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Abstract

Background: The DNA base composition is well known to be highly variable among organisms. Bio-physic studies
on the effect of the GC increments on the DNA structure have shown that GC-richer DNA sequences are more
bendable. The result was the keystone of the hypothesis proposing the metabolic rate as the major force driving the
GC content variability, since an increased resistance to the torsion stress is mainly required during the transcription
process to avoid DNA breakage. Hence, the aim of the present work is to test if both salinity and migration, suggested
to affect the metabolic rate of teleostean fishes, affect the average genomic GC content as well. Moreover, since the
gill surface has been reported to be a major morphological expression of metabolic rate, this parameter was also

analyzed in the light of the above hypothesis.

Results: Teleosts living in different environments (freshwater and seawater) and with different lifestyles (migratory

and non-migratory) were analyzed studying three variables: routine metabolic rate, gill area and genomic GC-content,
none of them showing a phylogenetic signal among fish species. Routine metabolic rate, specific gill area and average
genomic GC were higher in seawater than freshwater species. The same trend was observed comparing migratory versus
non-migratory species. Crossing salinity and lifestyle, the active migratory species living in seawater show coincidentally
the highest routine metabolic rate, the highest specific gill area and the highest average genomic GC content.

Conclusions: The results clearly highlight that environmental factors (salinity) and lifestyle (migration) affect not only the
physiology (i.e. the routine metabolic rate), and the morphology (i.e. gill area) of teleosts, but also basic genome feature
(ie. the GC content), thus opening to an interesting liaison among the three variables in the light of the metabolic rate

hypothesis.
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Background

The DNA base composition is well known to be highly
variable among organisms, especially in bacteria covering,
indeed, a very broad range from ~15 to ~75 % of GC, i.e.
the molar ratio of guanine and cytosine ([1] and references
therein). However, high or low GC levels are not without
effect on the DNA molecule. Bio-physic studies carried
out on the DNA structure showed that high GC content
levels confer to the molecule an increased flexibility, or
bendability [2]. Using a different approach, the result was
recently confirmed by Babbitt and Schulze [3].
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The effect of the GC content on the DNA structure
opened new perspectives regarding the nature of the
forces driving the base composition variability among
and within genomes. In fact, GC-richer DNA on one
hand can better tolerate the torsion stress (produced for
example during the transcription process), on the other
shows lower propensity to the nucleosome formation
potential (NFP) than the AT-rich ones [4, 5]. Hence, the
DNA would be more prone to have an open configur-
ation structure, easily accessible to the transcriptional
complex [6]. Both bendability and NFP were the pillars
on which the metabolic rate hypothesis was grounded
[6], further supported by an increased expression level
from GC-poor to GC-rich genes [7, 8].
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Testing the above hypothesis on teleostean fishes, the
routine metabolic rate (temperature-corrected by Boltz-
mann’s factor according to Gillooly and colleagues [9])
turned out to be significantly correlated with the average
genomic GC content, both decreasing from polar to
tropical habitat [10], a decreasing not dictated by a dis-
similar rate of the methylation-deamination process of
the CpG doublets [11]. However, the above results were
not taking into account the effect of the environmental
salinity and nor the level of activity in relation with spe-
cific lifestyle, such as migration, on the routine meta-
bolic rate of each species. Teleosts, indeed, are widely
distributed in all aquatic environments: freshwater spe-
cies (FW) populate all the inland waters, from river to
lakes and ponds, while seawater species (SW) populate
oceans and seas. The osmotic concentration is well known
to be very different between the two environments ran-
ging, indeed, from 1 to 25 mOsmol-kg ™" in freshwater,
and being ~1000 mOsmol - kg™" in seawater [12]. In spite
of that, all teleosts share almost the same internal fluid
concentration, ranging from ~230 to ~300 mOsmol - kg™
[12]. Consequently, the osmotic deltas between internal
and external medium in FW and SW are different, being
~300 and ~700mOsmol - kg™, respectively [12].

The pioneering methods developed in order to quantify
the amount of energy required in the osmoregulatory
process were grounded on the following intuitive model: a
lower osmotic delta (between internal and external fluids)
should have been less energetically demanding.

Along this line, acclimative studies were performed with
the aim to clarify if the hypo-osmoregulation of SW was
more costly than the hyper-osmoregulation of FW [13].
Unfortunately, no clear cut conclusions were reached, and
the following criticisms were raised against the acclimative
approach: i) only a small number of species are capable to
adapt to large salinity ranges [14]; and ii) the acclimation
to different salinity involves other energy-consuming pro-
cesses not directly coupled with the osmoregulation per
se, such as the hormonal cascade produced by the osmo-
sensing and acclimation processes [15].

A different approach to the problem of the energetic
cost of the osmoregulatory process was developed by
Kirschner [16, 17]. Indeed, taking advantage from previous
measurements of ions concentrations in the organs indi-
viduated as the regulatory ones (i.e. gills and gut), knowing
the principal mechanism of passive and active ion move-
ments, and calculating the theoretical number of the ATP
molecules spent to maintain the different osmolarities be-
tween internal and external fluids, Kirschner reached the
conclusion that the hypo-osmoregulatory process was
more energetically demanding than the hyper-
osmoregulatory one [16, 17]. However, also the Kirsch-
ner’s approach was not criticisms less, since the energetic
cost of the osmoregulatory process measured on isolated
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organs could lead to different conclusions compared to
the measurement performed using the whole living animal
[18].

Independently from the above line of research, several
studies on teleost fishes highlighted that a very active
lifestyle (such as that of migratory and/or pelagic spe-
cies) would affect the metabolic rate and some morpho-
logical traits, such as the gill area.

Hughes in his pioneering studies, indeed, first pro-
vided evidence showing that “more active” species tend
to have larger gill surface and shorter diffusion distances
than " less active" ones ([19, 20], for a review of Hughes’
works). The topic of gill feature was further analyzed by
De Jager and Dekkers [21], showing that gill area and
oxygen uptake were positively correlated. Moreover, the
same authors observed that the more active SW species
also showed higher oxygen uptake, a link barely discern-
ible in FW ones [21]. In subsequent analyses carried out
on a few species, SW were reported to be characterized
by more extended gill area than FW [22]. Moreover, the
same authors proposed that the more active species
among SW should have extended gill area and higher
metabolic rate [22]. Recently, Friedman and coworkers
[23] reported that the adaptation of demersal fish species
to the Oxygen Minimum Zone in Monterey Canyon
(California) is determined by increased gill surface area
rather than enzyme activity levels.

On the other hand, osmoregulation poses a constraint
on gill area, as an increase of this area would increase dif-
fusional ion uptake, for SW species, or loss, for FW ones
[24]. This would carry a constraint on the activity-
metabolic rate relationship, which will be more dependent
on environmental salinity.

The above results prompt us to reanalyze the oxygen
consumption of teleostean fishes, taking into account
two factors mainly affecting the physiology and the
morphology of teleosts: the environmental salinity and
the different migratory skills. Hence, the aim of the
present work is to test if both salinity and migration
significantly affect the routine metabolic rate and aver-
age genomic GC content. Indeed, as stressed above,
the correlation between the two variables represents
the keystone of the metabolic rate hypothesis [4, 6].
Moreover, since the gill area has been reported to be a
major morphological expression of metabolic rate [19],
this parameter was also analyzed according to the two
kind of lifestyles. The results clearly highlight that ac-
tive species living in seawater show coincidentally the
highest routine metabolic rate, the highest specific gill
area, and the highest average genomic GC content.
Thus, opening to an interesting liaison among basic
genome feature (i.e. the GC content), physiology (i.e.
the routine metabolic rate), and morphology (i.e. gill
area) of teleosts.
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Methods

Reports regarding the salinity of the habitat, the migratory
performances and the gill area of teleostean fishes were re-
trieved from www.fishbase.org [25]. Species with conflict-
ing information about salinity and/or migration were
discarded, namely: Aphanius dispar dispar, Aphanius fas-
ciatus, Ciprinodon variegatus, Fundulus heteroclitus, Lago-
don rhomboides, Leptococcus armatus, Takifugu rubripes,
Bathygobius soporator and Perca fluviatilis. Species with
no indications about migration were considered non-
migratory.

Values of the routine metabolic rate were retrieved
from literature [10], whereas those regarding Corydoras
aeneus and Tetraodon nigroviridis were determined ac-
cording to the procedures described in [26]. For each
species the routine mass specific metabolic rate values,
expressed as milligrams of oxygen consumed per kilo-
gram of wet weight per hour (mgxkg 'xh™'), were
temperature-corrected using the Boltzmann's factor
MR = MRye® T, where MR is the temperature-
corrected mass specific metabolism, MRy is the metab-
olism at the temperature T expressed in °K; E is the
energy activation of metabolic processes ~0.65 eV; k is
the Boltzmann’s constant =8.62 A~10"" eV K™ [9].
The MR values were In-normalized. The final dataset
consisted of 196 species belonging to 75 teleostean
families (Additional file 1: Table S1).

Regarding the specific gill area (Gill), the value of each
species was expressed as cm®xg , i.e. the ratio between
the gill area and fresh body mass. If more than one value
was available for a given species the median was used.
The final dataset comprises 108 species, covering 56
families of teleostean fishes (Additional file 2: Table S2).

Regarding the GC content, data were retrieved from
current literature [27-30]; see supplementary materials
for detailed information. The final dataset consisted of
227 species covering 69 families of teleostean fishes
(Additional file 3: Table S3).

Gene expression data of green spotted pufferfish Tet-
raodon nigroviridis [31] were downloaded from
ArrayExpress [32]. The corresponding gene coding se-
quences were retrieved from the Genoscope site (http://
www.genoscope.cns.fr). Length and base composition
were calculated for each sequence and merged with the
log-transformed expression data. Sequences containing
unknown nucleotides or shorter than 100bp were re-
moved. Moreover, considering the GC variability
along genes [33], CDSs lacking of ATG start codon
and/or the ending stop codons were discarded. The
final dataset accounted for 8317 unique CDSs. Under
the implicit assumption that a correlation holds be-
tween the GC levels of CDSs and isochores, the CDS
dataset was split in four groups according to the GC
content of the isochores.
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Statistical analyses

Mann—Whitney and two-way ANOVA tests were used
to assess the statistical significance of the differences.
Regarding the two-way ANOVA, the significance of the
main effects and the interaction effect was assessed non
parametrically by bootstrap (10® resampling), thus relax-
ing the assumption of normality. The statistical analysis
was implemented in R and it is provided as supplemen-
tary material in the R-markdown form in the spirit of re-
producible research [35]. The significance of different
expression levels observed within the green spotted puf-
ferfish genome was assessed by the Kruskal-Wallis test.

Results

Clarke and Johnston [36] observed no effect of phyl-
ogeny on the routine metabolic rate of teleosts. How-
ever, their conclusion was biased by the absence of a
robust phylogenetic tree. Hence, we tackled the topic
using a very recent tree reconstruction of teleostean spe-
cies [37]. According to Clarke and Johnston [36], in
order to have a reliable number of observations along
the tree branches, species were grouped at order level.
Values of routine metabolic rate temperature and mass-
corrected (MR), gill area (Gill) and average genomic
GC-content (GC%) were calculated for each order
present in our databases and showed as box plot (Fig. 1).
Present results confirmed the observation of Clarke and
Johnston [36], since no phylogenetic signal was ob-
served for the routine metabolic rate (Fig.1, panel a). In-
deed, the variation of MR within the order of
Perciformes was covering quite the entire range or vari-
ability shown by the all teleostean species. Considering
Gill, although if a great variability was observed among
orders, no significant differences were found in pairwise
comparisons according to the Mann—Whitney test Bon-
ferroni - corrected for multiple tests. Hence, also in the
case of Gill no phylogenetic signal was observed (Fig.1,
panel b). The same conclusion also applied for the GC%
(Fig.1, panel c), in very good agreement with previous
reports by Bernardi and Bernardi [38].

To this regards, it is worth to bring to mind that tele-
osts are characterized by a peculiar compositional evolu-
tion mode. Indeed, differently from high vertebrates,
where increments of the GC%, as for example from am-
phibians to mammals [39, 40], are paralleled by incre-
ments of the within genome base composition variability
(also known as the transition mode of evolution), in
fishes increments of GC% from one species to another
are paralleled by a whole-genome shift (also known as
the shifting mode of evolution) [41, 42]. In spite of a
marked homogeneity of fish genomes, characterized by
the main presence of two isochores [34], bendability and
nucleosome formation potential were both shown to sig-
nificantly correlates with the GC content of exons,
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introns and 10 kb of DNA stretches [4, 43]. Here we
checked the expression level analyzing data available for
Tetraodon nigroviridis. The results reported in Fig. 2,
clearly showed a significant different average gene expres-
sion level among the four isochores described in the green
spotted pufferfish genome (p-value<4.1x107"> by the
Kruskal-Wallis test). Significant differences were also
found restricting the analysis between the two main
isochores H1 and H2 (p-value < 6.8 x 10~ by the Mann-
Whitney test).

Classical multivariate statistics, such as the Principal
Components Analysis, could not be used for the study
of the three variables: MR, Gill and GC%. Indeed, the
intersection of the three datasets accounted for only 12
species. Therefore, on the basis of the environmental

salinity, each independent dataset was first split in two
major groups: i) FW, grouping teleosts spending the
lifecycle mainly in streams or ponds (i.e. all the species
whose range of habitats is freshwater or freshwater-
brackish, and the catadromous species); and ii) SW,
grouping teleosts spending the lifecycle mainly in
oceans (i.e. marine, marine-brackish plus the anadro-
mous species). The specific routine metabolic rate,
temperature-corrected using the Boltzmann’s factor
(MR), the specific gill area expressed in cm®xg™" of body
mass (Gill), and the average genome base composition,
i.e. GC content (GC%), were computed and compared
between FW and SW by the Mann—Whitney test.
All pairwise comparisons showed the same trend. In-
deed, MR, Gill and GC% were higher in SW species
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Fig. 2 Genome organization of Tetraodon nigroviridis (modified from [34]) (panel a). Boxplot of the gene expression level
(p-value < 4.1 x 107" by Kruskal-Wallis test) (panel b). Dotted lines represent the limits used to split the expression level database

(Fig. 3). The p-values of each FW vs SW comparison
were <1.0 x 1072, <5.7 x 107> and <1.8 x 107, respectively.
In order to assess if a different lifestyle could also affect
MR, Gill and GC%, the three independent datasets were
split in two categories: migratory species (M), grouping
catadromous, potamodromous, amphidromous, oceano-
dromous and anadromous, and non-migratory species
(NM). The former showed higher MR, Gill and the GC%
then the latter (Fig. 4, panels a, b and c). The corre-
sponding p-values, according to the Mann—Whitney
test, were <7.9x 107%, <3.8 x 107> and <6 x 10>, respect-
ively. In literature a significant positive correlation was re-
ported to hold between the routine metabolic rate and the
maximum metabolic rate [44, 45]. In other words, species
with a larger capacity for highly costly activities, including
migration, would have not only a high routine metabolic
rate [44, 45], but also an extended gill area [21, 22]. On
the basis of this expectation, the one-tail Mann—Whitney
test was applied in the comparison of migratory and non-
migratory species regarding both MR and Gill variables.
The combined role of salinity and migration on the
three measured variables, was assessed by partitioning
each data set in four sub-groups: both freshwater and
seawater species were split in non-migratory and migra-
tory categories, namely FWNM, FWM, SWNM and
SWM. The corresponding box plots were reported in
Fig. 5 (panels a, b and c, respectively). In each panel, the
medians of the four subgroups showed the same trend,
specifically increasing from FWNM to SWM (Fig. 5; see

also Table 1). Unfortunately, within each dataset the four
categories were not equally represented, and a normal
distribution was not found (Shapiro-Wilk normality test
p-value <5 x 107). Thus, to assess the significance of the
differences, if any, a two-way ANOVA test with boot-
strap was performed. The p-value was calculated as XI
(Resampling F-values > Real F-value)/1000, where I() de-
notes the indicator function.

The results (Fig. 5; panels a, b and c) showed that
among the four groups:

i) migration was significantly affecting all the three
variables. The p-values, indeed, were <4 x 10~ for the
MR, <7 x 107 for the Gill, and <6 x 10~ for the GC%;

ii) environmental salinity was affecting MR and
GC%, but not Gill (p-value <2.5x 1072, <1 x 107°
and <12.2 x 107", respectively);

iii) the combined effect of salinity and migration was
affecting mainly the GC% (p-value < 2.9 x 1072),
slightly the MR (p-value < 8.1 x 1072), and not at
all the Gill (p-value <80 x 107%).

Very interestingly, the SWM group of fishes, the ones
characterized by the most energetically expensive lifestyle,
showed coincidentally the highest MR, the highest Gill
and the highest GC% (Fig. 5; panels a, b and ¢, respect-
ively). According to the multiple hypothesis test [46], the
converging effect of salinity and migration on the three
variables was statistically significant, p-value <3.1 x 107,
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Discussion

Does the routine metabolic rate is higher in seawater
than freshwater fishes? This question, that has been mat-
ter of a long debate grounded on many different experi-
mental and theoretical approaches [18] for a review, find
a positive answer in the present study. The consistency
of this result (p-value <1.0 x 107%) rely on the analysis of
~200 species of teleosts. Such a huge comparison (based
on species characterized by different body mass and
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J

living in habitats with different environmental temperature)
have been possible due to the normalization of the data
about the routine metabolic rate by the Boltzmann’s factor,
according to the equation MR = MRoe¥<T [9]. The result
was further supported by the analysis of the phenotypic
character mainly linked to the metabolic rate, namely
the specific gill area [19]. Indeed, analyzing an inde-
pendent dataset of >100 teleosts, SW species turned out
to have a specific gill area higher than those of FW ones
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non-migratory (FWNM), freshwater migratory (FWM), seawater GC-rich genes showed higher transcriptional levels than

non-migratory (SWNM) and seawater migratory (SWM) species GC-poor ones.

In the line of the above considerations and results, and
keeping in mind that a significant correlation between
MR and GC content was already observed among teleosts
[10, 11], was not a mindless expectation that the GC con-

Table 1 Medians for each group tent of SW would have been significantly higher than that

Gill, cm’xg™ MR, In GC, %  of FW, and, indeed, the p-value was <1.8 x 107 Although
FWNM 141 3058 4122  the difference seems to be in a very little order of magni-
FWM 304 3063 s16» tude, hence apparently negligible from an evolutionary

point of view, detailed analysis on five teleostean species
(i.e. zebrafish, medaka, stickleback, takifugu and puffer-
fish) showed that small differences of the average genome

SWNM 344 30.85 42.37
SWM 461 31.26 4431
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base composition hide great differences at the genome
organization level. Indeed, comparing the genomes of
stickleback and pufferfish (showing an average genomic
GC content of 44.5 and 45.6 %, respectively), the gen-
ome of the latter was characterized by the presence of
very GC-rich regions (isochores) completely absent in
the former [34]. It is worth to recall here that in teleosts
the routine metabolic rate, not only was found to correl-
ate significantly with the genomic GC content, as men-
tioned above [10], but also to affect the genome
features. Indeed, analyzing five full sequenced fish ge-
nomes, increments of MR were found to significantly
correlate with the decrease of the intron length [50].
The comparison of migratory (i.e. catadromous, potamo-
dromous, amphidromous, oceanodromous and anadro-
mous) and non-migratory species showed that the specific
gill area of migratory species was significantly higher than
that of non-migratory ones (p-value <3.8 x 107 and the
GC% showed the same statistically significant trend
(p-value <6 x 107°), being higher in the migratory
group. However, the difference of MR, higher in the
migratory group, was at the limit of the statistical sig-
nificance (p-value <7.9 x 1072). Thus, in order to disentan-
gle the effect of the environmental salinity from that of
the migratory attitude, the three datasets concerning MR,
Gill and GC% were split in four groups, namely freshwater
non - migratory (FWNM), freshwater migratory (FWM),
seawater non - migratory (SWNM) and seawater migra-
tory (SWM). At first glance, among the four groups a
good agreement was observed regarding the three vari-
ables, showing, indeed, increasing average values from
FWNM to SWM (Fig. 5). However, the two-way ANOVA
test showed that the variation among the four groups was
significantly affected by both the environmental salinity
and the migratory attitude only regarding MR and GC
content (Fig. 5; panels a and c), while Gill was significantly
affected only by migration and not by the environmental
salinity (Fig. 5: panel b). The combined effect of a costly
osmoregulation and the need for a high scope for aerobic
metabolism would justify the higher MR in marine migra-
tory fish species. Moreover, the need of an adequate oxy-
gen uptake in active species (such as migratory species) is
a major determinant of gill area. It is worth to note that
an increase in gill area is disadvantageous for osmoregula-
tion, particularly for freshwater species, as it increases the
obligatory ion exchanges and the energetic cost of com-
pensating them [24, 51]. This would explain the observed
discrepancy between MR and Gill dependency from
migratory habit and salinity. Nevertheless, the multiple
hypothesis test [46] showed that the SWM group was sig-
nificantly the highest for all the three variables. Therefore,
in the teleost group, that is under the highest environmen-
tal demanding conditions due to both salinity and migra-
tion, the three variables converged reaching the highest
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values. On one hand, present results supported previous
reports on both metabolic rate and gill area [21, 22], on
the other opened to new genomic perspective since, as
far as we know, this is the first report that phenotypic,
physiological and genomic feature are linked under a
common selective pressure. Interestingly, the genomic
feature, i.e. the average GC content, was a very “react-
ive” variable to environmental changes. Indeed, accord-
ing the two-way ANOVA test, the GC% was the only
variable being simultaneously affected, and by environmen-
tal salinity and migration attitude, p-value <2.9 x 1072 Such
“reactivity” was not observed for both Gill and MR, most
probably because morphological/functional and physio-
logical constraints.

Conclusion

Certainly the present analyses of metabolic rate, gill area
and genomic GC-content carried out on teleostean spe-
cies could not be considered as a demonstration of the
cause-effect link between metabolism and DNA base
composition. Nevertheles, represents a further support
to the metabolic rate hypothesis proposed by Vinogra-
dov [5, 6], underlining that the torsion stress, proposed
to be the factor responsible of the GC increment, could
be not such a mysterious selective force.
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