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Abstract

Background: Current high-throughput sequencing technologies generate large numbers of relatively short and
error-prone reads, making the de novo assembly problem challenging. Although high quality assemblies can be
obtained by assembling multiple paired-end libraries with both short and long insert sizes, the latter are costly to
generate. Recently, GAGE-B study showed that a remarkably good assembly quality can be obtained for bacterial
genomes by state-of-the-art assemblers run on a single short-insert library with very high coverage.

Results: In this paper, we introduce a novel hierarchical genome assembly (HGA) methodology that takes further
advantage of such very high coverage by independently assembling disjoint subsets of reads, combining assemblies
of the subsets, and finally re-assembling the combined contigs along with the original reads.

Conclusions: We empirically evaluated this methodology for 8 leading assemblers using 7 GAGE-B bacterial datasets
consisting of 100 bp lllumina HiSeq and 250 bp Illumina MiSeq reads, with coverage ranging from 100x—~200x. The
results show that for all evaluated datasets and using most evaluated assemblers (that were used to assemble the
disjoint subsets), HGA leads to a significant improvement in the quality of the assembly based on N50 and corrected

N50 metrics.
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Background

De novo genome assembly is one of the fundamental
problems in bioinformatics. Interest in the problem has
been renewed in the past decade due to the advent of
next-generation sequencing (NGS) technologies, which
generate large numbers of short (100-400 bp) reads with
relative low sequencing error rates. There are three main
approaches for de novo genome assembly, the greedy strat-
egy, the string overlap graph, and the de Bruijn graph.
In the greedy approach, the assembly algorithm works
by selecting seed reads and greedily extending them with
the maximum overlapping reads until no more overlap is
possible. This approach was adopted by some early assem-
blers such as SSAKE [1], SHARCGS [2], and VCAKE
[3]. Unfortunately the greedy approach doesn't take into
account ambiguities induced by repeats and sequencing
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errors, resulting in a large number of mis-assembly
errors.

The string overlap graph approach is based on building a
graph with reads as nodes and edges connecting every pair
of nodes so that the corresponding reads overlap given
a minimum overlap length. Building the overlap graph
involves a compute-intensive all-against-all pairwise com-
parison step. After constructing the graph, the reads
layout is computed and the consensus sequence is deter-
mined using multiple sequence alignment. This approach
was implemented in assemblers such as Newbler [4], SGA
[5], and CABOG [6] is more efficient for long reads such
as those generated by Sanger and 454 sequencing.

The third approach, based on the de Bruijn graph model
[7], is by far the most commonly used in assemblers tar-
geted at NGS data, including ABySS [8], ALLPATHS-LG
[9], Euler-USR [10], MaSuRCA [11], SoapDenovo2 [12],
SPAdes [13] and Velvet [14]. Building the de Bruijn graph
starts by collecting all substrings of length k (referred to
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as k-mers) of all reads; then building a graph with k-mers
as nodes and edges connecting two k-mers a and b if the
suffix of length (k — 1) of 4 matches the prefix of length
k—1 of b and the k4 1-mer obtained by overlapping 2 and
b appears in the reads. The de Bruijn graph can be built
in linear time but storing it requires very large amounts
of memory, typically much larger than the string overlap
graph. After building the de Bruijn graph, each assembler
uses several heuristics to simplify graph structures such as
cycles and bulges which mainly induced by repeats in the
genome, and bubbles and tips which mainly induced by
sequencing errors and heterozygous sites. Lastly, assem-
blers select a set of simple paths in the de Bruijn graph
that would eventually form the contigs. For further details
on algorithms for NGS genome assembly, the reader is
directed to [15-17].

Despite the large number of assemblers that were
developed, genome assembly from NGS reads remains
challenging. In particular, recent benchmarking efforts
[18, 19] have shown that the performance of existing
assemblers is highly variable from dataset to dataset and
significantly degrades with the complexity of the genome.
For large genomes, the highest quality assemblies are
currently obtained by jointly assembling multiple paired-
end libraries generated with a wide range of insert sizes
using algorithms such as ALLPATHS-LG [9]. However,
sequencing libraries with long insert sizes are costly to
generate. Recently, the GAGE-B study [20] showed that
for bacterial genomes a comparable assembly quality
can be obtained by running state-of-the-art assemblers
MaSuRCA [11] and SPAdes [13] on a single short-insert
library with very high coverage (100-300x). In contrast,
other assemblers including ABySS [8], CABOG [6], Soap-
Denovo?2 [12], SGA [5], and Velvet [14] appeared less able
to take advantage of such high sequencing depth, with
nearly flat N50 contig length above 100x (see Figure 1
in [20]).

In this paper, we introduce a novel hierarchical genome
assembly (HGA) methodology designed to take advantage
of such a high coverage by independently assembling dis-
joint subsets of reads, combining the assemblies of the
subsets, and finally re-assembling the combined contigs
along with the original reads. Empirical evaluation of this
methodology for 8 leading assemblers using 7 GAGE-
B bacterial datasets consisting of 100 bp Illumina HiSeq
and 250 bp Illumina MiSeq reads shows that HGA leads
to a significant improvement in assembly quality, based
on N50 and corrected N50 metrics, for all evaluated
datasets using most evaluated assemblers (that were used
to assemble the disjoint subsets).

Our contribution in this paper is to resolve the assem-
bly problem using different approaches. It’s summarized
in the following observations. Firstly, the complexity of the
graph, in terms of tips, bubbles, bulges, cycles, and false
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branching; will be less using lower converges and short
kmer than higher coverage and short kmer. In addition,
resolving these complexities will be more efficient and the
resulting contigs will have less errors, despite the fact that
these contigs will be mostly shorter. So, in order to resolve
this, we first split the whole reads into several partitions
to have lower coverage in each partition.

Secondly, by using low coverage, the resultant contigs
will be mostly shorter than a higher coverage and have
more gaps. In order to resolve this, we merge or assemble
all contigs that produced from the assemblies of each par-
tition along with all the reads again. This would recover
any gaps due to low coverage assembly. Moreover, assem-
bling contigs that were produced from all partitions will
add support in selecting the common contigs (more likely
to be true contigs) and in filtering out any redundant or
false (partial or full) contigs. Moreover, the more cor-
rected contigs we input to the re-assembly step the better
assembly we expect.

Due to the nature of the process of partitioning the
reads and then assembling the results, as well the fact that
we may have several levels of partitioning especially for
large genomes. This led us to the notion of “Hierarchical
genome assembly”.

Methods
In our study, we used four Illumina MiSeq dataset and

three Illumina HiSeq datasets which were used in the
GAGE-B paper [20].

Input data: The datasets are for four Bacterial
genomes. Table 1 shows the descriptions of the
genomes and the datasets.

As referred by GAGE-B, the data can be downloaded
from the Sequence Read Archive at NIH’s National
Center for Biotechnology Information using the
following SRR accession numbers. R. sphaeroides
MiSeq: SRR522246, HiSeq: SRR522244. M. abscessus
MiSeq: SRR768269, HiSeq: SRR315382. V. cholerae
MiSeq: SRR769320, HiSeq: SRR227312. B. cereus
MiSeq data were downloaded from the Illumina
website. GAGE-B then down-sampled the data to
collect 250 coverage with HiSeq data and 100x
coverage with MiSeq data. After that, they cleaned
the raw data by removing adapter sequences and
trimming the reads based on q10 quality. Both the
raw (down-sampled) and the cleaned dataset are
available at GAGE-B website http://ccb.jhu.edu/
gage_b, and they are the datasets that were
considered in this paper.

All tested genomes in this paper have multiple
chromosomes and/or plasmids. V. cholerae has two
chromosomes, B. cereus and M. abscessus have one
chromosome and one plasmid, and R. sphaeroides
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Table 1 Descriptions of the bacterial genomes and sequence reads that were used in this paper. All data sets are paired-end reads

Dataset Genome GC content Sequencing Read Fragment Avg. #
size (Mb) (%) technology length (bp) length (bp) Coverage Proteins
Bacillus cereus ATCC 10987 54 35 MiSeq 250 600 100x 6,014
Mycobacterium abscessus 6G 5.1 64 HiSeq 100 335 115x% 4992
Mycobacterium abscessus 6G 5.1 64 MiSeq 250 335 100x 4992
Rhodobacter sphaeroides 2.4.1 46 69 HisSeq 101 220 210x 4,474
Rhodobacter sphaeroides 2.4.1 46 69 MiSeq 251 540 100x 4,474
Vibrio cholerae CO1032(5) 4.0 48 HiSeq 100 335 110x 3,693
Vibrio cholerae CO1032(5) 4.0 48 MiSeq 250 335 100x 3,693

has two chromosomes and five plasmids. In order to
compute the correctness of assemblies, we used the
following strains as reference genomes: B. cereus
ATCC 10987 (GenBank accession numbers
NC_003909, NC_005707), M. abscessus ATCC
19977 (NC_010394, NC_010397), R. sphaeroides
2.4.1 (NC_007488, NC_007489, NC_007490,
NC_007493, NC_007494, NC_009007, NC_009008),
and V. cholerae 01 biovar eltor str. N16961
(NC_002505, NC_002506).

Assemblers: We tested our method using eight open
source genome assemblers, that were also tested in
GAGE-B:

Abyss v1.5.1, Cabog v7.0, Mira v4.0.2 [21], MaSuRCA
v2.2.1, SGA v0.10.13, SoapDenovo?2 v2.04, SPAdes
v3.0.0, and Velvet v1.2.10.

In order to describe the methods, we will use metrics
that were used in QUAST tool [22] as it has been a
common and accurate tool in evaluating and
analyzing assembles’ results. Namely, we will use the
following metrics Number of contigs, N50, NA50,
NG50, NGA50, Genome fraction (%), Duplication
ratio, Global misassemblies, Local misassemblies, #
mismatches per 100 kbp (MP100K), # indels per 100
kbp (IP100K), and # Unaligned length. For the
descriptions of these metrics we refer the reader to
QUAST [22], as well, we added their descriptions
into Additional file 1.

Hierarchical genome assembly

Hierarchical genome assembly method includes the fol-
lowing steps. Firstly, all reads are partitioned into p dis-
joint partitions where p > 1. Then each partition is
assembled independently. After assembling all partitions
sequentially or in parallel, all the partitions’ assemblies
will be assembled together to form combined contigs,
or merged together to form merged contigs. Lastly, the
merged contigs or the combined contigs will be re-
assembled with the whole reads again. Figure 1 depicts a
diagram of these steps.

This method will be mainly compared to the basic
assembly process, as it’s shown in Fig. 1; that involves
assembling the whole reads together and then output
the assembly results. We denote the basic assembly as
B(kmer, c) where kmer is the kmer length used in the
assembly and c is the coverage of the reads.

Partitioning step

The main motivation of partitioning the reads set into
smaller partitions is to gain lower coverage data. So that
we expect to obtain a graph with less complexity, as a
result, resolving the assembly’s ambiguities will be more
efficient. It’s true that at higher coverage we may get
longer contigs than lower coverage, but mostly these con-
tigs will have more errors, in terms of global and local
misassemblies, MP100K, IP100K, and unaligned contigs.
In order to show this experimentally, we added into Tables
S3-S9 (Additional file 1) a row that present the average
values over all the partitions for each metric, so it can be
compared with the basic flow results. The results show
that, for most assemblers and for most genomes, the aver-
age values of local misassemblies, global misassemblies,
MP100K, and IP100K over all the partitions are less than
the values for the basic flow (the flow that is without par-
titioning the reads dataset), specially for HiSeq datasets
where we have more and shorter reads, hence more graph
complexities.

It’s critical for the steps of combining the contigs (con-
tigs assembly) and the re-assembly step, to have contigs
that are longer and with less errors in terms of local mis-
assemblies, global misassemblies, MP100K, and IP100K.
The results of these steps will be more efficient and accu-
rate when they are given contigs that are more corrected
and longer.

The first step of the method is to partition the reads set,
by splitting the whole reads set (N reads) into p disjoint
partitions. So, each partition has &¥ reads. After perform-
ing several experiments on finding how many partitions
to produce, we observed that there is no constraints on
how many partitions to produce, as long as we have > 10x



Al-okaily BMC Genomics (2016) 17:193

Page 4 of 11

Basic flow

N reads

Partition into P

partitions  ————

HGA flow using merged contigs

HGA flow using combined contigs

Partition into P
partitions

Assemble Assemble

Assemble

Combined contigd

Re-assemble

Fig. 1 HGA flows: Flow diagrams represent the basic assembly flow and the hierarchical assembly flows. The basic flow represents the assembly of all
reads in the dataset together. HGA flow using merged contigs represent the flow of partitioning the reads in the dataset into p disjoint partitions, then
assembling each partition independently. After that the contigs of each partition’s assembly will be merged together. Lastly re-assemble the merged
contigs with the whole reads. The only difference between HGA flow using merged contigs and HGA flow using combined contigs is that instead of
merging the contigs of all partitions’ assemblies, they will be combined (assembled) together. In this paper, we used Velvet to assemble the contigs

Re-assemble

coverage for each of the partitions. So, in general, the par-
tition’s coverage is the only constraint to be considered for
this step, not how many partitions to be produced.

Contigs assembly (combining) step

After assembling all the partitions, we merge all parti-
tions’ assemblies together to form the merged contigs,
or assemble (combine) them together forming the com-
bined contigs. Initially, we assembled the contigs of the
partitions using minimus2 [23], but after the analysis of
several experiments we found that minimus2 is actually
misleading in combining contigs. Despite of the improve-
ment in term of NA50 of minimus2’s results, there was
significant increase in both duplication ratio and misas-
semblies events. This occurs because the input data are not
short reads, but instead they are long reads (contigs). So,
as minimus2 compute the pairwise alignment between all
the reads (which are here contigs), this would mean that
if we have two (or more) contigs that are true (aligned)
but not contiguous in the reference and they share an x-
mer (which may be repeat), then minimus2 will output
these contigs as one contig. Moreover, one of these con-
tigs may most likely again share x-mer truly or falsely with
other contigs, as a result, this will lead to output the same
contigs for multiple times which will eventually increase

the duplication ratio. In addition, assembling true and
not contiguous contigs will increase the number of global
or local misassemblies. Hence, the improvement in the
results of NA5Q is mostly false positive.

It’s clear that string graph assemblers such as SGA
would not work effectively on assembling contigs. Some
contigs may start overlapping in the middle of other con-
tigs and this is not covered by string graph by definition,
as it computes the overlap at the ends of the reads (contigs
in this case). So, we switched to assemblers that use the
de Bruijn graph. Among all assemblers that are based on
de Bruijn grapg and which take contigs as input data, we
tested which assembler has the best contigs-only assem-
bly results; we found Velvet is the best choice. Moreover,
after several experiments of varying the kmer length used
in running Velvet to assemble the contigs, kmer value of
31 as well as providing the expected coverage of the input
data to Velvet to be as same as the number of partitions,
led to the best contigs assembly results. The results of
running Velvet as contigs assembler and the comparisons
with the results of minimus2 were provided in Additional
file 1: Table S11.

We denote the results of combining contigs as C(kmer,
p; ¢); where p is the number of partitions, c is the cover-
age of each partition, and kmer as the used kmer in the
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assembly of each partition. While we denote the resultant
contigs from merging the partitions’ contigs as M(kmer,

p; ©).

Re-assembly step

In this step, the merged or combined contigs will be
reassembled with all the reads again. To accomplish this,
we had to select an assembler that takes long sequences
(contigs) as an input in assembling contigs, as well
the assembler preferably should be based on de Bruign
graphs. For these reasons SPAdes and Velvet were the
convenient candidates. After testing both of them on
two genomes, SPAdes produced better re-assembly results
than Velvet; details of the tests and the comparison results
are provided in Additional file 1: Tables S12 & S13. Hence,
all re-assembly results in this paper were performed using
SPAdes assembler. We denote this step as HGA(kmer,
contigs), where kmer is the kmer length that was used
in the reassembly process, contigs is whether the merged
contigs or the combined contigs.

So, in general, we have the following flows: B(kmer).
HGA Preprocessing flows: M(kmer, p, ¢) and C(kmer, p,
¢)). HGA re-assembly flows HGA (kmer, M(kmer, p, c))
and HGA (kmer, C(kmer, p, c)).

Reassembling the reads with long sequences (contigs)
has several advantages. Firstly, these contigs were pro-
duced not from assembling all the reads together but from
combined or merged contigs of the assembly of differ-
ent partitions. So, they are more corrected and refined
in terms of errors, much longer, also they are not redun-
dant contigs meaning that they were not already produced
from the assembly of the same whole reads. Instead they
were assembled from several disjoint subsets, hence they
are structurally different as well as they were produced
from a subset of the same reads that they will re-assemble
with. Moreover, we experienced that re-assembling con-
tigs, which were produced from some reads dataset, again
with the same dataset will not improve the assembly and
even it deteriorate the new assembly. Secondly, reassem-
bling long sequences (contigs) may lead to have different
connected components to get connected. Finally, during
the path finding process this may increase the chances
of selecting the true paths by traversing the longest path
which induced from having long sequences in the input
data.

To further explore and justify the advantages of the
re-assembly step we performed a simple test on a real
dataset of M. abscessus bacteria (the dataset is used in this
study and is described in the next section). We assem-
bled the real HiSeq dataset of M. abscessus along with
the genome of M. abscessus itself, using SPAdes assem-
bler and a range of kmer lengths of 21, 31, . ., 91. The
NAS50 result of the assembly at kmer = 91 was 99 % of
the length of the genome of M. abscessus. This indicates
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that the assembly of contigs with the reads will be com-
putationally indeed effective and could lead to an optimal
assembly, but the more correctness of these contigs the
better the re-assembly results.

Results

Before of all, some assemblers namely Abyss, Mira,
MaSuRCA, SGA, SPAdes, and Velvet are newer versions
than the versions used in GAGE-B. For this we made
the following. Firstly, the assemblies’ results reported in
GAGE-B were compared in this paper. Secondly, as these
assemblies were using older versions, we did run the basic
flow using the new versions of all assemblers using kmer
lengths (or overlap lengths for SGA) of 21, 31, ..., 91 for
HiSeq datasets, and 21, 31, ..., 101 for MiSeq data sets.
Then, we reported the assembly that has the highest N50.
Moreover, MIRA and CABOG assemblers take no kmer
or overlap values as parameters, so their single assembly is
reported rather than the maximum assembly results over
the kmer (or the overlap value) range.

Each dataset was assembled by each assembler as paired
end reads. We followed the run commands for each
assembler that were provided in the GAGE-B’s Supple-
mentary document, which are also in Additional file 1.
For the basic assembly flow, we used for all assemblers,
except for MIRA and CABOG, kmer lengths (or overlap
lengths for SGA) of 21, 31,..., 91 for HiSeq data sets, and
21, 31,..., 101 for MiSeq data sets. For HGA flows, we split
the reads into 2, 4 and 8 partitions, we didn’t split the reads
more than that because the coverage of each partition will
be very low (< 10x) to assemble. Then, we assembled
each partition independently using the same kmers set
that were used in the basic flow (note that this step can be
done in parallel). For instance, we split the reads data sets
into 4 partitions then we assembled each partition using
kmer lengths = 21, 31, ...91 for HiSeq data sets, and 21,
31,...101 for MiSeq data sets.

During the next step of combining the contigs, at first we
merged the contigs of all partitions together to form the
merged contigs. As well, we combined (assembled) them
to form the combined contigs using Velvet with kmer value
of 31 and specifying to Velvet the expected coverage to
be the number of partitions. For the re-assembly step,
we used Velvet and SPAdes for this purpose as they take
long sequences as inputs. The re-assembly results using
SPAdes outperformed Velvet’s results. So, all runs on this
paper were using SPAdes in the re-assembly step.

For experimental purposes and for the HiSeq datasets
we have the following combinations (1, 21), (1, 31)...(1,
91), (2, 21), (2, 31)...(2, 91), (4, 21), (4, 31)...(4, 91), (8,
21), (8, 31)...(8, 91); for each combination we run the
re-assembly step using kmer lengths = 21, 31,...91 with
the merged or combined contigs which were produced
from the combinations. Similarly, we have the following
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combinations (1, 21), (1, 31)...(1, 101), (2, 21), (2, 31)... (2,
101), (4, 21), (4, 31)...(4, 101), (8, 21), (8, 31)...(8,101); for
each combination we run the re-assembly step using kmer
lengths = 21, 31,...101 with the merged or combined
contigs which were produced from the combinations.

Assemblies results

Figure 2 shows the results of the assemblies using both
flows of HGA method compared to GAGE-B’s best
reported results. We compared the results based on the
corrected N50 (NA50) correspondent to the highest N50
result, which is a common metric that has been used
to evaluate the accuracy of the assembly outputs for de
novo genome assembly. GAGE-B reported the evaluation
results of their assemblies, but as QUAST had a newer
version and as the genes GFF files may be updated, we
downloaded the assemblies from GAGE-B website and
assessed them along with the assemblies of HGA using the
same versions of QUAST and the latest genes GFF files,
for consistency.

HGA method has two main flows, HGA (kmer, M(kmer,
p, ¢)) and HGA(kmer, C(kmer, p, c)) as illustrated
in Fig. 2. We abbreviated them as HGA(merged) and
HGA (combined), respectively. The full results of the main
flows, preprocessing flows, and GAGE-B results for dif-
ferent metrics are available in Additional file 1: Tables
S3-S9.

Note that the results using the same assembler are
always improved using HGA method. As well as the max-
imum result of HGA flows across different genomes is
larger than the maximum of GAGE-B’s reported results.
Mostly SPAdes, MaSuRCA and Velvet have the best
HGA assembly over the rest assemblers. We can see
that the results using HGA were improved significantly
for both HiSeq and MiSeq datasets. For R. sphaeroides
HiSeq datasets, it improved from 177 Kbp (maximum
of GAGE-B results) to 315Kbp (maximum of HGA
results). Likewise, it improved from 189 Kbp to 344 Kbp
for M. abscessus. As well from 236 to 354Kbp for
V. cholerae.

MiSeq datasets showed a considerable improvement.
B. cereus results improved from 247 to 1,276 Kbp, R.
sphaeroides from 143 to 246 Kbp. The improvement for
M. abscessus was from 210 to 309 Kbp. lastly, V. cholerae
results increased from 247 to 356 Kbp. Moreover as a
result of these improvements the number of founded Pro-
teins did increase, which are plotted in Additional file 1:
Figure S1.

How does HGA method contributes in improving the
assembly process is described in the following explana-
tions. Assembling the whole reads together using long
kmer size, which is effective in resolving repeats in the
genome, will decrease the overlapping between reads due
to errors in the reads; hence, the connected components
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in the graph will be more and eventually the resultant
contigs will be shorter. Now, let’s assume that such an
assembly involves correct contigs (with no errors); then,
firstly such contigs will connect different connected com-
ponents. Secondly reads will overlap with such contigs.
Thirdly, at a branching point, the branch that is con-
nected with contigs will have more weights, hence this will
aid assemblers in selecting the true path during the path
finding process. In conclusion, this will improve the over-
all assembly process by firstly assembling repeats regions
more correctly; and secondly, producing longer contigs.
The problem now is to produce contigs that are correct
or as correct as possible. Furthermore, the process is also
true in a reverse way meaning if the contigs are not highly
corrected but they already assembled repeats regions then
assembling such contigs with the whole reads using short
kmer size will also improve the assembly results as is
shown in some results in Tables S3—S9 (Additional file 1);
since repeats were already resolved in the inputted contigs
and performing the assembly using short kmer size will be
more feasible to correct errors in the reads/contigs.

In order to produce contigs that are most corrected,
note that without even partitioning the whole reads,
assembling the whole reads using short kmer, then re-
assemble the resultant contigs with the whole reads again
led to improve the assembly results. As an example, Table
S5 (Additional file 1) shows that the result of assembling
1 partition (the whole reads) using kmer size 21, then
re-assembling the resultant contigs with the whole reads
using kmer size 41, was better than 2, 4, and 8 partitions,
and even it was the highest compared to all other methods
and assemblers. Moreover, beside the fact that short kmer
sizes is better in correcting the reads’ errors than longer
kmers sizes, we observed experimentally Tables S3-S9
(Additional file 1) that contigs which were produced from
lower coverage have less errors in terms of local misas-
semblies, global misassemblies, MP100K, and IP100K in
most assemblies. So we decided to apply such an approach
as an attempt, along using short kmer size, to produce
more corrected contigs to be inputted to the re-assembly
step.

Partitioning the whole reads has mainly two advantages.
Firstly, when building a graph using a set of reads, then
all errors in all reads will create error-related complex-
ities (such as false branching, tips, and bubbles) in the
graph. Now, building a graph using an x partitions of
the reads set, although all errors in the reads will still
induce error-related complexities, but in this case they
will be distributed into x graphs. Hence, in each of the x
graphs we will have less error-related complexities com-
pared to the graph that is built using the whole reads set.
This will aid the assembler to apply their algorithms to
resolve error-related complexities more feasibly in each
graph, ultimately contigs that result from all partitions will
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Fig. 2 NA50 Results: NA50 (corrected N50) correspondent to the assembly with the highest N50 results for GAGE-B and HGA assemblies
contain less errors. Note that complexities that usually Secondly, with a single partition’s assembly, assemblers

are induced by e.g. repeats or SNPs will however still be  are compelled to produce contigs of coverage of 1x, in
presented. order to avoid redundancy in the assembly result. So at
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a branching point (node in the graph with indegree = 1
and outdegree > 1), assemblers must traverse single and
the best possible branch, given that it might be heuristi-
cally false positive, hence false contig production. Now,
when partition the whole reads into multiple partitions,
firstly the resultant contigs of all partitions’ assemblies
will be of coverage Px not only 1x, where P is the num-
ber of partitions. Secondly, it’s highly possible that, at the
same branching point, different branches will be traversed
in the assembly of different partitions. Hence, as more
branches will be traversed, the true branch is more likely
to be traversed, hence a true contig are more likely to
be produced. Thus, the resultant contigs of all partitions
will carry more possibilities of the true contigs. This lat-
ter analysis also explains the reason that the re-assembly
process using merged contigs showed better results than
the combined contigs (that is of 1x coverage) as well better
than the re-assembly using the contigs that were produced
from 1 partition.

Multi-kmers assembly

Some assemblers use multi-kmers for assembly such as
SPAdes. Firstly, SPAdes’ results that were provided by
GAGE-B were already optimized over multiple kmers.
Moreover, we did run SPAdes using two kmers, kmer that
were used in the preprocessing step and kmer that were
used in the re-assembly step; in order to test if there is
an improvement using multi-kmer assembly by using the
same kmers that were used in the steps of HGA method.
Some results showed slight improvements over the single
kmer assembly, but weren’t even close to the improve-
ments made by HGA methods, even some results were
worse. This can be explained as the complexity of the de
Bruijn graph using multiple kmers would not be reduced
and even it may increase compared to the complexity of
de Bruijn graph of a single kmer. Also, it’s hard to find
the combination of kmer sizes that will lead to the best
assembly, as this process involve costly enumeration pro-
cess and running trial for each tested combination. HGA
methods utilizes the use of multi-kmers, not collectivity,
but in phased manner.

Impacts of the contigs correctness & length in the
re-assembly process

The correctness and the length of the contigs that are re-
assembled with the whole reads are critical to improve
HGA assembly results. To investigate that and as an exam-
ple, we could notice, Tables S3—-S9 (Additional file 1),
that MaSuRCA HiSeq assemblies were ones of the high-
est in terms of the metric MP100K compared to the other
assembler. But in terms of local and global misassemblies
MaSuRCA is one of the assemblers that had the low-
est. Moreover, as an evaluation and for the re-assembly
step, the lower MP100K and IP100K would produce better
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results than lower local or global misassemblies; since
MP100K and IP100K are measured per 100 kbp. As a
result, for a genome of size 5 Mbp and MP100K = 5,
this will induce 250 mismatches, where local or global
misassemblies values are usually in average of tens. The
MP100K for MaSuRCA’s HiSeq assembly, basic flow for
of R. sphaeroides is 47.5 (~2,090 mismatches = genome
size x 10 x genome fraction of the assembly x MP100K);
for M. abscessus is 21.2 (1,080); and for V. cholerae is
23.8 (930). Such a large number of mismatches in the
contigs will induce less overlaps between the reads and
these contigs during the re-assembly process. These val-
ues were reduced by the partition step to 22.8 (1,000),
6.7 (340), and 14.8 (570), respectively; and were further
reduced/increased in the combining step (assembling the
contigs using velvet) to 18.3 (800), 5.6 (280), and 17.2 (670)
respectively. This explains why the re-assembly process
was better using the combined contigs rather than the
merged contigs for MaSuRCA’s HGA results; except for V.
cholerae which correlates with the fact that the combin-
ing step didn’t decrease the errors and it actually increased
them. It's worth to mention that although the HiSeq
contigs (combined and merged) by MaSuRCA showed
more errors in terms of MP100K, these contigs were
more contiguous (longer) compared to the other assem-
blers’ resultant contigs. As the longer contigs that get
re-assembled using HGA method the better HGA assem-
bly results. HGA results using MaSuRCA were among the
best results for MiSeq assemblies and the best for two
HiSeq assemblies M. abscessus and V. cholerae.

In conclusion, this analysis suggests that resolving the
causes of MP100K and IP100K more carefully at least
during the steps, before the re-assembly process, namely
partitions assembly step and/or the contigs combining;
will lead to improve the results of the re-assembly step
hence the overall assembly results.

Testing error-free reads
As noted in the Discussion section, the contigs in the par-
titioning and combining steps were expected to obtain as
much as possible correction/refining before re-assembling
them again with all the reads. This explains the improve-
ment in the HGA results. To further justify that we simu-
late reads with no errors from M. abscessus genome with
the same coverage of the real dataset, then we run HGA
methods on those reads. The assemblies results of HGA
flow of combining contigs and HGA using combined con-
tigs showed no improvement over the basic flow, while it
wasn’t the same case with the real dataset which involves
errors in the reads and the improvements were much
more significant.

This indicates that HGA methods were able to correct
more errors in the reads than the basic flow. Moreover,
even with error free reads, HGA using merged contigs
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showed an improvement over all the other HGA meth-
ods and the basic flow. This again supports the point that
assembling contigs at a higher coverage with the whole
reads is better than combining contigs first and then
assemble the combined contigs (usually coverage of 1x)
with the whole reads. The test results were provided in
Additional file 1: Table S10.

Partitions-kmer to re-assembly-kmer relations

As HGA method involves two assembly steps, each assem-
bly step use same or different kmer size, kmer that is used
in the preprocessing step and kmer in the re-assembly
step. Moreover, as we tested all combination of the two
kmers then we selected the assemblies of the highest N50
results (8 highest assemblies for 8 assemblers for both
combined and merged flows), we plotted in Fig. 3 out of
these 16 assemblies how many times each kmer were used
during the preprocessing step and during the re-assembly
step, in order to observe correlations.

We could observe that for most of the best assem-
bly results on MiSeq data, using short kmers (21 and
31) in the preprocessing step and long kmers (61, 71,
and 81) in the re-assembly step, showed better assembly
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results. While, for HiSeq data, short kmers (21 and 31)
in the preprocessing step and medium kmers (31, 41,
and 51) in the re-assembly step, showed higher assem-
bly results. Figure 3 shows the plots of the kmer sizes
that were used in the preprocessing and the re-assembly
steps, as well how many times each kmer were observed.
It’s clear to notice that 21 and 31 were dominant dur-
ing the preprocessing step. This can be justified as the
assembly process using short kmer sizes leads to more
corrected contigs and as these contigs are inputs to the
next step (re-assembly step); the more corrected contigs,
the more likely to lead to better assembly results. For the
re-assembly step, medium to long kmers were dominant,
this can be explained because with such lengths of kmers,
resolving the complexities induced from repeats is prior,
specially when the corrected contigs collaborate in reduc-
ing the complexities/computation that usually induced
from errors. So, the assemblies using such a combination
were mostly the highest in N50 results.

Adopting short kmer as a stereotype in the preprocess-
ing step and medium-long kmer in the re-assembly step
might help in eliminating the common confusion of what
kmer length (short or long) to apply in the assembly. In

A. HiSeq datasets(100bp)

Preprocessing-to-Re-assembly

w10-15

B. MiSeq datasets(250bp)
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m24
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5 6 i ® R.sphaeroides
4 | = M.abscessus
‘ I mV.cholerae
2 4 |
0
~13x ~25x ~50x
Coverage of Partition
Partitions
12
10
8 |
mB.cereus
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Fig. 3 Partitions-kmer to Re-assembly-kmer Relations: As there are 16 highest results (2 flows for 8 assemblers); we built two plots, the first plot is a
surface chart that shows the count of combination of kmers (preprocessing kmer to re-assembly kmer) that were applied by the 16 highest results.
As well the second plot shows the counts of partitions that were applied by the 16 highest results
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addition, it helps to avoid the need to run some prepro-
cessing tools like KmerGenie [24] that is used to find the
best kmer size to be used in the assembly process, or try-
ing several assembly trials then selecting the best assembly
results, or the need to run assembly using multiple kmers
which cost more space and time and showed no significant
improvement compared to HGA method.

Lastly, we plotted also the most frequent number of
partitions that were used among the highest assemblies
results as shown in Fig. 3. We concluded that more par-
titioning (less coverage) was most frequent. This can be
explained, again, as with low coverage the graph is less
complex, hence more corrected contigs to be inputted into
the reassembly step.

Discussion

We first denote the following notations. R as the length of
the reference genome, L as the length of the input reads,
C as the expected genome coverage by the reads, K as the
size of the kmer, and Ideal case as the case where there is
no errors in the sequencing reads, the length of any repeat
in reference genome is > L, and the reads were sequenced
uniformly.

Analysis 1: In the ideal case and when C for instance
> 100x, building the de Bruijn graph using short
kmer size or long kmer will lead to the same and
optimal assembly; the only difference would be that
by using large kmer the assembly will need less
memory and will be faster. For a non-ideal case, reads
have errors and this induces tips, bubbles, and false
branching. Repeats in the genome with length less
than L will induce cycles, bulges, false branching, and
also tips and bubbles. Non-uniform coverage results
in varying kmer counts and reduces overlapping
between the reads, hence this will create gaps and
increases the number of components in the graph.
Now, there is a tradeoff between using long or short
kmer sizes. Long kmer size leads to less false
branching, better resolution of repeats, and less
cycles; but less error correction and detection and less
overlapping between the reads (more components
and gaps). On the other hand, short kmer sizes
outputs the opposite namely, more false branching,
more cycles, and less repeats resolution; but errors
correction and detection will be more effective and
the graph would have less components and gaps.
Analysis 2: When we have reads of high coverage, the
chances of not covering some regions of the genome
will be less and the resultant contigs from these reads
will be longer but will lead to a more complex graph
than a graph built from lower coverage reads. Hence,
the algorithms of errors correction and path finding
that are applied by the assemblers will be less
effective at high coverage. This is the main
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motivation behind partitioning the whole reads to
low coverages reads sets. In order to resolve the
effects of having more gaps in the assemblies of the
partitions compared to the assembly of the whole
reads, re-assembling the contigs with the whole reads
will resolve such an issue and utilize the higher
coverage of the original whole reads set.

Conclusion

By using HGA method, there is a significant improvement
in the assembly quality, based on N50 and corrected N50
metrics, using different assemblers on different genomes.
HGA applies hierarchical approach where the assembly
process starts with lower coverage assembly to get more
corrected but shorter contigs results, then assembling
these contigs with all reads again to gain longer contigs
results.

Moreover, HGA eliminates the hardness and the trade-
off of using short, long, or multiple kmer lengths, where
short kmers are better to correct the reads and long kmers
are better to resolve the repeats. For HiSeq dataset (reads
lengths of ~100 bp) and for coverage of ~100x, partition-
ing the datasets into disjoint partitions each of coverage
of ~12x and ~25x. Then, assembling each partition using
kmer sizes of 21-31. Next, merge or combine (assemble)
all partitions’ contigs together. After that, re-assembling
the resultant contigs with the whole reads using kmer val-
ues of 31-51; led to significantly better assembly results.
For MiSeq dataset (reads lengths of ~250 bp) and for same
coverage of ~100x, following the same settings as HiSeq’s
but with re-assembling the resultant contigs with the
whole reads using kmer values of 61-81 led to significant
results.

Availability and requirements

Project name: HGA v1.0.0.

Project access: github.com/aalokaily/Hierarchical-Genome-
Assembly-HGA.

Operating system: Tested on Linux/Ubuntu OS, AMD
Opteron(tm) 2.4 GH, 256 GB Memory, 64 core. Program-
ming language: Python 2.7.6.

Other requirements: SPAdes v3.0.0, Velvet v1.2.10. Vel-
vet must be installed as indicated in Additional file 1.
License: GNU GENERAL PUBLIC LICENSE.

Any restrictions to use by non-academics: None.

Additional file

Additional file 1: Supplementary tables, experiments, and descriptions.
The file contains a detailed results of the assembly of the genomes and
assembler which were used in this research. Also, the results of some
experiments that were performed to explain the method and the
improvement showed in the manuscript. In addition, the file includes a
descriptions of the datasets and the metrics which were considered in the
manuscript. Lastly, the commands that were used by the different
assemblers to run the assemblies. (DOCX 600 kb)
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