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Abstract

Background: Inference of gene regulation from expression data may help to unravel regulatory mechanisms
involved in complex diseases or in the action of specific drugs. A challenging task for many researchers working in
the field of systems biology is to build up an experiment with a limited budget and produce a dataset suitable to
reconstruct putative regulatory modules worth of biological validation.

Results: Here, we focus on small-scale gene expression screens and we introduce a novel experimental set-up and
a customized method of analysis to make inference on regulatory modules starting from genetic perturbation data,
e.g. knockdown and overexpression data. To illustrate the utility of our strategy, it was applied to produce and
analyze a dataset of quantitative real-time RT-PCR data, in which interferon-a (IFN-a) transcriptional response in
endothelial cells is investigated by RNA silencing of two candidate IFN-a modulators, STATT and IFIH1. A putative
regulatory module was reconstructed by our method, revealing an intriguing feed-forward loop, in which STAT1
regulates IFIH1 and they both negatively regulate IFNAR1. STAT1 regulation on IFNART was object of experimental

validation at the protein level.

Conclusions: Detailed description of the experimental set-up and of the analysis procedure is reported, with the intent
to be of inspiration for other scientists who want to realize similar experiments to reconstruct gene regulatory modules
starting from perturbations of possible regulators. Application of our approach to the study of IFN-a transcriptional
response modulators in endothelial cells has led to many interesting novel findings and new biological hypotheses

worth of validation.

Keywords: IFN-a modulators, Gene regulatory modules, RNA silencing, Experimental set-up, Small-scale gene

expression screens

Background

One of the most discussed topics in the field of systems
biology is the inference of gene regulatory networks
(GRNs) from high-throughput expression data. Bio-
logical networks are graphical representations of the
complex dependencies between the different molecular
species interacting in a cell, i.e. genes, transcripts, pro-
teins and metabolites, where nodes represent biological
molecules and edges interactions. More precisely, GRNs
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aim to identify regulation at the transcript level, thus
nodes represent genes and edges direct as well as indirect
influences between genes. Network inference may be
useful to elicit important regulatory mechanisms charac-
terizing biological systems or involved, for instance, in the
development of a complex disease, or in the action of a
drug. Although, in the past decades, many different
approaches have been proposed to infer gene regulation
on a genome-wide scale [1-4], the reverse-engineering of
GRNs still remains an open challenge, mainly due to the
identifiability issues arising when working in the context
of a limited number of available measurements compared
with a huge number of genes [5].
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Critical assessment of different inference methods has
demonstrated that the most informative data come from
multiple input experiments [6]. Systematic perturbation
data were successfully used also in other contests, e.g. to
construct quantitative models of signalling networks for
predicting the effects of drug combinations [7]. As
regards GRNs, genetic perturbations, in which the ex-
pression levels of one or more genes are altered by their
silencing (knockout, knockdown) or up-regulation (over-
expression), are the best suited to reconstruct gene regu-
latory relationships that account for directionality [4, 8].
Outstanding large-scale studies, in which different types
of high-throughput data are integrated to provide a com-
prehensive view of the underlying transcriptional network,
have been conducted (e.g. [9]). However, given the com-
plexity and the high costs related to a whole-genome ap-
proach, it is a common practice to focus the attention on
smaller regulatory sub-networks and on the basic building
modules of which they are composed [10, 11].

Recurring interaction motifs have been shown to
characterize cellular networks [12, 13] and, among them,
the feed-forward loop (FFL) is particularly interesting for
its properties. It is a closed unidirectional loop, com-
posed by an upstream regulator X which controls a
downstream regulator Y, and they both control a com-
mon target Z. Thus the regulation of X on Z is due to
the balance of two effects: one direct and one mediated
by Y. Among the three-node patterns, the FFL was the
only one found to be a statistically significant motif in
real transcription networks [14]. Moreover, it is an im-
portant functional circuit, whose dynamical properties
make it suitable for the functions of noise suppression
and adaptation [15].

In this paper we tackle the problem of inferring gene
regulation in small sub-networks from both the experi-
mental design perspective and the analysis pipeline used
for regulatory motifs reconstruction. Specifically, our
contribution addresses three main questions: (a) how to
build up an experiment to investigate the transcriptional
modulators of a biological process, optimizing the trade-
off between costs and informative content of the data;
(b) how to extract information inherent in perturbation
data and (c) how to reconstruct putative FFL regulatory
motifs, to be subsequently biologically validated.

We first describe our method in general terms, and
then exemplify its ability to generate biological hypotheses
on candidate modulators through a specific case study on
interferon-a (IFN-a) transcriptional response in endothe-
lial cells.

Methods

Consider a biological system for which a transcriptional
signature is available, from a genome-wide expression
study. The purpose is to focus on a few candidate
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transcriptional modulators, and design a new experiment
able to infer putative functional regulatory modules in-
volving them. In the following, we first describe some
crucial aspects related with the experimental set-up, to
be addressed in order to provide an appropriate set of
data. Then, the analysis pipeline will be presented, con-
sisting of two main steps: a significance analysis to elicit
significant modulations due to the silencing of each tar-
get gene, and an inference procedure to extract regula-
tory modules, combining the significant regulations
induced by different couples of target genes. Although
the selection procedure presented below is suited for the
analysis of quantitative real-time RT-PCR (qRT-PCR)
data, as in our case study, our method for inferring regu-
latory modules may be applied to different types of gene
expression data, in cascade to any standard strategy of
selection.

Experimental set-up and pre-processing

Pre-selection of transcripts

To define the experimental set-up, the first crucial step
is the pre-selection of the panel of genes to be moni-
tored. A reasonable approach is to pool the following
sets of genes:

genes belonging to signalling pathways of interest;
the most differentially expressed genes in the
genome-wide signature, based on previous
experiments;

e other genes of biological interest;

e few candidate housekeeping genes.

Single-gene perturbations
In order to reconstruct causal relationships between the
perturbed gene and its targets, the expression of the
panel of genes is monitored during perturbations of
single candidate transcriptional modulators. Informative
perturbation data include knockdown, knockout or
overexpression.

In the next paragraph we will treat specifically the case
of RNAi-mediated knockdown of candidate modulators.

Multiple-stimulation data

Following each perturbation, samples are collected in
short time-series, to capture events occurring at different
time points, and, possibly, subjected to different stimuli,
including treatment with a drug/agent, removal of the
drug/agent, stimulation with a drug/agent at different
doses. The sampling schedule should be designed in order
to catch the dynamics induced by each perturbation, also
based on a priori information, evaluating the trade-off
between informative content and biological complexity
of the experiment. An example of a sampling scheme
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with a double stimulation and a short time series is re-
ported in Fig. 1.

Data pre-processing

Expression of preselected genes is quantified by multi-
well plates containing custom qRT-PCR assays, under
different gene perturbation conditions. Ready custom
cards, with possibility of pre-selecting the spotted genes,
are available from different companies and in several for-
mats, with number of assays varying among 48, 64, 96,
192, 384. qRT-PCR data are normalized with respect to
a reference gene R, shown to be stably expressed across
the different conditions, and the expression level of each
gene of interest is calculated via the comparative cycle
threshold (CT) method [16]. The effects of each
perturbation P targeting a specific gene X are thus
evaluated with respect to a calibrator condition C, as
AACT = ACT"~ACTE where ACT = CTx—CTk.

Significance analysis

In this paragraph we treat the specific case of perturba-
tions induced by siRNA knockdowns, with the intent of
explicitly clarify the analysis pipeline adopted in the case
study. To extract information from knockdown data
about significant modulations that may represent direct
or indirect effects due to the inactivation of target genes,
a selection procedure, based on a measurement error
model of biological variability, was devised. The pro-
posed strategy was inspired by previous methods for ro-
bust quantization of differentially expressed genes in
microarray data [17].

Measurement error model of oancr
The biological variability of AACT is estimated from
replicates through a flexible model for error variance,

Gascr = @+ B-|AACT, (1)

where a, B and y are parameters, linking the variance to
the absolute value of the observed AACT intensities.

stimulation phase

I | wash-out phase

+ t ¢ 4 t 4
To T4 T, T T, Ts

Fig. 1 Example of sampling scheme. Data are collected at different
time points during treatment and removal of a drug/agent,
corresponding to stimulation and wash-out phase. Time points T3
and Ts are scheduled to monitor steady state gene expression in
the stimulation and wash-out phase, respectively
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Selection procedure

We propose a two-stage approach that first filters obser-
vations by a variance based criterion and then performs
a variable-by-variable statistical test procedure, that uses
the biological variance estimated from the error model
to assign a p-value to each modulation. For each silen-
cing experiment, starting from the mean AACT values
(across biological replicates), the detailed selection pro-
cedure consists of the following steps.

S1. Filtering based on AACT variance distribution.We
filtered out all the AACT whose variance exceeded
the 95-th percentile of the observed variance
distribution.

S2. Statistical test procedure. For each gene and each
time point ¢, we tested the null hypothesis,
Hy:AACT =0, namely no difference in the effects of
a siRNA targeting a specific gene and of the
calibrator siRNA. A gene at a given time point is
considered not differentially expressed if the AACT
is close to 0. Under H,, the test statistic, ie. the
averaged AACT, was assumed to be distributed as a
N(0,62/K), where K is the number of independent
biological replicates and 62 is the biological variance
of AACT, estimated by the measurement error
model. The statistical test procedure results in a
vector of p-values, one for each gene and time point.

S3. Multiple testing correction. A Bonferroni multiple test
correction is applied to control the false positive rate
(FPR) in the gene callings. Significant modulations
are defined by fixing a cut-off of 0.05 on the Bonferroni
corrected p-values.

Inference of multi-output FFL regulatory modules
Starting from the results of the selection procedure, i.e.
from the Bonferroni corrected significant modulations
induced by each silenced gene, we infer regulatory
modules. The rationale is to extract, among significant
regulations, those representing FFLs. The strategy is
the following.

I1. Select the couples of perturbed genes (P1, P2) for which
regulation of P1 on P2 or vice versa is significant.

12. Identify the lists (L1, L2) of genes differentially regulated
by P1 and P2, respectively.

I3. Check whether L1 and L2 have genes in common.

I4. For each shared modulation found, reconstruct the
corresponding FFL. The type of regulation for each
edge in the FFL is determined by the correlation
between the expression levels of the genes at its
ends. If a silenced gene significantly down-regulates
(up-regulates) another gene, we interpret the regula-
tion as an activation (repression) relationship, from
the silenced gene to its target.
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I5. Merge the FFLs together to obtain a completely
connected multi-output FFL regulatory module,
formed by P1, P2 and their common targets.

The multi-output FFLs thus inferred may have func-
tional roles and represent distilled information on which
experimental researchers can focus for further investiga-
tion. Moreover, the FFL circuit is conceptually easy to be
validated using, for instance, combinatorial gene silen-
cing and/or passing from the mRNA to the protein level.

Case study: IFN-a induced regulatory modules

Our approach was applied to deepen the knowledge
gained from a recent genome-wide study in which the
signature of IFN-a in human umbilical vein endothelial
cells (HUVECs) was inspected after 5 h from stimula-
tion, determining the significant up-regulation of 242
probesets [18]. Interferon-a is a cytokine endowed with
antiviral, immunomodulatory and antiproliferative activ-
ities, achieved through the induction of hundreds of
interferon-stimulated genes (ISGs). Discovered in 1957
[19] as a molecule capable of restricting viral replication
in vivo, IFN-a has widely been used in the treatment of
hepatitis C virus (HCV) infection as well as in some
types of cancer, due to its pleiotropic and potent bio-
logical activities. The novel experimental set-up was
used to investigate the role of few candidate modulators
on IFN-a transcriptional response in endothelial cells.
Here we analyze a subset of these data, specifically mon-
itoring the transcriptional effects caused by the silencing
of STAT1 and IFIH1, two known regulators of IFN-a sig-
nalling [20]. We decided to perturb a TF (STAT1) and a
non-TF (IFIH1), to exemplify, in a real situation, the in-
formation that may be obtained by our procedure for
both types of modulators.

Materials and methods
Primary endothelial cells (HUVECs) were maintained in
M200 culture medium supplemented with Low-Serum
Growth Supplement (LSGS; Life Technologies, Paisley,
UK) and stimulated in vitro with human recombinant
IFN-a2 (Merck & Co., White House Station, NJ, USA)
at the final concentration of 1000 IU/ml. Each biological
sample was obtained by pooling cells from four different
donors, at passage between 2 and 6. Stealth siRNA (Life
Technologies) were used for RNAi-mediated knockdown
of few candidate IFN-a modulators, including STAT1
and IFIH1 (catalogue IDs HSS110273 and HSS127414,
respectively). Negative control with low GC content
(Life Technologies) was used as calibrator siRNA. Full
details on RNA silencing procedures are included in the
Additional file 1.

The experiments were performed in biological dupli-
cates. Samples were collected in short time series
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composed of 4 time points, with a double stimulation:
IFN-a at 0 h and wash-out at 8 h, according to the sam-
pling scheme in Fig. 2. The rationale underlying this
sampling scheme was to test whether the candidate
modulators exerted their action in the early (2 h) or/and
late (8 h) IFN-a activation phase or/and in the phase of
IFN-a removal (12 h). A panel of 96 pre-selected genes,
related to IFN-« transcriptional response, was screened
by Custom TaqgMan Array Cards (Life Technologies, for-
mat 96b), under different gene perturbation conditions:
siRNA inactivation of target genes. Transcripts to be
monitored on the custom cards (Additional file 1: Table
S1) were chosen as follows:

e 9 genes from the IFN-«a signaling pathway;

e 75 genes from the top of the transcriptional signature
found in [18], with respect to the fold change ranking;

e 9 genes of biological interest expressed in endothelial
cells;

e 3 candidate housekeeping genes.

The qRT-PCR amplifications were run on an ABI Prism
7900HT Sequence Detection System (Life Technologies).
Raw data were extracted using the SDS v2.4 software
package (Life Technologies). All the following analyses
were executed by developing custom code in the R statis-
tical environment. JAK1 was shown to be the most stable
gene across the different conditions and it was taken as
reference gene for the normalization of qRT-PCR data
and the calculation of AACT.

Methods used for experimental validation are described
in the Additional file 1.

Results

Modelling of the AACT measurement error

After calculation of AACT, the biological variance was es-
timated via the general measurement error model in equa-
tion (1). The best fitting, in terms of Weighted Residual
Sum of Squares (WRSS) and precision of the parameter

IFN« stimulation

| | IFNa wash-out

t 4 2 ? KD
0 2 8 12
t ¢ 1 1 CTRL
0 2 8 12

Fig. 2 Sampling schedule adopted in the case study. Data are
collected at 4 time points (0 h, 2 h, 8 h, 12 h), both during
treatment and after removal of IFN-a, to monitor stimulation and
wash-out phases. Two conditions are compared: samples with
siRNA knockdown of the target gene (KD) and samples treated
with the calibrator siRNA (CTRL)
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estimates, was obtained by the model 62 = 0.3975 (Fig. 3).
This estimate was based on the biological replicates re-
lated to the silencing of five candidate IFN-a modulators,
including STAT1 and IFIH1.

Genes significantly regulated by RNA silencing of
candidate IFN-a modulators

The selection procedure led to the characterization of
the significant regulations induced by the inactivation of
each of the two candidate IFN-a modulators, STAT1
and IFIH1. Each modulator was thus evaluated both for
its strength (number of genes significantly regulated
following its silencing), its sign (positive, whether its in-
activation mainly down-regulates the monitored genes
or negative, otherwise) and the timing at which it exerts
its prevalent action: early (2 h) or late (8 h) IFN-a stimu-
lation phase or IFN-a removal phase (12 h). Results are
presented as heatmaps in Fig. 4. A total of 21 and 12
genes were found to be significantly regulated by STAT1
and IFIHI1, respectively. As expected, STAT1, a tran-
scription factor central to IFN-a pathway, was here con-
firmed as a strong positive IFN-a modulator, with 17/21
genes down-regulated in the early stimulation phase,
whereas IFIH1 was seen to be mainly a positive modula-
tor with 8/12 down-regulated genes, 3 in the early and 5
in the late stimulation phase. Both modulators were
shown to act in presence of IFN-a stimulus; the unique
exception being the IFIH1 action exerted on SAMD9
only during the wash-out phase. Detailed information on
statistical significance and FC of each regulation is re-
ported in Additional file 1: Tables S2 and S3.

STAT1 transcriptional regulations with validated binding
sites

The whole set of STAT1 transcriptional regulations in
Homo sapiens was extracted from the TRANSFAC
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Fig. 3 AACT measurement error model. Absolute AACT intensities
are binned, and, for each bin, the mean variance estimates are
plotted against the mean |JAACT] intensities. The fitted model
variance is 62 = const = 0.3975
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Professional database (BIOBASE, release 2013.3), a
manually curated database of eukaryotic transcription
factors (TFs), their genomic binding sites and DNA
binding profiles [21]. The targets of STAT1, identified by
our analysis, were thus compared with the validated
targets present in TRANSFAC, to check if some of the
significant regulations found by our method were con-
firmed as direct regulations, having the target gene an
already validated binding site. The results are summa-
rized in Table 1. Interestingly, both IDO1, the gene
found most importantly down-regulated by our signifi-
cance analysis, and PSMB9 have validated binding sites
for STAT1, thus confirming 2 out of the 21 significant
regulations induced by STAT1. It is worth noting that
among the direct targets of STAT1 with experimentally
validated binding sites there are several interferon regu-
latory factors (IRF1, IRF7, IRF8) and also other genes
implicated in the IFN response (e.g. GBP1). Considering
also indirect targets, i.e. targets mediated by TFs regu-
lated by STAT1, other two significant regulations are
confirmed as indirect, having CXCL10 and IFITM1 ex-
perimentally validated binding sites for IRF1. Overall,
the analysis on the TRANSFAC Professional database
confirms 4 out of the 21 significant regulations induced
by STAT1. Two of them are direct regulations and two
indirect ones, possibly mediated by IRF1. The presence
of a direct regulation between STAT1 and IFIH1 is
supported by a recent paper, demonstrating, by using
ChIP-chip data and ChIP-PCR validation on independ-
ent biological samples, that phosphorylated STAT1 bind-
ing site is present in the IFIH1 promoter [22].

Reconstruction of regulatory modules involving IFN-a
modulators

Combining the significant modulations due to the silen-
cing of different modulators, our approach allows to re-
construct putative regulatory modules that provide
distilled information worth of biological validation. Fig. 5
illustrates how the procedure is able to reconstruct the
regulatory sub-network involving two candidate IFN-a
modulators, STAT1 and IFIH1. First, a connection is
suggested between the two nodes representing them,
since IFIH1 was significantly regulated by STAT1. By
looking at their common targets, IDO1, DDX60,
FAM46A, CXCL10, SAMD9Y, and IFNARI appear to be
significantly regulated by both. Each shared regulation
correspond to a FFL including STAT1, IFIH1 and one
common target. Merging together the six FFLs, the
regulatory module shown in Fig. 5b is inferred. Regula-
tions occurring in the IFN-a removal phase (at 12 h in
our set-up) are graphically represented as dotted lines,
without specifying whether they indicate activations or
repressions. If a gene is regulated both in the stimulation
and wash-out phase, e.g. FAM46A, only the regulation
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Fig. 4 Heatmaps with the genes significantly regulated by STAT1 (left) and IFIH1 silencing (right) during the two phases: stimulation with IFN-a
(2 h, 8 h) and 4 h after its removal (12 h). Colored tiles indicate significant regulations, down-regulation in blue and up-regulation in red. The in-
tensities represent fold change (FC) inductions according to the color legend on side. Genes, from top to bottom, are ordered by increasing FC
in the stimulation phase

in the stimulation phase is reported in the reconstructed
network. All the edges in the network represent influ-
ence relationships between pairs of genes, that may cor-
respond to direct (due to the binding of the regulator to
the promoter region of its target), as well indirect (e.g.
mediated by other factors), transcriptional regulations.
In particular we expect that some of the regulations in-
duced by STAT1, which is a TF, are direct as those on

Table 1 STAT1 targets with validated binding sites out of the
21 inferred putative targets

Transcription Factor Target Source

STAT1 IDO1 TRANSFAC release 2013.3
STATI PSMB9 TRANSFAC release 20133
STAT1 IFIH1 Przanowski et al. [22]
STATI IRF1 TRANSFAC release 20133
IRF1 CXCL10 TRANSFAC release 2013.3
IRF1 IFITM1 TRANSFAC release 2013.3

Columns indicate the transcription factor, its validated target and the source
from which the validation is extracted, respectively. Direct targets of STAT1 are
reported in the first three rows, whereas indirect targets, mediated by IRF1, are
shown in the last two rows

IDO1 and IFIH1 and others indirect, e.g. that of STAT1
on CXCL10, probably due to a transcription factor regu-
latory pathway mediated by IRF1 (see previous para-
graph). The influence relationships induced by IFIHI,
which is not a TF, are probably indirect and more diffi-
cult to be interpreted but are still useful to elicit its role
of IFN-« transcriptional modulator.

STAT1 is a negative regulator of IFNAR1

Among the six putative FFLs (Fig. 5b), the one in which
STAT1 regulates IFIH1 and they both regulate IFN-a re-
ceptor subunit 1 (IFNARI1) is particularly interesting be-
cause it seems to indicate the presence of a negative
feedback on an element upstream in the IFN-a pathway,
the receptor itself. Thus, STAT1 negative regulation on
IFNARI was object of experimental validation. As a first
attempt, we tried to replicate the STAT1 silencing effects
at the protein level but in three different donors we did
not detect increased IFNARI levels following siRNA-
mediated silencing of STAT1 (data not shown). This be-
haviour was possibly due to the high baseline levels of
IFNAR1 expression in HUVECs, confirmed also in
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A

STAT1 silencing IFIH1 silencing
gene regulation tp regulation tp
IDO1 down 2h down 2h
DDX60 down 2h down 2h
FAM46A down/up 2h/12h down 8h
CXCL10 down 2h/8h down 2h
SAMD9 up 8h down 12h
IFNAR1 up 8h up 8h
IFIH1 down 2h

Fig. 5 Inference of putative regulatory modules. a A summary of
genes significantly modulated by STAT1 and IFIH1 silencing, extracted
from Fig. 4. Since IFIH1 was significantly down-regulated by STAT1
silencing, each gene reported in the table is the common target of a
FFL motif involving STAT1T and IFIH1. b The inferred six-output FFL
regulatory module. Lines represent influence regulations in the stimula-
tion (2 h/8 h; solid line) and wash-out (12 h; dashed line) phase. Arrow
styles stand for: arrow, activation; -, repression; dot, unspecified sign

of regulation

additional six samples. We thus opted for the comple-
mentary approach. To investigate effects of STAT1 over-
expression on IFNAR1, HUVECs were transduced with
STAT1-encoding (LV-STAT1) or control (LV-CTRL) len-
tiviral vectors and analyzed by flow cytometry following
IFN-a stimulation. In two different HUVEC samples
(D48 and D59) we observed that although STAT1 over-
expression did not apparently modulate IFNAR1 surface
levels in unstimulated cells (Fig. 6a, 0 h), STAT1 overex-
pression led to down-regulation of IFNAR1 in IFN-a
stimulated cells (Fig. 6a). Western blot analysis con-
firmed that genetic modulation of STAT1 levels was
followed by corresponding modulations in STAT1 pro-
tein levels (Fig. 6b). In order to exclude the possibility
that the method adopted to overexpress STAT1 caused
downregulation in the expression of other surface pro-
teins, relevant control was performed on CD31, a struc-
tural protein normally present in endothelial cells.
Following STAT1 overexpression, a mild down-regulation
in the intensity of CD31 was observed but, differently
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from what was seen for IFNAR]I, it did not involve the
percentage of positive cells and it was present also in ab-
sence of IFN-a stimulus (Additional file 1: Figure S1).

These results indicate that STAT1 is able to negatively
modulate IFNAR1 expression on cell membrane, thus
confirming one of the putative regulation in the inferred
FFL and revealing an unprecedented negative feedback
loop in the IFN-« signalling pathway.

Discussion

In this paper, we address to small-scale gene expression
screens and present an original experimental set-up and
a customized method of analysis suited to infer putative
regulatory modules, extracting information inherent in
genetic perturbation data. Our approach, result of the
joint efforts of experimental and theoretical researchers,
is applied to investigate the role of STAT1 and IFIH1 as
candidate modulators of IFN-a transcriptional response
in endothelial cells. The case study is used to exemplify
the various steps of our approach and its ability to gener-
ate potentially biologically meaningful gene modules.

Experimental set-up and analysis method

In the past decades, with the advent of microarrays, a
huge amount of transcriptional studies have been con-
ducted, but most of them were meant to identify transcrip-
tional signatures, by taking a snapshot of differentially
expressed genes at a fixed time point. Our experimental
and computational framework, in its entirety, is thought to
be applied in cascade to such studies and used to identify
key regulators and the regulatory modules in which they
participate.

In our experimental set-up, we propose to screen a
panel of preselected genes under single-gene perturba-
tions of candidate modulators by multi-well plates con-
taining custom qRT-PCR assays. A set-up that combines
RNA silencing with qRT-PCR data was already used in
[23] to silence transcription factors (TFs) and create a
TF regulatory sub-network in hepatoma cells, considering
the significant modulations found among eight hepatocyte
human factors. However, our experimental framework has
a more general applicability, as we describe in detail how
to design a new biological experiment, give hints about
the pre-selection of the transcripts to be monitored and
suggest an informative sampling scheme, including
multiple stimuli and a time series. Besides, we describe
the computational method used to elicit significant reg-
ulations induced by each perturbation (significance
analysis) and to reconstruct putative multi-output FFL
regulatory modules (inference method). Finally, while
in [23] the focus was only on TFs, in the case study we
show that our approach is applicable also to genes that
are not transcription factors (non-TFs). In fact, several
examples are available in the literature of non-TFs able
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Fig. 6 Validation of STAT1 negative regulation on IFNART. a Flow cytometric analysis of HUVEC cells transduced with a lentiviral vector coding
wild-type STAT1 cDNA. STAT1 overexpression caused down-regulation of surface IFNART expression after 16 h (D59 hTERT) and 24 h (both
donors) of IFN-a stimulation in two different endothelial cell cultures (HUVEC D48 and D59 hTERT). Percentage of positive cells is reported for
both HUVECs transduced with pLV-STAT1 and pLV-CTRL. IFNAR1 expression was evaluated relative to isotype control (not shown). b Western blot
analysis of STATT levels in HUVECs used in (a). a-tubulin hybridization is shown as a loading control. For quantification of STAT1 expression,
density values were normalized to the STAT1/a-tubulin ratio measured in the control sample (pLV-CTRL)

to modulate specific transcriptional networks [24, 25].
As far as IFN-a response is concerned, a prominent ex-
ample is the modulation of JAK-STAT signalling by the
ubiquitin peptidase USP18 [26, 27].

The proposed inference method is straightforward and
much less computational demanding with respect to the
wide number of existing methods for gene network re-
construction [4, 7]. Although exemplified on qRT-PCR
data, the inference method can be easily extended to other
types of gene expression data, e.g. may be applied to a
microarray dataset processed with any standard significance
analysis procedure to distil putative regulatory sub-
networks or selected FFLs for experimental validation.

The major limitation of our approach is that, since we
are not monitoring the whole genome, the regulations
inferred are not necessarily direct, but may be mediated
by genes that are not present in the custom array. The
edges reconstructed in the putative regulatory modules,

thus, represent influence relationships that may be con-
firmed or not by biological validation.

From a systems biology perspective, the multi-output
FELs, inferred by perturbing different couples of modula-
tors that share target genes, may be merged to reconstruct
a completely connected regulatory sub-network in which
the perturbed genes are the only regulators. Such informa-
tion could help in developing new mechanistic hypotheses
and design new biological studies, e.g. allowing to identify
sentinel genes that are responsive to multiple perturbations
applied to the process under study.

Case study: IFN-a induced regulatory modules

The application of our framework to construct and
analyze a dataset of qRT-PCR data to assess the role
played by STAT1 and IFIH1 on IFN-a transcriptional
response in endothelial cells produced new biological
insight. RNAi-mediated knockdown of STAT1 and IFIH1
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was achieved by using target-specific stealth siRNAs.
Genes monitored in custom qRT-PCR assays were prese-
lected by taking the genes in IFN-a signalling pathway, as
well as the genes most strongly modulated in the static
IFN-a signature, in order to have an effective instrument
to test the integrity of IFN-a transcriptional response.
Given the difficulty to obtain adequate numbers of pri-
mary HUVEC samples and to get enough cells at a pas-
sage lower than 6, we performed two biological replicates
in short time series. Two stimuli were applied: IFN-a at
0 h and its removal at 8 h, allowing to monitor two time
points in the early (2 h) and late (8 h) IFN-«a stimulation
phase and one in the wash-out phase (12 h). The devised
sampling scheme was useful to observe that both STAT1
and IFIH1 prevalently act as modulators in the activation
phase, when the stimulation is present. STAT1, in particu-
lar, seems to have no more effects on the panel of selected
genes four hours after IFN-a removal (time point 12 h in
the wash-out phase). This observation suggests that
STAT1 acts as modulator only in presence of the stimulus,
consistently with flow cytometric analysis in Fig. 6, show-
ing that overexpression of STAT1 does not cause down-
regulation on IFNAR1 in absence of IFN-a.

From our analysis, STAT1 shows to act as early posi-
tive IFN-a modulator, indeed its inactivation leads to the
down-regulation of 17 genes, already 2 h after IFN-«a
stimulation. The four genes (IFNA1, ZC3HAV1, SAMD9
and IFNAR1) that appear to be negatively regulated by
STAT1 are up-regulated 8 h after IFN-a stimulation.
This phenomenon might reflect the involvement of
some early negative regulator that is induced by STAT1
silencing and/or IFN-a stimulation. The effects of IFIH1
silencing on the expression of genes tested appear more
complicated. At first glance, the modulation of the IFN-
a transcriptional network induced by IFIH1 perturbation
could seem counterintuitive, due to its non-TF nature.
However, it has been demonstrated that IFIH1 controls
activation of a transcription factor (IRF3) in Enterovirus-
infected cells [28]. Therefore, it can be speculated that a
similar mechanism could be at play in our model. An-
other hypothesis is that the action of IFIH1 on its targets
could be miRNA mediated. Indeed, IFIH1 RNA helicase
domain could be involved in miRNA processing, as de-
scribed for other RNA helicases and DEAD box-
containing proteins [29, 30].

An interesting interplay was discovered, being STAT1
a regulator of IFIH1 and sharing the two six target
genes, as depicted in the putative six-output FFL of
Fig. 5b. A discovered FFLs was particularly intriguing,
namely the one showing that STAT1 positively regulates
IFIH1 and they both negatively regulates the expression
of IFN-« receptor subunit 1. IFN-a signalling pathway is
triggered by IFN-a that binds to its cell-surface receptor
IENAR, consisting of two subunits IFNAR1 and IFNAR2.
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The former is the ligand-binding unit that, after inter-
action with IFN-a, recruits the signal transducer unit,
IFNAR2. The binding of the ligand to IFNAR results in
the cross-activation of two Janus protein tyrosine kinases
(TYK2 and JAK1), which then phosphorylate their down-
stream substrates, STAT1 and STAT?2. The latter interact
with IRF9 to form a specific transcriptional activator com-
plex, ISGF3, which results in the transcriptional induction
of hundreds IFN-stimulated genes. Therefore, the finding
that STAT1 negatively regulates IFNAR1, which has been
biologically validated as part of this study (Fig. 6), could
be an efficient regulatory mechanism to restrict signal-
ling and biological response induced by IFN-« in endo-
thelial cells.

Conclusions

A novel experimental and computational framework for
the design and analysis of gene expression experiments on
small-scale and with limited budget was presented. Our
method extracts information inherent in perturbation data
to reconstruct putative multi-output FFL regulatory
modules, thus generating potentially new biological
hyphotheses.

Application to the study of IFN-a transcriptional re-
sponse modulators in endothelial cells has led to many in-
teresting novel findings and to the experimental validation
of the negative regulation of STAT1, a TF central in IFN-a
signalling pathway, on IFNAR1, the receptor itself. Further
biological experiments are ongoing and will be presented
in future studies where the role of other IFN-a modulators
will be investigated.
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