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Intracellular Ca2* and K* concentration in ~ ®=
Brassica oleracea leaf induces differential
expression of transporter and stress-related

genes
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Abstract

Background: One of the most important members of the genus Brassica, cabbage, requires a relatively high level
of calcium for normal growth (Plant Cell Environ 7: 397-405, 1984; Plant Physiol 60: 854-856, 1977). Localized Ca**
deficiency in cabbage leaves causes tip-burn, bringing about serious economic losses (Euphytica 9:203-208, 1960;
Ann Bot 43:363-372, 1979; Sci Hortic 14:131-138, 1981). Although it has been known that the occurrence of tip-burn is
related to Ca”* deficiency, there is limited information on the underlying mechanisms of tip-burn or the relationship
between Ca?* and tip-burn incidence. To obtain more information on the genetic control of tip-burn symptoms, we
focused on the identification of genes differentially expressed in response to increasing intracellular Ca”* and K*
concentrations in B. oleracea lines derived from tip-burn susceptible, tip-burn resistant cabbages (B. oleracea var.
capitata), and kale (B. oleracea var. acephala).

Results: \We compared the levels of major macronutrient cations, including Ca”t and K*, in three leaf segments, the leaf
apex (LA), middle of leaf (LM), and leaf base (LB), of tip-burn susceptible, tip-burn resistant cabbages, and kale. Ca’"and
K* concentrations were highest in kale, followed by tip-burn resistant and then tip-burn susceptible cabbages. These
cations generally accumulated to a greater extent in the LB than in the LA. Transcriptome analysis identified 58,096

loci as putative non-redundant genes in the three leaf segments of the three B. oleracea lines and showed significant
changes in expression of 27,876 loci based on Ca’" and K* levels. Among these, 1844 loci were identified as tip-burn
related phenotype-specific genes. Tip-burn resistant cabbage and kale-specific genes were largely related to stress

and transport activity based on GO annotation. Tip-burn resistant cabbage and kale plants showed phenotypes

clearly indicative of heat-shock, freezing, and drought stress tolerance compared to tip-burn susceptible cabbages,
demonstrating a correlation between intracellular Ca** and K concentrations and tolerance of abiotic stress with
differential gene expression. We selected 165 genes that were up- or down-regulated in response to increasing Ca”*
and K" concentrations in the three leaf segments of the three plant lines. Gene ontology enrichment analysis indicated
that these genes participated in regulatory metabolic processes or stress responses.
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Conclusions: Our results indicate that the genes involved in regulatory metabolic processes or stress responses were
differentially expressed in response to increasing Ca** and K* concentrations in the B. oleracea leaf. Our transcriptome
data and the genes identified may serve as a starting point for understanding the mechanisms underlying essential
macronutrient deficiencies in plants, as well as the features of tip-burn in cabbage and other Brassica species.
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Background

Ca®* and K* are essential macronutrients and normally
the two most abundant cations in plants. Ca** plays a
number of roles in stabilizing cell walls and membranes,
and as a second messenger [1, 2, 6]. Ca® is a key com-
ponent in the signaling of developmental and environ-
mental stresses, including cold, heat, drought, salt, UV
light, and touch [7-10]. Cytosolic Ca** levels increase in
plant cells in response to abiotic stress, and with this in-
crease, several mechanisms are simultaneously activated
by calcium-interacting proteins, such as Ca**-dependent
protein kinases, calmodulin, calmodulin-related proteins,
calcineurin-like proteins, and calcium-binding EF-hand
proteins [11-13]. The number of genes whose expres-
sion is known to be modulated by Ca®* transients in
plants is limited, and the mechanisms underlying regula-
tion of gene expression by Ca’' signaling are largely
unknown. Increased Ca** concentrations induce the up-
take of K" [14]. K" is essential for enzyme activation,
protein synthesis, photosynthesis, osmoregulation, sto-
matal movement, energy transfer, phloem transport,
cation-anion balance, and stress resistance [15]. Low K*
status induces the synthesis of reactive oxygen species
(ROS) and phytohormones, such as auxin, ethylene, and
jasmonic acid [16, 17], whereas high K" concentration
induces the expression of K" channel proteins and K"
transporters, and regulates stomatal conductance and
NADPH oxidase activity, thereby reducing ROS produc-
tion, maintaining membrane stability, and protecting
chlorophyll structure in K*-sufficient plants under abi-
otic stresses [18].

The species Brassica oleracea is generally considered to
include seven varieties with different morphological char-
acteristics; these are cabbage (B. oleracea var. capitata),
kale (B. oleracea var. acephala), broccoli (B. oleracea var.
italica), Chinese broccoli (B. oleracea var. alboglabra),
cauliflower (B. oleracea var. botrytis), Brussels sprout (B.
oleracea var. gemmifera), and kohlrabi (B. oleracea var.
gongylodes). Cabbage is the most economically important
member of the genus Brassica and contains functional
phytochemicals, such as phenolics, vitamins, and minerals,
as well as glucosinolates [19], and requires a relatively high
concentration of calcium for normal growth [20]. Local-
ized Ca®" deficiency in cabbage leaves causes tip-burn,
which is necrosis at the margins of leaves, bringing about

serious economic losses [3—5]. Although it has been
known that the occurrence of tip-burn is related to Ca**
deficiency [21, 22], there is limited information on the
mechanisms of tip-burn or the relationship between Ca**
levels and tip-burn incidence.

Transcriptome analysis provides an efficient means of
constructing total expression catalogs, even in the ab-
sence of reference sequences, and of analyzing the rela-
tive abundance of individual RNAs [23]. Application of
transcriptome analysis to gene expression profiling con-
sequently resolved the transcriptional complexity of
whole plants and specific tissues under specific environ-
mental conditions [24, 25]. Currently available transcrip-
tome data for B. oleracea is not abundant to study the
mechanisms underlying plant deficiencies in essential
macronutrients. Most studies of the B. oleracea tran-
scriptome have focused on genotype [26, 27], tissue-
[28-30], or stress-specific [31] gene identification. The
mitochondrial transcriptome and microRNAs (miRNAs)
of B. oleracea have been reported, demonstrating mito-
chondrial genome evolution and an essential role of
miRNAs in biological processes, respectively [32, 33]. To
understand gene expression changes in response to
intracellular Ca®>* and K* concentrations at the whole-
genome level in B. oleracea, we compared the transcrip-
tomes of three leaf segments (apex, middle, and base)
that show different levels of intracellular Ca®* and K*
concentration, from three B. oleracea lines. In this study,
we focused on the identification of the genes differen-
tially expressed based on intracellular Ca** and K* con-
centrations in tip-burn susceptible and tip-burn resistant
cabbage and kale. These findings may pave the way for
further understanding of features of tip-burn in cabbage,
as well as in other Brassica species.

Results and discussion

Distribution of macronutrient cations in B. oleracea leaf
The major macronutrient cations Ca>*, Mg>*, Na*, and
K" were previously shown to accumulate preferentially
in the leaf base (LB) compared with the leaf apex (LA)
of tip-burn susceptible and resistant cabbages under
normal conditions [21]. We measured the concentra-
tions of the four cations in the leaves of these two cab-
bage lines and in kale leaves for comparison (Additional
file 1: Figure S1). Ca**, Mg>*, Na*, and K* accumulated
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to a significantly greater extent in the LB pieces than in
the LA pieces of kale (Additional file 1: Figure S1B);
these findings are identical to the earlier findings for
cabbage leaves [21]. Levels of Ca®" and K* were gener-
ally higher by >1.5- and >3.8-fold, respectively, in LB
than in LA pieces; they were also present at higher levels
in kale than in the cabbages (Additional file 1: Figure
S1B). In contrast, the concentration of Na" was higher
in tip-burn susceptible cabbage than in either tip-burn
resistant cabbage or kale. This higher level of Na* in
tip-burn susceptible cabbage could be explained by
the Na*/K* antagonism high level of Na* inhibits Ca**
and K" absorption [34]. However, no significant differ-
ences in Mg”* content were observed among the cabbages
and kale (Additional file 1: Figure S1B).

Cytoplasmic Ca®* levels were measured in kale leaf
using a dye that fluoresces under visible light upon
binding calcium and compared to our previous data for
tip-burn resistant and susceptible cabbages [21]. As
expected, cytosolic Ca>* concentration was significantly
increased in the epidermal cells of kale LB pieces
(Additional file 1: Figure S1C), and cytosolic Ca>* levels
were higher in all pieces of the kale than in the corre-
sponding pieces of the two cabbages. As a result, nine
groups of leaf segments from tip-burn resistant and
susceptible cabbage and kale, with the demonstrated
relative levels of epidermal cell cytosolic Ca®* and K,
were sampled for transcriptome profiling.

RNA sequencing and assembly

To analyze the induction of differential gene expression
by intracellular Ca®>* and K* concentration, we generated
c¢DNA sequences from the LA, LM, and LB pieces of
tip-burn susceptible and resistant cabbage and kale.
From the nine ¢cDNA libraries, 300 million reads (3.3—
4.4 Gbp) were generated (Additional file 2: Table SI).
After the removal of low-quality sequences (quality
score<20) and short reads (<25 bp), we selected
264,718,946 reads (79.67 % of raw data), retaining mate-
pairs for assembly. A total of 205,046 preliminary con-
tigs were obtained from Velvet assembly with average
7.74 reads. Those were grouped into 154,785 contigs by
mate-pair information (Table 1). Average length of the
contigs was 1283 bp, and length ranged from 200 to
15,158 bp. These contigs represented 58,096 loci as pu-
tative non redundant genes, containing an average of
2.66 isoforms (range, 1-140) (Table 1). The homology
search annotated 41,526 (71.48 %) and 43,991 (75.72 %)
loci of the putative non redundant genes by aligning
them with Arabidopsis thaliana and B. rapa proteins,
respectively (Table 1). These annotated loci covered
90 and 93 %, respectively, of A. thaliana and B. rapa
proteins.
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Table 1 Results of read assembly of Brassica oleracea cabbage
and kale transcriptomes

Lodi Transcripts
Assembly
Number of sequences 58,096 154,785
Minimum 200 200
Maximum 15,158 15,158
Average 978.25 1283.05

Annotation sequences
41,526 (71.48 %,

( ) 124,152 (80.21 %)
43,991 (75.72 %)

( )

( )

130,376 (84.23 %)
32,095 (90.70 %)
38,360 (93.52 %)

Arabidopsis thaliana
Brassica rapa
Cover to Arabidopsis thaliana 32,006 (90.45 %

Cover to Brassica rapa 38,242 (93.23 %

Ca?* and K* concentration-dependent candidate tran-
scriptomes of B. oleracea leaves

The Ca** and K* concentration-dependent changes in
transcriptome were measured by comparing the normal-
ized transcriptome data sets with the transcriptome of
the LA piece of the tip-burn susceptible cabbage
(Additional file 2: Table S1). Loci (27,876) showing sig-
nificant changes in expression levels were selected based
on the two criteria, which “contained = 50 reads with p-
value < 0.01”. An absolute value for the transcript level,
reflecting an increase or decrease of more than 2-fold,
was used for the analysis of differential gene expression.
A total of 6128 (10.54 %) loci did not have Arabidopsis
counterparts, and were considered B. oleracea-specific
genes with regard to Arabidopsis (Additional file 3:
Table S2). Among the upregulated genes, a large de-
gree of overlap in expression was observed between
tip-burn resistant cabbage and kale. Specifically, 4545,
5221, and 5390 genes expressed in LA, LM, and LB
pieces, respectively, overlapped in these two lines (Fig. 1),
indicating that genes differentially expressed by more than
2-fold overlapped in the leaf pieces with higher Ca** and
K" contents. A total of 1184 and 3226 genes were up-
regulated in the LM and LB pieces, respectively, of all
three B. oleracea lines. Of the down-regulated genes,
7068, 7571, and 7549 overlapped in the LA, LM, and LB
pieces, respectively, of tip-burn resistant cabbage and kale.
A total of 4541 and 5990 genes were down-regulated in
the LM and LB pieces, respectively, of all three lines
(Fig. 1). Shared overexpression of these genes might be re-
lated to differences in the intracellular Ca®>* and K* con-
centrations of the different regions of the leaves of B.
oleracea.

Tip-burn related phenotype-specific genes expressed in B.
oleracea lines

Hierarchical cluster analysis was carried out on 1844 loci
identified as phenotype-specific genes expressed in B.
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Up-regulated genes

Tip-burn susceptible Tip-burn resistant

LA: 3,694
LM: 3,345
LB: 2,553

LM: 294
LB: 815

LA:3,897
LM: 3,116
LB: 2,529

Kale

Down-regulated genes

Tip-burn susceptible Tip-burn resistant

LA: 3,089
LM: 1,967
LB: 1,896

LM: 905
LB: 951

LA: 3,322
LM: 873
LB: 2,010

Kale

Fig. 1 Venn diagram showing numbers of overlapping and
nonoverlapping genes differentially expressed by greater than 2-fold in
the indicated segments of tip-burn susceptible and resistant cabbage
and kale leaves. LA, leaf apex; LM, middle of leaf; LB, leaf base

oleracea (Fig. 2). Phenotype-specific genes were defined
as genes with |logy,Ratio| >2 in at least one of the
groups, and accompanied by a |log,Ratio| <2 in the
other groups. A total of 16 genes, including 4 with no
Arabidopsis homolog (NA) were specifically expressed in
LM and LB pieces of the tip-burn susceptible cabbages
(class 1). Together, 747 genes, including 133 NA genes
were expressed exclusively in tip-burn resistant cabbage
and kale (class 2), indicating that these genes could be
related to the trait of tip-burn resistance. The total num-
ber of kale-specific genes (class 3) was 1035, and 46
genes had transcript levels that were increased or de-
creased by more than 2-fold in all tissues (class 4) rela-
tive to tip-burn susceptible LA, with 8 NA (Fig. 2).

The 1844 phenotype-specific genes were largely re-
lated to stress and transport activity, based on GO
annotation (Additional file 4: Figure S2, Additional file
5: Table S3). In the gene ontology (GO) cellular compo-
nent, most class 1 genes were associated with the
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nucleus (57.1 %), Golgi apparatus (14.3 %), and cytosol
(14.3 %) (Additional file 4: Figure S2), whereas the main
cellular components associated with class 2 and 3 genes
were nucleus (28.2 and 27.5 %, respectively), chloroplast
(13.5 and 13.2 %, respectively), and plasma membrane
(13.6 and 12.9 %, respectively). The dominant compo-
nents for class 4 genes were the nucleus, plasma mem-
brane, and mitochondria, accounting for 33.3, 14.3, and
11.9 % of genes, respectively. In the ontology biological
process, genes associated with the developmental pro-
cesses (13.6 %), response to various stimuli (13.6 %), and
transcription (13.6 %) were prominently represented in
class 1. Classes 2 and 3 were enriched in genes associ-
ated with response to stress (10.4 and 11.6 %, respect-
ively), transport (9.3 and 8.3 %), and protein metabolism
(12.5 and 12.3 %, respectively), suggesting that these
genes are needed in the presence of higher concentrations
of intracellular Ca®>* and K*. Moreover, the transcriptional
response to intracellular Ca®* and K* concentration was
similar in cabbage and kale, showing the expression of
genes involved in major biological processes and molecu-
lar functions. Class 4 was enriched in various genes associ-
ated with plant developmental processes and stimulus
response, represented by GO terms cell organization and
biogenesis (12.9 %), protein metabolism (12.9 %), and re-
sponse to various stimuli (9.7 %) in the biological process
ontology. Among the GO molecular function terms, the
main functional groups in class 1 were associated with
DNA or RNA binding (16.7 %), protein binding (16.7 %),
and transcription factor activity (16.7 %). Classes 2 and 3
showed identical levels of GO term enrichment, i.e., nu-
cleotide binding (14.5 and 14.7 %, respectively), hydrolase
activity (11.4 and 10.9 %, respectively), and transferase ac-
tivity (11.2 and 12.1 %, respectively). The molecular func-
tions DNA or RNA binding (152 %), protein binding
(10.9 %), and transferase activity (10.9 %) were represented
in class 4 (Additional file 4: Figure S2).

Based on the results of GO annotation of phenotype-
specific genes, higher Ca®>* and K* concentrations were
relevant to the expression of transport activity genes or
response to stress genes (Table 2). Only one transport
activity gene, with GO term “Ca®" activated outward rec-
tifying K" channel protein”, was detected in class 1. The
transporter category was composed of 39 and 24 genes
in class 2 and class 3, respectively. A number of the
transporters were identified in those groups, such as
intracellular protein transporter, MATE efflux family
protein, sugar transporter, K' transporter, vacuolar pro-
tein sorting-related transporter, ABC transporter, ATP/
ADP transporter, and other ion transporters. In sum-
mary, the class 2 and 3 genes were specialized for the
expression of transporter genes and genes involved in
ion signaling, compared to class 1. Nine transporters
were detected in class 4, including intracellular protein
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Tip-burn Tip-burn Kale
susceptible resistant
LAIMIB LAILM LB LA LM LB

| Class1: 16 genes [4 No Arabidopsis counterpart]

Class 2: 747 genes [133 No Arabidopsis counterpart]

Class 3: 1,035 genes [267 No Arabidopsis counterpart]

Class 4: 46 genes [8 No Arabidopsis counterpart]

|
0 12.37

Fig. 2 Hierarchical cluster display of tip-burn related phenotype-specific genes. The color scale bar at the bottom of the figure indicates
the maximum log, values of selected genes. See also Additional file 5: Table S3. Class 1, specific for tip burn-susceptible phenotype; class 2,
up-regulated in tip-burn resistant cabbage and kale; class 3, specific for kale; class 4, up- or down-regulated in all leaf segments compared to

LA of tip burn-susceptible cabbage

transporter, ABC transporter, lipid transporter, phos-
phate transporter, phosphatidylinositol transfer protein,
and Mg>* transporter (Table 2). The response to stress
genes were classified into nine GO categories (Table 2).
It is noteworthy that the 19 stress-related genes, includ-
ing those encoding 6 heat-shock stress proteins, 4
disease-resistance proteins, 3 osmotic stress proteins, 2
light stress proteins, 1 cold-stress and salt-responsive
protein, and 1 photoxidative stress-related protein were

included in class 2. In class 3, 26 genes related to re-
sponse to stress were up-regulated, including genes
shared with class 2, and additional genes encoding 1
drought stress-related protein and 1 cold-stress-related
protein. However, class 4 contained 5 genes encoding
disease-resistance proteins, 2 encoding abiotic stress-
related proteins, and 1 encoding heat-shock stress-related
protein (Table 2). In order to correlate these results with
phenotype, we exposed tip-burn susceptible and resistant
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Table 2 Functional categories of phenotype-specific transport activity and response to stress genes expressed in tip-burn susceptible

and resistant cabbages and kale

Functional category

Class 1

Class 2 Class 3 Class 4

Transport activity

Ca”" activated outward rectifying K* channel

Intracellular protein transport
ABC transporter

Lipid transporter

Phosphate transporter

MATE efflux family

Sugar transporter

K* transporter

Vacuolar protein sorting-related

Vesicle transport protein

Nodulin MtN21/EamA-like transporter

Aluminium activated malate transporter

Cation/H" exchanger

ATP/ADP transporter

Iron-regulated transporter

Heavy metal transporter

UDP-galactose transporter

Urea transmembrane transporter

Zinc ion transporter

Anion channel

Calcium ion transporter

Inositol transporter

Manganese tracking factor

Nitrate transmembrane transporter

Nuclear transporter

Peptide transporter

Phosphatidylinositol transfer protein

Magnesium transporter
Response to stress

Heat-shock stress related

Disease resistance protein

Abiotic stress related

Osmotic stress

Light stress related

Cold-stress and salt responsive protein

Photoxidative stress related
Drought stress related

Cold-stress related

N W N O

1

Class 1, specific for tip-burn susceptible phenotype; class 2, up-regulated in tip-burn resistant cabbage and kale; class 3, specific for kale; class 4, up- or down-regulated

in all leaf segments compared to LA of tip burn-susceptible cabbage

cabbage and kale plants to temperature stresses and
drought stress in two cabbages. Tip-burn resistant cab-
bage and kale plants showed phenotypes that clearly

indicated heat-shock, freezing, and drought stress toler-
ance compared to tip-burn susceptible cabbage plants
(Additional file 6: Figure S3A). Based on these results, we
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predicted that there is a correlation between intracellular
Ca®* and K* concentrations and tolerance of abiotic stress.
Basal transcript levels of genes previously identified as
abiotic stress-response genes were higher in kale than in
tip-burn susceptible and resistant cabbages, and transcript
levels were co-regulated in response to abiotic stress,
as expected (Additional file 6: Figure S3B). Three
(locus_21191, locus_51499) of the tested genes showed
lower basal transcriptome level in tip-burn resistant cab-
bage than in susceptible cabbage. However, the transcrip-
tions of the locus_21191 and locus_51499 in tip-burn
resistant cabbage were more increased by the drought or
freezing stresses than in susceptible cabbage (Additional
file 6: Figure S3B). Consequently, the expression of the
locus_22894 was expected to increase more by other
stresses in same manner. Our data show that intracellular
Ca** and K* concentrations affected plant responses to
environmental stresses by differential regulation of appro-
priate stress-induced genes.

Profiling of gene expression based on increasing
intracellular Ca®* and K* concentrations in B. oleracea

We selected 165 genes that were up- or down-regulated
in response to increasing Ca** and K* concentrations in
the three leaf positions of the three B. oleracea lines
(Fig. 3, Additional file 7: Figure S4). A total of 132 genes,
after exclusion of the 33 NA genes, was annotated based
on homology to the Arabidopsis genes, including 21 un-
known genes, with the remainder being specific to the B.
oleracea genomes. Those genes were clustered hierarch-
ically based on their expression patterns (Fig. 3). Only
25 genes were commonly upregulated in response to in-
creased intracellular Ca** and K* concentrations in the
lines as well as in the leaf positions. Locus_6709 (encod-
ing an unknown protein) was up-regulated to the great-
est extent, showing the largest fold change (Additional
file 8: Table S4), and was also the most highly expressed
gene in the leaf position with the highest concentrations
of Ca** and K%, i.e., kale LB. A total of 140 genes were
down-regulated in response to increasing Ca®>* and K*
concentrations, and locus_35568 (encoding an unknown
protein) was the gene down regulated to the greatest ex-
tent in kale LB. Locus_33015 gene (CCR4-NOT tran-
scription complex subunit 1 domain protein) was the
gene most down regulated in all three leaf positions of
tip-burn resistant cabbage compared to the susceptible
cabbage (Additional file 8: Table S4).

The selected up- or down-regulated genes were classi-
fied according to the GOs cellular component, biological
process, and molecular function. A total of 432 GO IDs
were obtained for the 132 genes (Fig. 4, Additional file 9:
Table S5). In the GO cellular component, the terms
“nucleus”, “plasma membrane”, and “chloroplast” were
enriched. The terms “cell organization and biogenesis”,
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“developmental processes”, “protein metabolism”, “re-
sponse to abiotic or biotic stimulus”, “response to
stress”, and “unknown biological processes” occurred
most frequently in the ontology biological process. In
the molecular function ontology, the terms “hydrolase
activity”, “transferase activity”, “unknown molecular
functions”, and various “binding” were enriched, ac-
counting for 56.4 % of genes in this ontology (Fig. 4).
GO analysis showed that genes associated with the terms
“unknown biological processes” and “unknown molecu-
lar functions” were enriched, accounting for 10.2 and
17.3 % of genes, respectively (Fig. 4). Based on the GO
annotation, those selected genes were considered to be
involved in regulatory metabolic processes or stress re-
sponses. The data obtained in this study will be inform-
ative not only for research on essential macronutrient
concentration-related gene expression in B. oleracea, but
will also be useful for the investigations of Ca®* defi-
ciency disorders in related species.

Conclusions

The major macronutrient cations Ca*>* and K* showed
significant preferential accumulation in LB, compared to
LA, in tip-burn susceptible and resistant cabbage and
kale. Concentrations of Ca®>* and K* were more than 2-
fold higher in both tip-burn resistant cabbage and kale
than in tip-burn susceptible cabbage. Analysis of
changes in the transcriptomes of these plants in re-
sponse to changes in Ca** and K* levels identified
27,876 loci showing significant changes in the expression
level. Among these, 1844 loci were identified as tip-burn
related phenotype-specific genes. Of these, 16 were spe-
cific for the tip burn-susceptible phenotype; 747 were
specific for tip-burn resistant; 1035 were specific for
kale; and 46 were up- or down-regulated in all leaf posi-
tions compared to the LA of tip-burn susceptible cab-
bage. The genes specific for tip-burn resistant and kale
were largely related to stress and transport activity based
on GO annotation. Tip-burn resistant cabbage and kale
plants showed phenotypes that clearly indicated heat-
shock, freezing, and drought stress tolerance compared
to tip burn-susceptible cabbages, demonstrating the cor-
relation between intracellular Ca** and K* concentra-
tions and tolerance of abiotic stress with differential
gene expression. We selected 165 up- or down regulated
in response to increasing Ca>* and K* concentrations in
three leaf segments of the three B. oleracea lines. Based
on the GO enrichment analysis, the selected genes were
identified as participating in the regulatory metabolic
processes or stress responses. This study provides
information on the mechanisms of tip-burn and the rela-
tionships between intracellular Ca** concentration and
tip-burn incidence in B. oleracea, which will be useful
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Genes upregulated by increased Ca** and K* concentrations

Tip-burn ip-by Kale

susceptible.

LA LM LB LA LM LB LA LM LB
Loc

Tiphurn  Tip-burn
susceptible __ resistant

LA LM LB LA LM LB LA LM LB

Tipburn  Tip-burn Kale
susceptible __ resistant
LA LM LB LA LM LB LA LM LB

uclic acid-binding proein
rocin 45

Tipburn  Tip-burn Kale
susceptible__resistant
LA LM LB LA LM LB LA LM LB

Un
Glyeosyliansierase

Fig. 3 Hierarchical cluster display of genes up- (n = 25)
and down-regulated (n = 140) in Ca’"- and K*-dependent
manner. The color scale bar at the bottom of the figure
indicates the maximum log, values of selected genes.
See also Additional file 7: Figure S4 and Additional file 8:
Table S4

for research on Ca®" deficiency disorders in other plant
cultivars.

Methods

Plant materials and cation measurements

B. oleracea plants, tip-burn susceptible (DH line HRI-
GRU009386, Warwick Crop Centre, UK) and resistant
(inbred line No107140, Samsung Seed Co., Korea) cab-
bages, and kale (inbred line FB, Asia Seed Co., Korea)
were grown under controlled conditions in a greenhouse
for 90 days at 22 °C with a photon flux density of 100
umolm s and a 16 h light/8 h dark photoperiod, as
previously described [21]. After beginning of the heading
process in tip-burn susceptible cabbage, middle leaves
(leaf length 8—10 c¢m) were harvested from five inde-
pendent leaves from three different plants of two cab-
bages and kale. The soil used in this experiment was
commercial compost soil (Punong, Korea) with an ori-
ginal pH of 6.0 which consist of zeolite, vermiculite,
perlite, and coir dust. Available nutrients of the soil were
(kg™ soil) 8.7 mg P, 112 mg K, and 170 mg Mg. Deter-
mination of the concentration of Ca®* in the kale leaf
epidermal cells using Fluo-4/AM ester and ion chroma-
tographic analysis were performed as described before
[21]. Two hours after the incubation with Fluo-4/AM
ester, cells were examined by confocal microscopy.

Stress-tolerance assays

To test cold, heat-shock, and drought stress, we pre-
pared seedlings from seven-week-old B. oleracea plants.
For heat-shock stress treatment, tip-burn susceptible
and resistant cabbages and kale plants were exposed to
45 °C for 5 h in the dark. Freezing-stress treatment con-
sisted of exposing the plants to -4 °C for 6 h in the dark,
followed by 3 days of recovery under normal growth
conditions. For drought stress treatment, soil-grown
plants were fully watered, and then irrigation was with-
held for 10 days, followed by rewatering. Plant survival
was assessed 1 week after rewatering. All experiments
were repeated at least twice.

Library preparation and transcriptome sequencing

We constructed sequence libraries from three segments
(LA, LM, and LB) of leaves generated from tip-burn sus-
ceptible and resistant lines and kale (Additional file 1:
Figure S1A). Total RNA was extracted from 100 mg of
each tissue using Trizol reagent (Life Technologies,
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Carlsbad, CA, USA) according to the manufacturer’s in-
structions. To remove any DNA contamination, samples
were treated using the Oligotex Direct mRNA Mini Kit
(Qiagen, Hilden, Germany). The concentration of the
mRNA was determined using a Qubit analyzer (Invitro-
gen, Carlsbad, CA, USA). The cDNA libraries were pre-
pared according to the instructions of the manufacturer
of the sequencing system (Illumina, San Diego, CA,
USA). Poly(A) mRNA was purified using Sera-Mag Mag-
netic Oligo (dT) Beads (GE Healthcare, Little Chalfont,
Buckinghamshire, United Kingdom) from 20 pg total
RNA. The ¢cDNA library products were sequenced on a
paired-end flow cell using an Illumina HiSeq™ 2000
system.

Transcriptome data processing and sequence assembly

To obtain high-quality reads, we trimmed reads with
quality scores less than 20 and obtained reads longer
than 25 bp in length using SolexaQA (ver. 1.13) software
[35]. We used preserved read pairs for assembly by elim-
inating loss-of-mate read pairs during the preprocessing.
We assembled preliminarily sequences using Velvet (ver.
1.2.06) [36] with parameter (K-mer =57, 59 bp), and
then fragmented contigs were revised using the Oases
algorithm (ver. 0.2.08) [37]. Oases clustered all possible
sequences generated from the same locus, including iso-
forms. The representative sequence (locus) was defined
as the longest sequence among the clustered transcripts.

Gene annotation and GO categorization

Protein sequences of B. rapa and Arabidopsis thaliana
were downloaded from the Brassica database (ftp://
brassicadb.org/v1.2/) and the Arabidopsis Information

Resource (ftp://ftp.arabidopsis.org/home/tair/Sequences/
blast_datasets/TAIR10_blastsets/), respectively. To deter-
mine the level of sequence conservation, we implemented
BLASTx against those two databases with an expected
value < 1e ¢

GO terms for A. thaliana proteins were downloaded
from the TAIR website (ftp://ftp.arabidopsis.org/home/
tair/Ontologies/Gene_Ontology/). GO terms for the
phenotype-specific genes and genes differentially expressed
based on increasing Ca** and K* concentrations were
assigned based on their A. thaliana syntenic counterparts.
GO enrichments were analyzed using Fisher’s exact
test (in the Python module [ver. 0.1.4]), and p < 0.001
was applied [38].

Statistical analysis of transcriptome profile

To monitor expression in each segment of cabbage and
kale leaf, we mapped high-quality reads to the assembled
unigenes using Bowtie (ver. 1.5) with default option [39].
We summarized the overall expression of a gene based
on mapped reads in each library and used loci contain-
ing mapped reads longer than 50 bp for further analysis.
After normalization, we determined the differentially
expressed genes (DEGs) by applying fold change analysis
and ¢-test with the DEGSeq package [40]. For the fold
change method, we used read counts of LA for tip-burn
susceptible cabbage as a reference and converted others
to fold change. The false discovery rate (FDR) method
was used to determine the threshold p-value through a
multiple test. We selected the DEGs meeting criteria of
FDR <0.001 and absolute value of |log,Ratio| >2. We
applied the hierarchical cluster analysis to DEGs to
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construct groups showing similar expression pattern
among libraries.

RNA isolation and quantitative real-time PCR (qPCR)

Plant tissue frozen in liquid nitrogen was ground with a
mortar and pestle, and total RNA was isolated from
leaves using Trizol reagent according to the manufactur-
er's instructions. ReverTra Ace qPCR RT Kit (Toyobo,
Osaka, Japan) was used to carry out first-strand cDNA
synthesis. Reverse transcription (RT) was carried out in
a 20-pl reaction mixture containing 1 ug RNA; oligo(dT)
20 primer (10 pmol); 10 mM each of dATP, dCTP,
dGTP, and dTTP; 5x RT buffer; 200 units of ReverTra
Ace reverse transcriptase; and 10 units of RNase inhibi-
tor. The reaction mixture was incubated at 42 °C for
20 min, and the reaction was stopped by heating at
99 °C for 5 min. To determine the expression pat-
terns of genes, RT-PCR was carried out using gene-
specific primers and actin 2 (ACT2) transcript level as
internal standard. RT-PCR was carried out for 28 cy-
cles of template denaturation at 94 °C for 2 min; pri-
mer annealing at 55 °C for 30 s; and elongation at
72 °C for 1 min. PCR products were separated by
1.2 % agarose gel electrophoresis.
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