 40], animal parasitic Strongyloides stercoralis
[41] and Ostertagia ostertagi [42] and many plant parasitic
nematodes [43–48]. However, such information is com-
pletely lacking for IJ stage of EPNs. Scanty information avail-
able on the Heterorhabditis IJ ‘recovery’ is not adequate to
decipher the various molecular and physiological pathways
specific to these IJs [33, 49]. Additionally, it is suggested that
genes expressed in survival or dispersal stages in nematodes,
such as dauer, and EPN IJs, are more likely to be novel, com-
pared with the genes expressed in adult or larval stages [29].
H. indica was the first species of this genus recorded

from India [50]. Since then, various surveys showed that
H. indica is the most predominant species of Heterorhab-
ditid nematode in India and is found in almost all the geo-
graphical parts of the country. Therefore, H. indica is
naturally suitable for incorporation in insect biological
control programs in India. In the present study, the tran-
scriptomic analysis of the IJ stage of H. indica was carried
out to understand the molecular processes and pathways
active at this stage, and to create a resource for further
functional genomics and genetic investigations.

Results
Transcriptome sequencing and assembly
The mRNA sequencing of IJ stage of H. indica using the
Illumina GAIIx platform yielded about 51.2 million
reads of 100 base read-lengths generating 64x coverage.
After quality filtering, 42.3 million high-quality reads to-
talling 4.2 gigabases of data were obtained. The de-novo
sequence assembly was carried out by Velvet at different
k-mer lengths (51–93 with step size of 4) with minimum
contig length of 200. The optimal assembly was attained
at k-mer 83 which resulted in 18,710 contigs with
909 bp N50 (Table 1). Merging of transcripts from 71 to
83 k-mer range by Oases resulted in 23,827 transcripts
with 1,292 bp N50 size. Removing duplicates by cd-hit-
est, and filtering out < 300 bp transcripts resulted in
13,593 unique transcripts with N50 of 1,371 bp (Table 1).
Total of 13,592 proteins were predicted by ORFPredictor
[51] which were then used for downstream analysis.

Characterization of H. indica transcripts
The blastx analysis of H. indica transcripts resulted in
annotation of 7,246 transcripts (Additional file 1:
Table S1a), of which 6,320 hits matched to animal

Table 1 Assembly statistics of H. indica transcriptome generated
by Velvet and Oases

Assembly statistics of H. indica transcriptome generated by velvet

k-mer length 71 75 79 83

No. of contig 22,698 21,760 20,363 18,710

Min contig length (bp) 200 200 200 200

Max contig length (bp) 12,876 11,783 10,340 10,673

N50 (bp) 810 828 872 909

Assembly statistics of H. indica transcriptome generated by Oases

Parameters Reading

No. of transcripts 23,827

Total assembly (Mb) 22

Min transcript length (bp) 102

Max transcript length (bp) 12,876

N50 1,292

Final assembly statistics of the H. indica transcriptome after Velvet-Oases
pipeline, cd-hit-est and filtering for <300 bp reads

Parameters Reading

No. of unique transcripts 13,593

Total assembly (Mb) 15

min transcript length (bp) 300

Max transcript length (bp) 12,876

N50 1,371
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and plant parasitic, as well as free-living nematodes
i.e. A. suum (2,763 hits), Ancylostoma ceylanicum
(741 hits), Haemonchus contortus (558 hits), Loa loa
(466 hits), Brugia malayi (397 hits), Wucheria ban-
croftii (357 hits), C. elegans (269 hits), C. brenneri
(193 hits), Heterodera glycines (167 hits), C. remanei
(153 hits), C. briggsae (141 hits), H. avenae (67 hits),
M. incognita (35 hits), Bursaphelenchus xylophilus (13
hits) (Fig. 1a). Due to absence of H. bacteriophora
hits in the blastx results, we performed a standalone
blastx of H. indica transcripts against H. bacteriophora
protein dataset (PRJNA13977) downloaded from the
wormbase (http://parasite.wormbase.org/ftp.html). The
blastx resulted in 2,745 protein hits (Fig. 1b, Additional
file 2: Table S1b).
Comparison of the transcripts with complete genomes

of other closely related rhabditid nematodes through re-
ciprocal blast approach showed 3,364 orthologs of C.
elegans, 3,103 of C. briggsae, 3,171 of C. remanei, 2,164
of P. pacificus and 346 of H. bacteriophora (Fig. 2a).
However, higher numbers of orthologs were identified
when the transcripts were compared to the animal para-
sitic nematodes-9,685 orthologs in A. suum, 6,819 in
Strongyloides ratti while other parasites like Meloidogyne
hapla, M. incognita, B. malayi and Trichinella spiralis
ranked in between these two nematodes (Fig. 2b).

Putative functional classification using gene ontology and
KEGG pathway analysis
All the transcripts were further functionally character-
ized into GO categories such as molecular functions,

biological processes and cellular components. GO terms
were assigned to 8,124 transcripts (Table 2, Fig. 3) of
which 49.6 % (4,027) belonged to the binding category
(GO:0005488) and 40.5 % (3,293) belonged to the
catalytic activity of the molecular functions group
(GO:0003824). Protein binding and nucleotide binding
subcategories contributed 16.5 and 15.1 %, respectively,
in the binding category, whereas hydrolase (14.1 %) and
transferase (11.8 %) were the two most dominant subcat-
egories in catalytic activity. The transcription regulator
activity (GO:0030528) and translation regulator activity
(GO:0045182) contributed 2.5 % and 0.7 % transcripts,
respectively. In the biological process, 42.7 % (3,466)
transcripts were grouped under metabolic processes
(GO:0008152), and 40.5 % (3,293) under cellular processes
(GO:0009987) (Table 2, Fig. 3). Other categories were bio-
logical regulation (GO:0065007; 9.4 %) transcripts, and
stimulus (GO:0050896; 1.9 %) transcripts. Interestingly,
developmental process (GO:0032502) showed only 0.2 %
of the genes, while two transcripts for immune system
process (GO:0002376), and one transcript each for
reproduction (GO:0000003) and reproductive processes
(GO:0022414) were obtained. Within the cellular compo-
nent category, cell (GO:0005623;29.1 %), and organelle
(GO:0043226;12.1 %) showed the maximum number of
hits (Table 2).
The transcripts were analysed to identify the key meta-

bolic pathways and processes of which 4,738 proteins
were mapped to various pathways (Table 3). The 60
most represented pathways included signaling pathways
like PI3K-Akt, MAPK, Rap1, Ras, insulin, FoxO, AMPK,

Fig. 1 a Distribution of the top 10 nematode species with most homologs to Heterorhabditis indica. The distribution was calculated using best
blastx hits. b. Venn diagram of H. indica transcripts matching H. bacteriophora proteins in a standalone blast
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cAMP, Wnt, Hippo, chemokine, neurotrophin, sphingo-
lipid, oxytocin, thyroid hormone, cGMP-PKG, and sig-
naling pathways regulating pluripotency of stem cells
(Table 3). Transcripts that were mapped to all the path-
ways in H. indica IJs are represented in Fig. 4.
The transcripts were also analyzed using the

EuKaryotic Orthologous Groups (KOG) and Protein
K(c)lusters (PRK) databases. The results of the ana-
lysis are presented in Additional file 1: Table S1. The
KOG analysis is a eukaryote-specific version of
the Clusters of Orthologous Groups (COG) tool for
identifying ortholog and paralog proteins. Broadly,
1,519 transcripts were classified to signal transduction
(KOG function ID-T), 985 to transcription (KOG
function ID-K), 747 to translation, ribosomal structure
and biogenesis (KOG function ID-J), 566 to RNA pro-
cessing and modification (KOG function ID-A), 85 to
defence mechanisms (KOG function ID-V) amongst
other KOG classes (Additional file 1: Table S1). A
total of 3,594 transcripts were annotated using PRK
database (Additional file 1: Table S1).

Transcriptome quantitation and enrichment of significant
biological categories and KEGG pathways
To get an estimate of transcript abundance, in silico
quantitation of transcripts was done by mapping the
reads from individual libraries to the non-redundant set
of 13,593 transcripts using TopHat, and transcript
abundance were calculated using Cufflinks. The FPKM
(Fragments Per Kilobase of transcript per Million mapped
reads) values for all the transcripts are given in Additional
file 3: Table S2. The highly abundant transcripts were
searched against KOG and PRK databases to identify their
functions. We identified 202 transcripts showing ≥1000
FPKM, and 4,124 transcripts with ≥100 FPKM (Additional
file 3: Table S2). The KOG analysis predicted functions for
76 proteins with ≥ 1,000 FPKM values, of which three
most abundant protein classes were translation, ribosomal

structure and biogenesis (KOG function ID-J), post
translational modification, protein turnover, chaper-
ones (KOG function ID-O) and intracellular traffick-
ing, secretion, and vesicular transport (KOG function
ID-U) (Table 4, Additional file 3: Table S2). In the
2,345 proteins with ≥ 100 FPKM values (Additional
file 3: Table S2), other predominant protein functional
classes that showed up in 2,345 proteins with ≥ 100
FPKM values were signal transduction (KOG function
ID-T), energy production and conversion (KOG func-
tion ID-C), RNA processing and modification (KOG
function ID-A), and transcription (KOG function ID-
K). The PRK database analysis showed a similar result
(Additional file 3: Table S2).
Metabolic pathway analysis was done using KEGG

Automatic Annotation Server against C. elegans, C.
briggsae, B. malayi, Loa loa and Trichinella spiralis
pathways. The analysis of KEGG pathways represented
by the abundant transcripts revealed that, among others,
at FPKM ≥ 1,000, the various signaling pathways like
PI3K-Akt, Hippo, HIF-signaling pathway, Rap, MAPK,
calcium, sphingolipid, cGMP-PKG, insulin signaling path-
way were represented by at least one or more protein
(Additional file 4: Table S3). However, at FPKM ≥ 100, in
addition to the above pathways, several other signaling
pathways like FoxO, cAMP, Ras, sphingolipid, epithelial
cell, AMPK, TGF-ß were detected (Additional file 4:
Table S3).

The kinome of H. indica IJs
The kinome analysis was done to identify the protein
kinases important in signal transduction in all the above
mentioned signaling pathways that regulate metabolism,
cell cycle, growth and development, and responses to
environmental stimuli. As against 438 kinases reported
from C. elegans [52], we detected 272 in H. indica IJ
transcriptome at stringent blastp parameters of at least
40 % sequence identity and 50 % query coverage

Fig. 2 a H. indica orthologs present in selected completely sequenced genomes of free-living nematodes C. elegans, C. remanei, C. briggsae,
Pristionchus pacificus and Heterorhabditis bacteriophora. b H. indica orthologs in animal and plant parasitic nematodes
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(Table 5). These 438 (C. elegans) kinases were classi-
fied into 187 groups, and we found that 137 kinase
groups were common between C. elegans and H.
indica, whereas, 50 kinase groups were not found in
H. indica. The details of kinase groups common be-
tween C. elegans, and H. indica are given in Table 5,
and kinases that could not be discovered in H. indica
but present in C. elegans are listed in Additional file 5:
Table S4.

The secretome of H. indica IJs
A total of 2,374 secreted proteins were predicted
(Additional file 6: Table S5a). The important proteins
found in the analysis were related to neuropeptide signal-
ing, for example, 2 each of GPCR-Family 2 like and GPCR
rhodopsin-like including GPCR rhodopsin-like 7TM, and
GPCR Family 3 C-terminal domains. Several hydrolases
were identified, including 33 hydrolases belonging to
small GTPases, glycoside hydrolases, transthyretin/

Table 2 Gene ontology analysis of proteins, conceptually translated from contigs of H. indica

GO category GO code GO term No. of proteins (%)

Cellular component GO:0005623 Cell 2368 (29.1)

GO:0043226 Organelle 981 (12.1)

GO:0032991 Macromolecular complex 741 (9.1)

GO:0005576 Extracellular region 99 (1.2)

GO:0031974 Membrane-enclosed lumen 60 (0.7)

GO:0031975 Envelope 47 (0.6)

GO:0045202 Synapse 1 (0)

Molecular function GO:0005488 Binding 4027 (49.6)

GO:0003824 Catalytic activity 3293 (40.5)

GO:0005215 Transporter activity 456 (5.6)

GO:0005198 Structural molecule activity 427 (5.3)

GO:0030528 Transcription regulator activity 207 (2.5)

GO:0030234 Enzyme regulator activity 179 (2.2)

GO:0060089 Molecular transducer activity 169 (2.1)

GO:0009055 Electron carrier activity 79 (1)

GO:0045182 Translation regulator activity 53 (0.7)

GO:0016209 Antioxidant activity 49 (0.6)

Biological process GO:0008152 Metabolic process 3466 (42.7)

GO:0009987 Cellular process 3293 (40.5)

GO:0051179 Localization 763 (9.4)

GO:0065007 Biological regulation 762 (9.4)

GO:0043473 Pigmentation 748 (9.2)

GO:0016043 Cellular component organization 158 (1.9)

GO:0050896 Response to stimulus 152 (1.9)

GO:0044085 Cellular component biogenesis 113 (1.4)

GO:0010926 Anatomical structure formation 73 (0.9)

GO:0032501 Multicellular organismal process 31 (0.4)

GO:0022610 Biological adhesion 31 (0.4)

GO:0032502 Developmental process 18 (0.2)

GO:0051704 Multi-organism process 6 (0.1)

GO:0016265 Death 4 (0)

GO:0002376 Immune system process 2 (0)

GO:0000003 Reproduction 1 (0)

GO:0022414 Reproductive process 1 (0)

GO:0016032 Viral reproduction 1 (0)
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hydroxyisourate hydrolase, alpha/beta hydrolase and
epoxide hydrolase. The secretome showed the pres-
ence of a large contingent of peptidases that have a
known role in degrading insect tissues. We could
identify 38 peptidases belonging to different classes,
such as metallopeptidases, trypsin-like cysteine/serine
peptidases, cysteine peptidases, peptidase S1 (serine
endopeptidases), S1A, S8, S10, S24, S26, S28, S53,
S54, M10, M13, M14, M28, M12, M41. Some of these
peptidases like carboxypeptidase possess regulatory
domains. A search of the MEROPS database [53] for
identification of putative peptidases (proteases, protein-
ases, and proteolytic enzymes) identified 64 known pepti-
dases of the different parasitic and free-living nematodes
(Additional file 7: Table S5b). Five transcription factors in-
cluding STAT, p53, TFIID were also identified. Several
genes involved in signaling, such as 13 members of pro-
tein kinases were present in the secreted contingent,
including serine threonine, tyrosine, and thiamine
phosphate kinase. Similarly, 12 members of phospha-
tases were found. Lastly, the transcripts showed the
presence of several known stress response genes such
as glutathione peroxidases, heat shock protein 70 and
heat shock protein 90.

Repeat elements in H. indica transcriptome
The transcriptome data was used to analyze the repeat
elements because no information is available for repeat
elements in this species. Transcript sequences were ex-
amined for the presence of repeat elements using Repeat
Masker v-4.0.5 program. Approximately 1.4 % of the
total transcripts were found to be encoded by different
repetitive elements, of which 1.21 % belonged to simple
repeats, and 0.29 % were low complexity repeats

(Additional file 8: Table S6a). A total of 31 retroelements
were found in the transcripts, with four long inter-
spersed repeat elements (LINEs), although no short in-
terspersed repeat elements (SINEs) were found. Among
retroelements, 27 long terminal repeats (LTR) were
found which was higher than non-LTR elements. Also,
15 DNA transposons of different classes, 103 small
RNA, and three satellites were found (Additional file
8: Table S6a).
Using MISA to identify short sequence repeats (SSRs)

revealed 2,968 sequences showing the presence of 3,635
SSRs. Out of the 2,968 sequences, 465 sequences con-
tained more than one SSRs and 209 SSRs were present
in compound formation (Additional file 9: Table S6b).
Mononucleotide repeats (46.6 %), and trinucleotide re-
peats (46.05 %) represented the largest fraction of SSRs,
followed by di-nucleotide repeats (6.3 %). The number
of tetra-(32), penta-(5) and hexa-(1) nucleotide repeats
were below 0.1 % (Additional file 9: Table S6b).

RNAi pathway genes and other gene classes in
H. indica IJs
C. elegans genome encodes 77 RNAi pathway effector
genes, which is the most number of RNAi pathway ef-
fector genes discovered in any nematode [54]. We could
identify 24 RNAi pathway effector genes in the present
transcriptome (Table 7). Different RNAi effector genes
identified were six genes encoding for small RNA bio-
synthetic proteins, four genes for dsRNA uptake, spread-
ing and siRNA amplification, three for Argonautes, two
each for RNA-induced silencing complex genes (RISC)
and RNAi inhibitors, and seven for nuclear RNAi effec-
tors (Table 6, Additional file 10: Table S7). The presence
of nrde-3 in H. indica (percent identity, 30.27; query

Fig. 3 GO term analysis for all predicted proteins in IJ transcriptome of H. indica
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coverage, 98; E-value, 1.00E-21), which is responsible for
nuclear translocation of RNAi triggers in C. elegans, is
recorded for the first time in any parasitic nematode.
Additionally, the H. indica transcriptome was analysed

for presence of members of functionally important gene
classes like neuropeptides (FMRFamide-related peptides
(flp), non-insulin, non-FMRFamide-related neuropeptide-
like proteins (nlp), uncoordinate (unc), dauer formation
(daf), fatty acid and retinol binding protein (far), nuclear
hormone receptor (nhr), C-type lectin domain containing
proteins (lec), lysozymes (lys) and lethal (let) gene classes
at two stringency levels of 25 and 30 % sequence similarity
and query coverage. The results are presented in Table 7.
Interestingly, we also found an ortholog of C. elegans tol-1
in the transcriptome of H. indica IJs (32.9 % identity, 88
query coverage at 2e–180).

Discussion
The transcriptome sequencing and assembly of H. indica
IJs resulted in 13,593 unique, high-quality transcripts at
N50 value of 1,371 bp. Further, 6,320 out of 13,593
(53 %) transcripts could be annotated by blastx against
nr database. Most of the blastx hits showed similarity
with A. suum and not H. bacteriophora which is a
closely related species. This anomaly may be attributed
to the absence of H. bacteriophora sequences from nr
database. Standalone blast identified 2,745 hits with H.
bacteriophora.
The free living-developmentally arrested infective stage

is characteristic of many parasitic nematodes [55–58].

Table 3 The sixty pathways most represented in the
transcriptome of H. indica IJs

Pathway ID Pathway term No of
proteins

3010 Ribosome 117

3040 Spliceosome 95

4141 Protein processing in endoplasmic reticulum 88

3013 RNA transport 87

5200 Pathways in cancer 86

5016 Huntington's disease 85

190 Oxidative phosphorylation 74

5010 Alzheimer's disease 73

230 Purine metabolism 70

4144 Endocytosis 70

5012 Parkinson's disease 68

5169 Epstein-Barr virus infection 68

5166 HTLV-I infection 67

1200 Carbon metabolism 63

4932 Non-alcoholic fatty liver disease, NAFLD 63

4120 Ubiquitin mediated proteolysis 62

5203 Viral carcinogenesis 61

4110 Cell cycle 59

240 Pyrimidine metabolism 58

5205 Proteoglycans in cancer 55

3008 Ribosome biogenesis in eukaryotes 53

4151 PI3K-Akt signaling pathway 53

3015 mRNA surveillance pathway 52

4010 MAPK signaling pathway 52

4111 Cell cycle-yeast 48

4015 Rap1, signaling pathway 47

4510 Focal adhesion 47

4014 Ras signaling pathway 46

4810 Regulation of actin cytoskeleton 46

4910 (ko04910) Insulin signaling pathway 46

4142 Lysosome 45

4068 FoxO signaling pathway 42

4152 AMPK signaling pathway 42

4114 Oocyte meiosis 42

3018 RNA degradation 41

4024 cAMP signaling pathway 41

4310 Wnt signaling pathway 39

4390 Hippo signaling pathway 39

5206 MicroRNAs in cancer 38

1230 Biosynthesis of amino acids 37

4530 Tight junction 37

4062 Chemokine signaling pathway 37

4722 Neurotrophin signaling pathway 37

Table 3 The sixty pathways most represented in the
transcriptome of H. indica IJs (Continued)

4146 Peroxisome 36

4113 Meiosis-yeast 36

5168 Herpes simplex infection 36

564 Glycerophospholipid metabolism 35

4071 Sphingolipid signaling pathway 35

4145 Phagosome 35

4914 Progesterone-mediated oocyte maturation 35

4921 Oxytocin signaling pathway 35

4919 Thyroid hormone signaling pathway 35

3420 Nucleotide excision repair 32

4022 (ko04022) cGMP-PKG signaling pathway 32

4550 Signaling pathways regulating pluripotency
of stem cells

32

3050 Proteasome 31

4721 Synaptic vesicle cycle 30

510 N-Glycan biosynthesis 29

3022 Basal transcription factors 29

5100 Bacterial invasion of epithelial cells 29
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Fig. 4 Metabolic pathways active in H. indica infective juveniles as revealed by the transcriptomic analysis using iPATH2 interactive pathway explorer
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The “dauer hypothesis” proposes that similar molecular
mechanisms regulate the developmental arrest and acti-
vation of both C. elegans dauer larvae and analogous de-
velopmentally arrested 3rd stage larvae (L3i) of parasitic
nematodes [56, 57, 59] despite their evolutionary diver-
gence [60, 61]. In the free-living model nematode, C.
elegans, a developmentally arrested dauer stage is
formed during conditions of low food abundance, high
temperature [62], high dauer pheromone levels [63, 64]
and high population density [65, 66]. The daf (abnormal
dauer formation) genes identified in C. elegans that are
involved in formation and regulation of dauer stages are
placed into four dauer pathways-a cyclic guanosine
monophosphate (cGMP) signaling pathway, an insulin/
IGF-1-like signaling (IIS) pathway regulated by insulin-
like peptide (ILP) ligands, a dauer transforming growth
factor-β (TGF-β) pathway regulated by the Ce-DAF-7
ligand, and a nuclear hormone receptor (NHR) regulated
by a class of steroid ligands known as dafachronic acids
(DAs) [35]. Epistatic analysis revealed that the cGMP
signaling pathway operates upstream of the parallel IIS
and dauer TGF-β pathways, which converge on the DA
biosynthetic pathway, ultimately regulating the NHR
Ce-DAF-12 [38, 41]. Analysis of dauer pathways in
the L3i stage of S. stercoralis revealed that out of four
pathways involved in dauer formation, two were con-
served while two were not, suggesting their conserved
and novel modes of developmental regulation [41,
67]. Our results show that at least two of the canon-
ical dauer pathways-insulin signaling pathway and
cGMP-PKG signaling pathway were represented in
the top 60 active pathways by at least 46 and 32 pro-
teins, respectively (Table 3). Further, TGF-β pathway
was represented by 27 proteins, and the dafachronic
acid pathway was represented by a single but import-
ant gene, daf-1 (Additional file 11: Table S8). DAF-1
encodes a TGF-beta type I receptor homolog, which,
in association with the DAF-4, regulates dauer formation
in response to environmental signals through the ASI che-
mosensory neuron [68–70]. Our results show that similar
to C. elegans, all the four dauer formation pathways are
conserved and active in the IJ stage of H. indica.
EPN IJs are not known to feed, but they utilize the

lipids and glycogen energy reserves stored in the body

Table 4 KOG analysis of genes with FPKM Values ≥ 1000 and
≥100

KOG function Function
ID

Gene
count

FPKM >1000

Translation, ribosomal structure and biogenesis J 27

Posttranslational modification, protein turnover,
chaperones

O 10

Multiple classes 9

Intracellular trafficking, secretion, and vesicular
transport

U 7

Lipid transport and metabolism I 7

Cytoskeleton Z 4

Defense mechanisms V 2

Energy production and conversion C 2

General function prediction only R 2

Transcription K 2

Carbohydrate transport and metabolism G 1

Chromatin structure and dynamics B 1

Extracellular structures W 1

Inorganic ion transport and metabolism P 1

Grand total 76

FPKM >100

Posttranslational modification, protein turnover,
chaperones

O 279

Multiple classes 264

General function prediction only R 235

Translation, ribosomal structure and biogenesis J 189

Function unknown S 160

Intracellular trafficking, secretion, and vesicular
transport

U 155

Signal transduction mechanisms T 131

Energy production and conversion C 124

RNA processing and modification A 119

Transcription K 108

Cytoskeleton Z 90

Lipid transport and metabolism I 84

Carbohydrate transport and metabolism G 77

Amino acid transport and metabolism E 66

Inorganic ion transport and metabolism P 53

Cell cycle control, cell division, chromosome
partitioning

D 39

Replication, recombination and repair L 36

Nucleotide transport and metabolism F 25

Chromatin structure and dynamics B 24

Secondary metabolites biosynthesis, transport
and catabolism

Q 21

Extracellular structures W 18

Coenzyme transport and metabolism H 18

Table 4 KOG analysis of genes with FPKM Values ≥ 1000 and
≥100 (Continued)

Cell wall/membrane/envelope biogenesis M 15

Defense mechanisms V 13

Nuclear structure Y 1

Cell motility N 1

Grand total 2345
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Table 5 Kinases belonging to different group/family/subfamily represented in IJ stage of H. indica

S. No. Kinase group/family/subfamily C. elegans H. indica S. No. Kinase group/family/subfamily C. elegans H. indica

1 AGC/Akt 2 1 71 CMGC/DYRK/DYRK1 1 1

2 AGC/DMPK/GEK 1 3 72 CMGC/DYRK/DYRK2 3 1

3 AGC/DMPK/ROCK 1 2 73 CMGC/DYRK/PRP4 1 1

4 AGC/GRK/BARK 1 3 74 CMGC/GSK 7 4

5 AGC/GRK/GRK 1 2 75 CMGC/MAPK/ERK1 1 1

6 AGC/MAST/MAST 1 3 76 CMGC/MAPK/ERK7 1 1

7 AGC/NDR/LATS 1 1 77 CMGC/MAPK/JNK 5 1

8 AGC/NDR/NDR 1 2 78 CMGC/MAPK/nmo 1 1

9 AGC/PDK1 2 1 79 CMGC/MAPK/MAPK-Unclassified 3 2

10 AGC/PKA 2 4 80 CMGC/MAPK/p38 3 2

11 AGC/PKC/PKCa 1 3 81 CMGC/SRPK 1 1

12 AGC/PKC/PKCd 1 1 82 Other/Aur 2 2

13 AGC/PKC/PKCh 1 1 83 Other/BUB 1 1

14 AGC/PKC/PKCi 1 1 84 Other/Bud32 1 2

15 AGC/PKG 2 3 85 Other/Haspin 13 1

16 AGC/PKN 1 1 86 Other/NAK/BIKE 1 2

17 AGC/RSK/MSK 1 1 87 Other/NEK/NEK6 1 2

18 AGC/RSK/RSKp70 2 1 88 Other/NEK/NEK8 2 2

19 AGC/RSK/RSKp90 1 1 89 Other/NKF2 1 1

20 AGC/SGK 1 1 90 Other/NRBP 1 3

21 AGC/YANK 1 1 91 Other/Other-Unique 10 2

22 Atypical/ABC1/ABC1-A 1 1 92 Other/PEK/GCN2 1 2

23 Atypical/ABC1/ABC1-B 1 1 93 Other/PLK/PLK1 3 1

24 Atypical/BRD 3 3 94 Other/SCY1 2 4

25 Atypical/PDHK/PDHK 2 2 95 Other/TLK 1 3

26 Atypical/PIKK/FRAP 1 3 96 Other/ULK/ULK 2 1

27 Atypical/PIKK/SMG1 1 2 97 Other/WEE/Myt1 2 1

28 Atypical/PIKK/TRRAP 1 1 98 Other/WNK 1 2

29 Atypical/RIO/RIO1 1 2 99 Other/Worm3 2 1

30 Atypical/RIO/RIO2 1 1 100 RGC/RGC 27 13

31 Atypical/TAF1 1 3 101 STE/STE11/ASK 1 3

32 CAMK/CAMK1 1 2 102 STE/STE11/MEKK4 1 1

33 CAMK/CAMK2 1 1 103 STE/STE20/FRAY 1 2

34 CAMK/CAMKL/AMPK 2 1 104 STE/STE20/KHS 1 1

35 CAMK/CAMKL/LKB 1 2 105 STE/STE20/MSN 1 3

36 CAMK/CAMKL/MARK 2 2 106 STE/STE20/MST 1 2

37 CAMK/CAMKL/MELK 1 2 107 STE/STE20/PAKA 2 3

38 CAMK/CAMKL/NIM1 1 2 108 STE/STE20/SLK 1 3

39 CAMK/CAMKL/QIK 1 2 109 STE/STE20/TAO 1 1

40 CAMK/CAMKL/SNRK 1 1 110 STE/STE20/YSK 1 1

41 CAMK/CASK 1 1 111 STE/STE7/MEK1 1 1

42 CAMK/DAPK/DAPK 1 2 112 STE/STE7/MEK3 1 1

43 CAMK/DCAMKL 2 1 113 STE/STE7/MEK4 3 1

44 CAMK/MAPKAPK/MK2 2 2 114 STE/STE7/MEK7 2 1
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for their survival. We found genes involved in various
pathways like fatty acid degradation, glycolysis, and
glyoxalate in the IJ transcriptome. All these three path-
ways catabolize energy reserves such as fatty acids and
glucose and generate ATPs that are utilized for the IJ
survival. Glyoxalate pathway has been known to be im-
portant for dauer stages of C. elegans [71] and has also
been reported in an EPN, Romanomermis [72].
We found several signaling pathways in the transcrip-

tome of H. indica IJs essential for nematode survival
under stressed conditions and various other activities
(Table 3). Some of these signaling pathways, such as
PI3K-Akt and mTOR signaling pathways are involved in
regulation of cell cycle and in mediating oxidative stress
responses and extending the lifespan in the nematodes
[73, 74]. Presence of other signaling pathways such as
the MAPK known to be involved in nematode response
to various cellular and environmental stimuli including
stresses and cell proliferation, regulation of fertilization
in nematodes, especially sperm activation [75, 76] sug-
gest that these signaling pathways might control the IJ

nematodes from being reproductive in the arrested stage.
cGMP-PKG signaling is involved in olfactory sensing
and behavior regulation in the nematodes [77, 78] and
flies [78, 79], and pharyngeal pumping rate, mouth form
dimorphism, the duration of forward locomotion, and
the amount of fat stored in the intestine in necromenic
insect associated nematode, Pristionchus [80]. This indi-
cated that the H. indica IJs also actively sense their en-
vironment and adapt their metabolism and behavior
accordingly.
The analysis of the H. indica secretome identified sev-

eral hydrolases, a large contingent of peptidases, kinases,
phosphatases, and enzymes involved in stress responses.
Some of these enzymes are important for the degrad-
ation of insect cuticle, tissue, and hemocoel, whereas
peptidases are also known to be involved in regulatory
functions. The presence of a large number of kinases
and phosphatases indicates vibrant signaling in the IJ
stage. All these findings suggest that although IJ is a de-
velopmentally arrested stage; it is still a hotbed of signal-
ing and is actively sensing its environment.

Table 5 Kinases belonging to different group/family/subfamily represented in IJ stage of H. indica (Continued)

45 CAMK/MAPKAPK/MNK 1 1 115 TK/Abl 1 2

46 CAMK/MLCK 4 17 116 TK/Ack 2 4

47 CAMK/PHK 1 2 117 TK/ALK 1 1

48 CAMK/PIM 2 1 118 TK/Csk 1 1

49 CAMK/PKD 2 4 119 TK/DDR 2 2

50 CAMK/PSK 1 1 120 TK/Eph 1 1

51 CAMK/TSSK 3 2 121 TK/Fer 38 4

52 CK1/CK1/CK1-A 1 1 122 TK/FGFR 1 1

53 CK1/CK1/CK1-D 1 1 123 TK/InsR 1 3

54 CK1/CK1/CK1-G 1 1 124 TK/KIN6 5 2

55 CK1/CK1-Unique 6 1 125 TKL/IRAK 1 1

56 CK1/TTBK 1 1 126 TKL/LRRK 1 2

57 CK1/TTBKL 31 4 127 TKL/MLK/HH498 1 1

58 CK1/Worm6 28 15 128 TKL/MLK/ILK 1 1

59 CMGC/CDK/CDC2 2 3 129 TKL/MLK/MLK 1 1

60 CMGC/CDK/CDK4 1 1 130 TKL/RAF/RAF 2 1

61 CMGC/CDK/CDK5 1 2 131 TKL/STKR/STKR1 2 2

62 CMGC/CDK/CDK7 1 1 132 TK/Src/Src-Unclassified 2 2

63 CMGC/CDK/CDK8 1 1 133 TKL/STKR/STKR2 1 2

64 CMGC/CDK/CDK9 1 1 134 TK/Met 2 2

65 CMGC/CDK/CRK7 1 1 135 TK/Ror 1 1

66 CMGC/CDK/PCTAIRE 1 2 136 TK/Src/Frk 1 1

67 CMGC/CDK/PFTAIRE 1 2 137 TK/TK-Unique 6 2

68 CMGC/CDK/PITSLRE 2 1

69 CMGC/CK2 1 1

70 CMGC/CLK 3 1
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H. indica is a rhabditid as C. elegans, which shows the
presence of 77 RNAi pathway genes [54]. Primary se-
quence similarity based search was carried out to

identify putative orthologs of C. elegans RNAi pathway
genes inH. indica. We found 24 orthologs of C. elegans
RNAi pathway effector genes in H. indica IJs. The com-
pleted genome sequence of another species of the same
genus, H. bacteriophora revealed the presence of only 12
RNAi pathway genes [30] indicating either incompleteness
of the genome or false negatives because of poor annota-
tion of H. bacteriophora genome. Interestingly, the RNAi
pathways can differ significantly even amongst very closely
related nematode species, as is evident by the fact that the
number of RNAi effector genes varied from 60 to 77
amongst different species of Caenorhabditis spp. [54]. Out
of the four RNAi effector genes present in most known
parasitic nematodes, drsh-1, rsd-3, ego-1, and smg-2 were
present in H. indica IJs. However, ego-1 was absent in the
two parasitic nematodes Trichinella spiralis, and A. cani-
num [54], suggesting that it is not universally present in
parasitic nematodes as thought earlier. We found nrde-3
in H. indica IJs at a low stringency cutoff, which is respon-
sible for nuclear translocation of RNAi triggers in C. ele-
gans, and is involved in processes that lead to the
heritability of gene silencing events. The absence of nrde-
3 in parasitic nematodes has led to speculations that silen-
cing events cannot be passed between generations of para-
sitic nematodes [54]. However, sequences with loose
homology to the C. elegans nrde-3 could be discovered in
H. bacteriophora genome as well, suggesting that the ab-
sence of nrde-3 in H. bacteriophora might be a false nega-
tive caused by a failure to predict the H. bacteriophora
nrde-3 gene. Its presence in Heterorhabditis nematodes
indicated that the silencing events could probably be
passed between generations, and opens up a whole new

Table 6 RNAi effector genes discovered in the IJ stage of the H.
indica

S. No. C. elegans ortholog H. indica IJ H. bacteriophora

Small RNA biosynthetic proteins

Total 10 6 2

1 drh-3 + -

2 drsh-1 + +

3 xpo-1 + -

4 xpo-2 + -

5 dcr-1 + +

6 drh-1 + -

dsRNA uptake and spreading and siRNA amplification effectors

Total 12 4 5

7 smg-2 + +

8 smg-6 + -

9 ego-1 + +

10 smg-5 - +

11 rsd-3 + +

12 sid-1 - +

Argonautes (AGOs)

Total 28 3 1

13 alg-1 + -

14 rde-1 - +

15 ppw-2 + -

16 nrde-3 + -

RNA-induced Silencing Complex (RISC) components

Total 4 2 2

17 tsn-1 + +

18 ain-1a + -

19 vig-1 - +

RNAi inhibitors

Total 9 2 0

20 eri-1 + -

21 xrn-2 + -

Nuclear RNAi effectors

Total 15 7 2

22 mut-7 + -

23 cid-1 + -

24 gfl-1 + +

25 mes-2 + -

26 rha-1 + -

27 zfp-1 + +

28 mut-2 + -

Table 7 Members of flp, nlp, unc, ins, daf, far, nhr, lec, let and lys
gene class present in the transcriptome of H. indica IJs. Gene
counts for each gene class for C. elegans were taken from
wormbase

Gene
class

C. elegans
(gene count)

H. indica (gene count)

At≥ 25 % sequence
similarity and query
coverage

At ≥ 30 % sequence
similarity and query
coverage

flp 31 25 22

nlp 44 35 25

unc 111 77 69

ins 39 33 18

daf 34 24 21

far 8 4 0

nhr 283 98 36

lec 12 7 6

let 642 15 13

lys 10 0 0
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array for use of Heterorhabditid nematodes as a model for
epigenetic regulation of RNAi pathways.
The sequence divergence between C. elegans and H.

indica prevented discovery of C. elegans orthologs of im-
portant gene class members at a high stringency. By low-
ering the stringency of the blastn to 30 % identity and
query coverage, we could identify several additional
members of the various gene classes in H. indica, but
these orthologs would need further validation. The H.
indica transcriptome showed the presence of at least 22
flp, 25 nlp and 18 ins neuropeptide genes, 69 unc, 21 daf
and 0 (4 at 25 %) far genes, 98 nhr, nine lec, 15 let but
no lys gene class members (Table 7, Additional file 11:
Table S8). In the daf gene class, daf-1, daf-2 and daf-4
were identified, all of which are important in dauer for-
mation in C. elegans. daf-1 encodes a TGF-beta type I
receptor homolog, which together with the TGF-β-like
type II receptor DAF-4, is required for the regulation of
dauer formation by environmental signals [81–84]. Simi-
larly, daf-7 encodes a member of the TGF-β superfamily;
which is involved in signaling pathway that interprets
environmental conditions to regulate energy balance
pathways that affect dauer larval formation, fat metabol-
ism, egg laying, feeding behavior and sperm motility
[85–88]. Identification of several insulin-like peptide
(ins) genes proved the role of insulin signaling in IJ
formation and maintenance in H. indica. Neuropeptides
like flp and nlp are involved in environmental sensing by
the nematode. In the flp gene class, flp-1, flp-3, flp-5,
flp-12, flp-17 and flp-18 were the prominent mem-
bers. In the recent years, flp genes are emerging as
important targets for nematode management, and it
has been shown that disruption of flp gene expression
impaired nematode parasite’s ability to locate its host
[89–95]. Other neuropeptides found in H. indica, like
nlp-4, has no known homologs in other nematode
species [90, 96, 97], whereas nlp-18 in C. elegans en-
codes four predicted neuropeptide-like proteins; and
is expressed in a variety of neurons, spermatheca, the
rectal gland, and the intestine [98]. Another import-
ant protein class, nematode lectins, are protein mole-
cules that bind to carbohydrate moieties. They are
involved in cell-cell recognition and are important in
nematode recognition of bacteria and innate immune
responses against pathogens. Nine members of the lec
gene class were identified in H. indica including lec-6.
lec-6 encodes a 'proto' type galectin (beta-galactosyl-
binding lectin) containing a single carbohydrate rec-
ognition domain and is suggested to be important for
cell adhesion and aggregation, proliferation, or pro-
grammed cell death in C. elegans [99–101]. Likewise,
in H. indica, members of the lectin protein family
might possibly be involved in recognition of the
symbiont bacteria. Similarly, tol-1 found expressing in

H. indica IJs has been reported to be involved in behav-
ioral responses to the pathogenic microbes by promoting
the development of sensory neurons that monitor
microbial metabolism and are required for a pathogen-
avoidance behavior in C. elegans [102]. Hence, it is pos-
sible that tol-1 could be involved in the maintenance of a
specific symbiotic relationship between Heterorhabditis
nematodes with Photorhabdus bacterium, but this hypoth-
esis would need further testing.

Conclusions
Here we presented a transcriptomic insight into the in-
fective juvenile stage of the EPN, H. indica. After using
cd-hit-est and filtering out <300 bp transcripts, we have
identified 13,592 unique transcripts in H. indica infective
juveniles. 18.6 % of the proteins were similar to an ani-
mal parasite A. suum. We found that similar to C. ele-
gans, all the four dauer formation pathways-cGMP-PKG
signaling pathway, insulin signaling pathway, dafachronic
acid pathway, and TGF-β were conserved in H. indica
and were active in the IJ stage of the nematode. Several
important signaling pathways were found active in the
IJs indicating that despite being a developmentally
arrested stage, IJs are a hotbed of signaling and are ac-
tively interacting with their environment. Similarly, gly-
colysis and fatty acid degradation pathways were highly
active in IJs indicating a breakdown of food reserves re-
quired for survival. Twenty-four orthologs of C. elegans
RNAi pathway effector genes were found in H. indica IJ
transcriptome, including nrde-3 that has been identified
in any of the parasitic worms for the first time. Using a
low stringency approach, we have identified several add-
itional members of important gene classes in H. indica.
Our results and analysis lay down the groundwork for
further functional genomic investigations on these gene
classes in Heterorhabditis nematodes.

Methods
Nematode collection and multiplication
The Heterorhabditis indica nematodes were isolated
from the soil collected from Ghaziabad district, UP, India
by using greater wax moth Galleria melonella as a bait.
The nematodes were maintained in the laboratory on
Galleria using standard procedures.

RNA extraction, cDNA synthesis, library preparation and
sequencing
Total RNA was extracted from the frozen IJs using
Nucleospin RNA isolation kit (Macherey-Nagel GmbH &
Co. KG, Düren, Germany) according to the manufac-
turer’s instructions. Extracted RNA was assessed for qual-
ity and quantity using an Agilent 2100 Bioanalyzer
(Agilent Technologies). RNA with an RNA integrity num-
ber (RIN) of 8.0 was used for mRNA purification. mRNA
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was purified from 1 mg of intact total RNA using oligodT
beads (Illumina® TruSeq® RNA Sample Preparation Kit
v2). The purified mRNA was fragmented at elevated
temperature (90 °C) in the presence of divalent cations
and reverse transcribed with Superscript II Reverse
Transcriptase (Invitrogen Life Technologies) by priming
with random hexamers. Second strand cDNA was synthe-
sized in the presence of DNA polymerase I and RNaseH.
The cDNA was cleaned using AgencourtAmpure XP SPRI
beads (Beckman-Coulter). Illumina adapters were ligated
to the cDNA molecules after end repair and the addition
of an ‘A’ base followed by SPRI clean-up. The resultant
cDNA library was amplified using PCR for the enrichment
of adapter-ligated fragments, quantified using a Nanodrop
spectrophotometer (Thermo Scientific) and validated for
quality with a Bioanalyzer (Agilent Technologies). It was
then sequenced on the Illumina Hiseq 2000 platform at
SciGenom Next-Gen sequencing facility, Cochin, India.
Both the raw and assembled sequence data generated has
been deposited in the European Nucleotide Archive (ENA)
database (http://www.ebi.ac.uk/ena) for public access (raw
data accession no.: PRJEB10852, assembled contigs acces-
sion numbers: HADG01000001-HADG01013593). The as-
sembled nucleotide and protein sequences are also
available for blast and download at http://insilico.iari.res.in/
hindica/. The assembled data is included with the manu-
script as Additional file 12.

De novo transcriptome assembly and analysis
Paired orphan sequence reads obtained from IJs were used
for assembly of the transcriptome [103]. The low quality
reads (Phred score <30) were removed and sequencing
statistics was generated with the help of NGSQC Toolkit
version v2.3.3 [104]. High quality filtered paired-end raw
reads (Phred Score ≥ 30) obtained from IJs were assem-
bled using Velvet (v.1.2.08) and Oases (v.0.2.08) pipeline
[105]. Velvet was run at different k-mer lengths (51–93
with a step size of 4)—with minimum contig length of
200. The optimal assembly was attained at k-mer 83. The
oases module was used for merging transcript assemblies
from k-mer 71 to 83 (71, 75, 79, 83) with minimum tran-
script length of 100 using the script “oases_pipeline.py”
(k-mer range 71–83, insert length 250 bp, coverage depth
cut off 5). Cd-hit-est was used to remove redundant tran-
scripts at 90 % similarity. Transcripts <300 nucleotide
length were removed resulting in a unique set of non-
redundant transcripts.

Annotation and quantification of the transcriptome
ORFPredictor web server (http://bioinformatics.ysu.edu/
tools/OrfPredictor.html) [51] was used to predict proteins
from the 13,593 transcripts (>300 bp length) using the de-
fault cut-off value of 1e–5, and 13,592 proteins were pre-
dicted which were used for annotation. Annotation for all

the unique transcripts (>300 bp) was done using blastp
[106], homology search against Uniprot [107], the Na-
tional Center for Biotechnology Information (NCBI)-
NR Protein database [106] and NEMABASE4 (http://
www.nematodes.org/nembase4/). In addition, blastx
was performed to identify homologues at ≥30 % query
coverage and ≥50 % sequence identity and e-value
1e–5 in other databases including RefSeq (PRK),
SWISSPROT [108], European Molecular Biology
Laboratory(EMBL)[109], DNA Databank of Japan (DDBJ)
[110], Protein Information Resource (PIR) [111] and Pro-
tein Data Bank (RCSB)[112]. Nematode orthologs were
identified from NCBI COG [113] database and other com-
pletely sequenced genomes by the reciprocal blast
method[106]. To study gene orthologs across free-living
and parasitic nematode species, we used the predicted
protein sets from 11 genomes available in the public do-
main (Wormbase, NCBI, and Sanger) viz., C. elegans, C.
remanei, C. briggsae, M. hapla, M. incognita, H. bacterio-
phora, Pristionchus pacificus, Brugia malayi, S. ratti, Tri-
chinella spiralis and A. suum. Blastp hits with e-value
scores 1e–5 and query coverage above 50 % were consid-
ered as annotated homologous proteins and python script
was employed for filtering reciprocal best hits. KEGG
orthologs were identified using the KEGG Automated An-
notation Server (KAAS) using nematode database. iPATH
server was used for mapping it to KEGG reference path-
way [114]. The gene ontology and domains were identified
using InterProScan 5 with default parameters [115]. The
resulting hits were processed to retrieve associated GO
terms describing biological processes, molecular func-
tions, and cellular components. Homologs of the C.
elegans RNAi pathway genes were also identified in
the H. indica transcriptome by performing tblastx
with e-value ≤ 1e–5.
The high-quality reads were mapped to the non-

redundant assembled transcripts using TopHat v-2.0.9.
[116–119]. Assembly of transcript models from RNA-
Seq alignments and estimation of transcripts and their
abundance was performed using Cufflinks v-2.1.1 [119].
Both these software packages were used with default pa-
rameters for our analysis [119].
Potentially secreted peptides were identified using the

SignalP 4.1 software [120] from the 174,700 peptides of
minimum protein length ≥30, and those with trans-
membrane motifs were removed using TMHMM
[121]. MEROPS database was searched to identify
proteases, proteinases, and proteolytic enzymes [122].
Repeat elements were identified in transcripts using
Repeat Masker v.4.0.5 S and Repbase v.20140131 using
default parameters against species “Nematoda”. Short
Sequence Repeats (SSRs) were identified using MISA
(MIcroSAtellite; http://pgrc.ipk-gatersleben.de/misa) with
at least 10 repeats for mono-, 6 repeats for di-, and
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5 repeats for tri-, tetra-, penta- and hexanucleotide for
simple SSRs.
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