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Detailed phenotyping identifies genes with
pleiotropic effects on body composition
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Abstract

Background: Genetic variation in both the composition and distribution of fat and muscle in the body is important
to human health as well as the healthiness and value of meat from cattle and sheep. Here we use detailed phenotyping
and a multi-trait approach to identify genes explaining variation in body composition traits.

Results: A multi-trait genome wide association analysis of 56 carcass composition traits measured on 10,613 sheep with
imputed and real genotypes on 510,174 SNPs was performed. We clustered 71 significant SNPs into five groups based on
their pleiotropic effects across the 56 traits. Among these 71 significant SNPs, one group of 11 SNPs affected the fatty acid
profile of the muscle and were close to 8 genes involved in fatty acid or triglyceride synthesis. Another group of 23 SNPs
had an effect on mature size, based on their pattern of effects across traits, but the genes near this group of SNPs did
not share any obvious function. Many of the likely candidate genes near SNPs with significant pleiotropic effects on the
56 traits are involved in intra-cellular signalling pathways. Among the significant SNPs were some with a convincing
candidate gene due to the function of the gene (e.g. glycogen synthase affecting glycogen concentration) or because
the same gene was associated with similar traits in other species.

Conclusions: Using a multi-trait analysis increased the power to detect associations between SNP and body composition
traits compared with the single trait analyses. Detailed phenotypic information helped to identify a convincing candidate
in some cases as did information from other species.
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Background
Body composition, including the distribution and com-
position of fat and muscle, is of great interest in a num-
ber of species. In humans it is predictive of health
outcomes, and in cattle and sheep it affects the efficiency
of meat production and the value and healthiness of the
meat. Genetic variation in these traits is well docu-
mented. In humans the heritability of body mass index
has been estimated to be 0.42 [1]. The genetic architec-
ture of body mass index (BMI) appears to be highly
polygenic, with the 97 loci of largest estimated effect ac-
counting for ∼ 2.7 % of BMI variance [2]. In cattle and

sheep, carcass composition traits have similar heritabil-
ities to BMI in humans [3–5].
Genome wide association studies have been very suc-

cessful at finding genetic variants, such as single nucleo-
tide polymorphisms (SNPs), associated with body size
and composition in humans and livestock [1, 2, 6, 7]. In
some cases, the gene through which the causal variant
acts is clear and the physiological pathway to the pheno-
type is at least partly understood. However, sometimes
the causal gene is ambiguous and often the physiological
pathway is almost unknown. For instance, genetic vari-
ants near the gene LCORL have been implicated as af-
fecting size in several species [6–9], but the mechanism
by which they do this is unknown.
In identifying the genes involved and the mechanism

by which they act, an advantage of studies in animal spe-
cies is that more detailed phenotypes relating to body
composition can be collected. For example, these can in-
clude the amounts of bone, muscle and fat and the
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chemical composition of the fat and muscle. Since com-
mon physiological mechanisms (e.g. growth hormone)
affect the growth of muscle, fat and bone and presum-
ably the detailed composition of fat and muscle, detailed
phenotypes should help to clarify the mechanism by
which genetic variants affect these traits. For instance,
selection for leanness and muscling led to reduced
muscle oxidative capacity and iron concentration imply-
ing a change in the proportions of different muscle fibre
types [10].
In this study, we did not record muscle fibre type dir-

ectly but did record phenotypes associated with fibre
type. Muscles vary in muscle fibre type composition
[11]. Muscles with a predominance of slow twitch (type
1) fibres have a higher capacity for fatty acid uptake and
lipid oxidation, have abundant mitochondria, and are
rich in myoglobin that is responsible for the red colour
of meat. Whereas, muscles requiring rapid contraction
generating substantial force, such as some locomotory
muscles, have a greater proportion of fast twitch fibres
(type IIb and IIx), which largely depend on glycolytic
metabolism for energy generation and are whiter and
have fewer mitochondria [12, 13]. These muscles have
lower activity of isocitrate dehydrogenase (ICDH) which
is crucial in the oxygen-dependent citric acid cycle of
mitochondria [14]. The rate of protein turnover in
muscle fibres, pre- and post-slaughter, affects the growth
of muscle and the tenderness of the meat. For instance,
in sheep the callipyge mutation increases muscle in the
trunk and hind quarters and decreases tenderness [15,
16]. Thus, it is likely that genetic variants affect multiple
traits associated with the growth of muscle and fat and
their detailed composition.
It is often suggested that detailed phenotyping will aid

the identification of genetic variants affecting complex
traits and help to elucidate the pathway by which they
act. Here we test this hypothesis by phenotyping sheep
for 56 traits associated with muscle and fat growth and
composition.
Usually GWAS, for instance on human height and

BMI, are analysed one trait at a time ignoring pat-
terns of pleiotropy amongst these traits. However, the
pattern of pleiotropy may help to identify the gene
underlying an association and the mechanism through
which it acts. Bolormaa et al. [17] showed that a
multi-trait analysis, by combining the results from
GWAS on 32 individual traits in beef cattle, increased
the power to detect pleiotropic QTL. They also
showed that cluster analysis identified groups of QTL
with similar patterns of pleiotropic effects. It would
help us to identify the genes underlying QTL and to
understand their mechanisms of action, if these
groups of QTL represent genes with similar function
or belonging to the same pathways.

In this study we have analysed 56 detailed body com-
position phenotypes on 10,613 sheep with genotypes for
510,174 SNPs. We have tested four hypotheses:

� that a multi-trait analysis increases power to detect
and map QTL,

� that detailed phenotyping increases power to
identify the causal gene underlying the QTL and the
mechanism by which it acts,

� that variants in different genes that act in the same
pathway have a similar pattern of effects across
traits, and

� that variants in the same genes affect growth and
body composition in multiple species.

Results
Single-trait genome-wide association studies
In this study, 10,613 sheep that had real or imputed ge-
notypes for 510,174 SNPs, were measured for up to 56
traits (Table 1), and belonged to a large number of
breeds (Merino, MER; Poll Dorset, PD; Border Leicester,
BL; Suffolk, SUF; white Suffolk, WS; Texel, TEX; Corrie-
dale, CORR; Coopworth, COOP; and various Crosses,
MIX; Fig. 1). GWAS, in which each SNP was fitted one at
time, were performed for 56 traits including carcass
weight, fatness, muscling, tenderness, meat colour, and
fatty acid (FA) composition of fat (Table 1). Population
structure was accounted for by fitting breed composition
and a multi-generation pedigree. Table 2 presents the
number of significant (P < 10−5 and P < 5 × 10−7) SNPs.
Twenty nine traits had more than 10 significant SNPs
(P < 5 × 10−7), resulting in a false discovery rate (FDR)
of less than 2.6 % (Table 2).
Besides FDR, a Q-Q plot can demonstrate the rate of

false positives as shown for 4 traits in Fig. 2. The Q-Q
line deviates most from expectations in HGRFAT,
followed by CEMA, SHEARF1, and FA_C22_5n3, which
is consistent with FDR results being lowest in HGRFAT.
The deviation of the Q-Q plots from expectation (at low
P values) is evidence of polygenic inheritance [18], not
inflation of the test statistic due to population structure,
which has been well captured in our analysis by fitting
breed and pedigree (see a model used in single-trait
GWAS in materials and methods section). Many signifi-
cant SNPs were clustered together within narrow re-
gions on chromosome (OAR) 2, 3, 5, 6, 11, 12, 14, 18,
20, and 26. In a number of cases, those SNPs had associ-
ations with more than one trait.

Multi-trait analysis to detect pleiotropy
Combining the single trait GWAS in a multi-trait meta-
analysis using a method described by [17] resulted in
586 significant SNPs (P < 5 × 10−7) (Fig. 3a). This corre-
sponded to a FDR of 0.04 %, which was lower than for
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Table 1 Number of records, mean, standard deviation (SD) and heritability estimate (h2) of each trait for the genotyped animals

Trait code (unit) No. Mean SD Vp h2 Trait name

PSWT (kg) 9193 48.5 7.3 17.8 0.23 Slaughter weight

HCWT (kg) 10428 22.1 4.1 5.3 0.27 Hot carcass weight

LLWT (g) 8226 357.9 68.9 2001.9 0.33 Loin weight

TOP (g) 8228 598.3 101.0 3137.5 0.31 Topside weight

RND (g) 8229 457.7 73.7 1833.8 0.32 Round weight

BONE (g) 8225 940.9 139.4 6508.5 0.31 leg + aitch bone weight

LEGBONE (g) 7472 547.7 68.9 2051.3 0.48 Leg bone weight

LMY (%) 9797 53.4 9.7 4.6 0.26 Lean meat yield

DRESSING (%) 9024 45.1 3.7 5.4 0.37 Dressing%

DMLOIN (%) 8035 26.7 1.1 0.8 0.26 Dry matter

IMF (%) 8242 4.3 1.0 0.7 0.51 Intramuscular fat

LLFAT (g) 8215 200.1 103.5 3071.1 0.17 Loin fat weight

CFATSCORE 5224 3.0 1.0 0.3 0.12 Carcass fat score

CCFAT (mm) 10183 4.0 2.3 2.8 0.21 Fat Depth C

HGRFAT (mm) 8384 13.2 5.5 10.0 0.34 Fat depth GR

CFAT5 (mm) 8132 7.0 3.4 5.1 0.18 Fat Depth 5th rib

CEMW (mm) 10343 60.2 5.2 14.4 0.35 Carcass eye muscle width

CEMD (mm) 10345 29.0 4.5 8.4 0.16 Carcass eye muscle depth

CEMA (cm2) 10345 14.0 2.9 3.1 0.24 Eye muscle area

SHEARF5 (N) 9991 29.1 10.6 63.0 0.25 Shear force day 5

SHEARF1 (N) 5325 41.3 14.3 103.5 0.28 Shear force day 1

MYOGLOBIN (mg/g wet) 8138 6.3 1.8 1.3 0.25 Myoglobin

GLYCOGEN (mmol/kg) 3116 61.3 14.1 140.7 0.16 Glycogen

ICDH activity (umol/min/g wet) 4742 4.6 1.7 0.9 0.27 ICDH activity

RCL4 4631 36.7 2.9 4.2 0.43 Retail coloura L day 4

RCL3 4757 36.7 2.8 4.2 0.40 Retail coloura L day 3

RCL2 4756 37.0 2.8 4.1 0.35 Retail coloura L day 2

RCL1 4756 35.0 3.2 4.3 0.27 Retail coloura L day 1

RCb4 4631 16.7 2.5 1.7 0.11 Retail coloura b day 4

RCb3 4753 17.6 2.5 2.1 0.10 Retail coloura b day 3

RCb2 4755 18.4 2.4 2.1 0.04 Retail coloura b day 2

RCb1 4750 15.2 2.4 2.1 0.08 Retail coloura b day 1

RCa4 4630 15.6 2.2 2.2 0.29 Retail coloura a day 4

RCa3 4757 16.7 2.5 2.8 0.27 Retail coloura a day 3

RCa2 4756 18.2 2.8 3.9 0.22 Retail coloura a day 2

RCa1 4756 17.0 2.2 2.1 0.18 Retail coloura a day 1

CFb 9764 4.6 4.1 1.3 0.13 Fresh colour b*

CFa 9758 16.0 5.3 1.7 0.08 Fresh colour a*

CFL 9754 34.4 3.1 4.2 0.21 Fresh colour L*

PH24LL 10299 5.7 0.2 0.0 0.16 LL pH 24 h

PH24ST 8223 5.8 0.2 0.0 0.19 ST pH 24 h

IRON (wet, mg/kg) 8083 20.0 3.4 7.3 0.24 Iron (wet)

ZINC (wet, mg/kg) 8099 24.9 4.6 16.7 0.22 Zinc (wet)

EPADPADHA (mg/100gb) 6539 48.4 16.9 69.2 0.14 EPAc1 + DPAc2 + DHAc3
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any individual trait tested in the single-trait GWAS, ex-
cept LEGBONE.
To avoid testing a large number of closely linked

SNPs, only the most significant SNPs (P < 10−5) within
each 1 Mb window (98 SNPs) was selected from the
multi-trait analysis in the discovery set (80 % of total of
10,613 animals from 9 different sheep breeds) for valid-
ation in an independent set of animals (the remaining
20 % of total animals). For each of 98 significant SNPs
(Table 3), we performed a multiple regression analysis in
which the SNP genotype is the dependent variable and
the 56 phenotypes are the independent variables. This
resulted in a linear index of 56 traits that had the
maximum correlation with genotypes of one of the
corresponding (98) significant SNPs. The association
between a SNP and its corresponding linear index was

subsequently tested in the validation sample. Out of the
98 SNPs that were found significant in the discovery
sample, 35 were significant (P < 0.05) in the validation
sample and all had an effect in the same direction in the
validation sample as in the discovery sample (Table 3).
This number validated (35) was higher than for any
single trait (PSWT, LEGBONE, DRESS%, and CCFAT;
Table 2), showing that multi-trait analysis detected
and validated more associations than any single-trait
analysis.
The multi-trait analysis showed utility to map QTL

more precisely. Figure 4 summarises one such case, plot-
ting all significant SNP effects for 6 single trait GWAS
and the multi-trait statistic in a region of OAR 11. The
multi-trait statistic identifies the SNP at 26,445,930 base
pairs as most significant (P = 1.32 × 10−27), while the 6
separate traits map the QTL between 25,849,323 –
26,445,930 base pairs.

Conditional analyses accounting for 23 lead SNPs
The multi-trait analyses identified many narrow regions,
containing more than one significant SNPs (e.g. on OAR
2, 3, 5, 6, 11, 12, 14, 18, 20, and 26; Fig. 3a). We selected
23 ‘lead SNPs’ (SNPlead) (Table 4), which were signifi-
cant and not closely linked and therefore presumably
tagging 23 independent QTL across the ovine genome.
Table 5 lists their t values across all 56 traits. We then
tested whether the selected SNPlead were perfectly tag-
ging QTL in their respective regions by rerunning all
single trait GWAS, while simultaneously fitting all 23
SNPlead (Table 4). Then the meta-analysis combining all
traits was repeated. All 23 lead SNPs remained signifi-
cant when fitted jointly suggesting that each is likely to
tag a different QTL. Fitting the 23 SNPs substantially re-
duced the number of significant SNPs near the SNPlead

Table 1 Number of records, mean, standard deviation (SD) and heritability estimate (h2) of each trait for the genotyped animals
(Continued)

EPADHA (mg/100gb) 6536 23.5 10.4 23.1 0.18 EPAc1 + DHAc3

FA_C22_6n3 (mg/100gb) 8140 6.9 3.2 3.5 0.26 DHAc3 (C22:6n3)

FA_C22_5n3 (mg/100gb) 8142 24.1 9.2 21.3 0.08 DPAc2 (C22:5n3)

FA_C20_5n3 (mg/100gb) 8141 15.4 7.9 13.4 0.13 EPAc1 (C20:5n3)

FA_C20_4n6 (mg/100gb) 8139 45.7 14.9 57.5 0.16 Arachidonic acid (C20:4n6)

FA_C20_3n6 (mg/100gb) 8136 4.5 1.4 0.8 0.16 DGLAc4 (C20:3n6)

FA_C18_2n6 (mg/100gb) 8130 134.7 40.2 482.1 0.15 Linoleic acid (C18:2n6)

FA_C18_0 (mg/100gb) 8124 481.3 161.5 9903.2 0.19 Stearic acid (C18:0)

FA_C16_0 (mg/100gb) 8131 650.9 224.0 17030.0 0.11 Palmitic acid (C16:0)

FA_C14_0 (mg/100gb) 8128 70.2 29.5 402.6 0.15 Myristic acid (C14:0)

FA_C12_0 (mg/100gb) 8116 4.3 2.4 2.7 0.13 Lauric acid (C12:0)

FA_C10_0 (mg/100gb) 8108 4.5 2.3 2.5 0.11 Capric acid (C10:0)
aretail colour trait using HunterLab colour meter, bmg/100 g wet muscle tissue, c1Eicosapentaenoic acid, c2Docosapentaenoic acid, c3Docosahexaenoic acid,
c4Dihomo-γ-linolenic acid

Fig. 1 Pie chart showing percentages of total of 10,613 animals in
each of sheep populations
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(e.g., OAR 14 at 54 Mb and OAR 11 at 13, 26, and
50 Mb; Fig. 3b), showing that the SNPlead is in high link-
age disequilibrium with the QTL in the region. However,
in some cases (e.g. OAR 6 at 37 Mb), SNPs close to the
SNPlead remained significant after fitting all 23 SNPlead,

Table 2 Number of SNPs and their false discovery rates (%)
for each trait beforeb (P < 5 × 10−7 and P < 5 × 10−7) and afterc

(P < 5 × 10−7) fitting the 23 lead SNPs in the model

P < 1 × 10−5 P < 5 × 10−7

Traita No.b FDRb No.b FDRb No.c FDRc

PSWT 245 2.1 105 0.2 44 0.6

HCWT 156 3.3 24 1.1 18 1.4

LLWT 64 8.0 28 0.9 12 2.1

TOP 58 8.8 10 2.6

RND 158 3.2 83 0.3 7 3.6

BONE 565 0.9 379 0.1 165 0.2

LEGBONE 888 0.6 626 0.04 596 0.04

LMY 256 2.0 125 0.2 12 2.1

DRESSING 256 2.0 112 0.2 14 1.8

DMLOIN 82 6.2 30 0.9 2 12.8

IMF 58 8.8 13 2.0 5 5.1

LLFAT 120 4.3 58 0.4 7 3.6

CFATSCORE 13 39.2

CCFAT 223 2.3 122 0.2 12 2.1

HGRFAT 275 1.9 167 0.2 18 1.4

CFAT5 43 11.9 9 2.8 1 25.5

CEMW 88 5.8 20 1.3 3 8.5

CEMD 23 22.2 2 12.8

CEMA 32 15.9 6 4.3 3 8.5

SHEARF5 37 13.8 13 2.0 3 8.5

SHEARF1 19 26.9 2 12.8

MYOGLOBIN 37 13.8 13 2.0 2 12.8

GLYCOGEN 52 9.8 20 1.3 2 12.8

ICDHACTIVITY 75 6.8 35 0.7 6 4.3

RCL4 41 12.4 10 2.6 3 8.5

RCL3 21 24.3 6 4.3 1 25.5

RCL2 19 26.9 3 8.5 0

RCL1 12 42.5 0 0

RCb4 6 85.0 0 0

RCb3 9 56.7 0 0

RCb2 5 102.0 0 0

RCb1 19 26.9 2 12.8 0

RCa4 48 10.6 18 1.4 0

RCa3 55 9.3 24 1.1 0

RCa2 57 8.9 29 0.9 0

RCa1 68 7.5 23 1.1 1 25.5

CFb 6 85.0 0 0

CFa 36 14.2 2 12.8 3 8.5

CFL 18 28.3 4 6.4 23 1.1

PH24LL 154 3.3 89 0.3 10 2.6

PH24ST 55 9.3 24 1.1 0

IRON 27 18.9 6 4.3 4 6.4

Table 2 Number of SNPs and their false discovery rates (%)
for each trait beforeb (P < 5 × 10−7 and P < 5 × 10−7) and afterc

(P < 5 × 10−7) fitting the 23 lead SNPs in the model
(Continued)

ZINC 9 56.7 2 12.8 0

EPADPADHA 11 46.4 1 25.5 0

EPADHA 12 42.5 3 8.5 2 12.8

FA_C22_6n3 47 10.9 17 1.5 1 25.5

FA_C22_5n3 6 85.0 1 25.5 1 25.5

FA_C20_5n3 20 25.5 5 5.1 0

FA_C20_4n6 37 13.8 2 12.8 0

FA_C20_3n6 35 14.6 9 2.8 4 6.4

FA_C18_2n6 11 46.4 1 25.5 0

FA_C18_0 23 22.2 7 3.6 0

FA_C16_0 21 24.3 3 8.5 1 25.5

FA_C14_0 54 9.4 20 1.3 0

FA_C12_0 31 16.5 3 8.5 1 25.5

FA_C10_0 22 23.2 9 2.8 1 25.5
a = empty cells are not available

Fig. 2 Quantile-quantile plot of P-values from single SNP genome
wide association study of HGRFAT (darkorange), CEMA (red),
SHEARF1 (skyblue), and FA_C22_5n3 (magenta), and from multi-trait
analysis (olivegreen1). Observed and expected P-values would fall on
the light blue line if there was no association. The top horizontal line
is P < 0.0001, middle horizontal line is P < 0.001, and the bottom
horizontal line is P < 0.05
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which may indicate that the SNPlead is in imperfect LD
with the causal mutation or that there are multiple QTL
in the region. In fact, there were still many significant
SNPs (P < 5 × 10−7) scattered throughout the genome
after fitting the 23 SNPlead indicating that there are likely
to be many more smaller QTL affecting the 56 traits.

Cluster analysis to find QTL with a similar pattern of
effects across traits
The correlation of effects across all 56 traits was calcu-
lated for all pairs of SNPlead (Fig. 5). While the correl-
ation of effects for the SNPlead 3 (OAR 6) and the
SNPlead 4 (OAR 11) was more than 0.8, most correla-
tions were moderate to low. A moderate to low correl-
ation suggests QTL with different patterns of effects
across traits, however, sampling errors in estimating
SNP effects also reduce the absolute value of the correl-
ation. If two QTL affect the same physiological pathway
one might expect them to have the same pattern of ef-
fects and, hence, a higher correlation. Cluster analysis of
the 23 SNPlead (Table 4) based on the correlation matrix
divided them into 5 loosely defined groups (Fig. 5),
which shared patterns of effects across traits (Table 5).
Group 1 consisted of 4 SNPlead on OAR 16, 14, 11 and

6 (Table 4 and Fig. 5). This group clustered as an outer
branch (Fig. 5), indicating that this group of SNPs was
distinct from the other 4 groups. Table 5 shows that

these 4 SNPlead increased carcass and skeletal weights
and lean meat yield and decreased dressing percentage,
fatness, and muscling. They could be described as chan-
ging mature (skeletal or carcass) size.
Group 2 consisted of 4 SNPlead (Table 4 and Fig. 5).

These SNPlead had an allele that increased the concen-
tration of saturated FA with carbon chain of C16, C14,
C12, and C10 (palmitic, myristic, lauric, and capric acids,
respectively) and decreased stearic acid (C18:0) and/or
some unsaturated FA (Table 5). There was also a ten-
dency for the allele that increased saturated FA

Fig. 3 The Manhattan plot showing the –log10 (P-values) of SNPs of
the multi-trait test of the whole genome (except the X chromosome)
before (a) and after (b) fitting 23 lead SNPs in the model

Table 3 Number of significant SNPs (P < 10−5) in reference
population that were also significant in the validation
population

P value in validation No. of SNP FDR% %-same

multi-trait

0.0001 17 0.05 100

0.001 24 0.3 100

0.01 31 2.2 100

0.05 35 9.5 100

all 98 73

single-trait (PSWT)

0.0001 2 0.2 100

0.001 4 0.9 100

0.01 4 9.2 80

0.05 5 34.2 83

all 29 71

single-trait (LEGBONE)

0.0001 8 0.06 100

0.001 9 0.5 100

0.01 13 3.4 100

0.05 17 11.2 100

all 48 84

single-trait (DRESS%)

0.0001 2 0.19 100

0.001 3 1.23 100

0.01 7 4.67 100

0.05 9 16.4 90

all 31 78

single-trait (CCFAT)

0.0001

0.001 1 2.2 100

0.01 3 6.6 100

0.05 4 22.6 100

all 19 83

%-same = percentage of SNPs, which have an effect in the same direction in
both validation and reference sets
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composition to also increase fatness (Table 5). They
could be described as changing fat composition.
Group 3 consisted of 5 SNPlead that influenced meat

retail colour (by increasing redness of meat (RCa*) and
decreasing lightness of meat (RCl*)) and increased myo-
globin and wet iron content in muscle. However, on
other traits, they separated into two subgroups (Table 4
and Fig. 5). One sub-group consisted of 2 SNPs (9th and
10th SNPlead) that increased meat tenderness (i.e., de-
creased shear force), eye muscle area and eye muscle
depth, glycogen, isocitrate dehydrogenase (ICDH) activ-
ity, and polyunsaturated FA (omega-3 and -6) level and
decreased meat pH level (Table 5). The other sub-group
contained 3 SNPs (11th, 12th, and 13th SNPlead), and 2
of them (12th and 13th SNPlead) had decreased meat
tenderness and increased top side, loin weight and
eye muscular area. Additionally, the 13th SNPlead
(OAR18_64.5 Mb) decreased intramuscular fatness
and increased leanness. They could be described as
influencing meat colour and eating quality.
Group 4 consisted of 3 SNPlead (Table 4). Correlations

between these SNPlead were only moderate and they
were also moderately correlated with some SNPlead
from group 3 (Fig. 5). This group tended to influence
meat colour and polyunsaturated (omega-3 and -6)
FA levels (Table 5). Additionally, the 14th SNPlead de-
creased muscling and the 16th SNPlead significantly
decreased ICDH activity and omega-3 and -6 FA
levels. They could be described as affecting meat
colour and FA composition.

Group 5 consisted of 7 SNPs, which were less corre-
lated and do not form a consistent group (Fig. 5). The
17th SNP (OAR14_54.6 Mb) increased glycogen content
and meat redness (increased FCa*), and decreased ultim-
ate pH (pH24) (Table 5). This was similar to the 10th
and 9th SNPlead in Group 3, but it did not affect tender-
ness. The 23rd SNPlead (OAR15_47.5 Mb) increased hot
carcass weight and dressing percentage and decreased
iron content. Each of the other 5 SNPs (18th-22nd
SNPlead) in this group had a significant effect on specific
traits including FA composition or fatness or tenderness.

Searching for more QTL in the same pathway using linear
indices of SNPlead
Genes that operate in the same pathway might be ex-
pected to show the same pattern of pleiotropic effects.
We wanted to harness the power of our multi-trait ana-
lysis to add additional QTL to the 5 broad functional
groups. For each of the 23 lead SNPs, we used the same
linear index as was used previously to validate the SNP
effects. That is, we calculated the linear combination of
the 56 traits that was most highly correlated with the ge-
notypes at each of the SNPlead [19]. Then we performed
new GWAS using the linear index as if it was a new
trait. All SNPlead were also fitted simultaneously in the
GWAS, as we were primarily interested in finding add-
itional QTL to those captured by the SNPlead. This process
added a total of 687 significant SNPs (P < 5 × 10−7) that
were assigned to the same group as the SNPlead whose
linear index was used as the phenotype (Table 4). Usually
this procedure identified a set of closely linked SNPs, pre-
sumably indicating a single QTL.

Identifying plausible candidates
We searched for genes within genomic regions of 30 kb
up and downstream from each of 687 SNPs from linear
index GWAS and the 23 SNPlead. If there were multiple
significant SNPs within a 60 kb window only the most
significant SNP was taken forward. The closest gene was
chosen as a likely candidate. In one exception (SNPlead 4
at OAR6_37.5 Mb), we expanded the 60 kb range as the
nearest gene (LCORL) was 78 kb away (Additional file 1:
Figure S1a). This identified 71 SNPs in or close to po-
tential candidate genes (Table 6). Table 6 lists these
genes in genome position order.
In Group 1, 23 SNPs (including 4 SNPlead) were anno-

tated to possible candidate genes (Fig. 6a and Table 6).
The function of GHR makes this gene a plausible mem-
ber of a group affecting mature size and exogenous ad-
ministration of growth hormone leads to increased
growth and decreased fatness which is the phenotype of
SNPlead 1 near the GHR gene. However, in general, the
23 genes in this group do not share an obvious biological
function although 4 (GHR, LCORL, LCAT, PLAG1) genes

Fig. 4 The –log10 (P-values) of single SNP regressions for 6 traits and
multi-trait chi-squared statistic on a region of OAR 11
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have been associated with a similar phenotype in other
species as discussed below. NCAPG (non-SMC condens-
ing I complex, subunit G) is closely linked to LCORL, so
there may be only one QTL in this region [9, 20, 21]. Not
surprisingly, the effects of SNPs near LCORL and NCAPG
are highly correlated. The SNPs tagging LCORL,
SLC16A13, GHR, FRYL, and BMPR1B were clustered to-
gether as one group within Group 1 (Fig. 6a) and the ef-
fects of those SNPs were highly correlated (r > 0.6).
The 4 SNPlead in Group 2 were expanded with 7 add-

itional SNPs from the linear index GWAS and re-
clustered within the group (Fig. 6b). The 11 SNPs tag
only 8 different chromosomal regions and in 7 of these
there is a gene directly involved in FA synthesis or fat
synthesis (FASN, MLXIPL, EVOLV6, ACACA, SYNRG,
ACSL1, ISYNA1, SGK2, and AGPAT9) (Fig. 6b). Al-
though the closest gene to SNPlead 6 is SNORA70, the
analysis of the linear index derived from SNPlead 3, iden-
tified a significant SNP only 60 kb away whose nearest

gene is ELOVL6, which is a far more plausible candidate.
ACSL1, ACACA (said to be the rate limiting step), FASN
and EVOLV6 code for enzymes used in fatty acid synthe-
sis and the SNPs near them all have an allele that in-
creases the proportion of C10 to C16 saturated FAs
(Table 5). Usually FA synthesis does not proceed to
chains longer than C16. It is therefore understandable
that the allele that increases C10 to C16 FAs tends to in-
crease total fatness (Table 5). AGPAT9 encodes an en-
zyme used in triglyceride synthesis. The MLXIPL protein
activates carbohydrate response element motifs in the
promoters of triglyceride synthesis genes. GO and
KEGG analysis in STRING (functional protein associ-
ation network program) [22] confirms this functional
similarity between the genes near group 2 SNPs
(Additional file 2: Figure S2). For example, according to
KEGG and GO terms, 2 proteins (FASN and ACACA)
were involved together in FA biosynthesis (Bonferroni
P = 3.8 × 10−4), 5 proteins (FASN, ACACA, ACSL1 (or

Table 4 Total number of significant SNPs (P < 5 × 10−7), their FDR (%), and number of significant SNP on each chromosome (which
is in parenthesis) for the 23 linear indexes corresponding to the 23 lead SNPs

Groupa SNP order Linear indexb code Mappedc gene code Total No. SNPd FDR (%) chromosome number (number of significant SNPse)

1 1st OAR16_31.9 Mb GHR 86 0.30 3 (1), 6 (83), 8 (1), 24 (1)

1 2nd OAR14_34.8 Mb LCAT

1 3rd OAR11_26.4 Mb SLC16A11 231 0.11 1 (2), 3 (1), 5 (2), 6 (218), 9 (4), 11 (2), 13 (2)

1 4 th OAR6_37.5 Mb LCORL 489 0.05 1 (3), 2 (1), 6 (475), 7 (1), 9 (2), 11 (6), 15 (1)

2 5th OAR26_13.99 Mb ACSL

2 6th OAR11_13.3 Mb ACACA 8 3.19 11 (6), 17 (2)

2 7th OAR11_49.9 Mb FASN 12 2.13 5 (1), 11 (6), 13 (4), 24 (1)

2 8th OAR6_15.2 Mb SNORA70 14 1.82 6 (12), 11 (1), 13 (1)

3 9th OAR19_57.1 Mb MRPS25 3 8.50 1 (1), 3 (2)

3 10th OAR2_219.6 Mb PLCD4 57 0.45 1 (3), 2 (54)

3 11th OAR3_17.9 Mb APOL6 3 8.50 3 (2), 23 (1)

3 12th OAR5_93.4 Mb CAST 5 5.10 3 (1), 5 (1), 11 (1), 21 (2)

3 13th OAR18_64.5 Mb MEG8_2 32 0.80 18 (32)

4 14 th OAR8_25.0 Mb

4 15th OAR22_20.3 Mb PKD2L1 11 2.32 1 (1), 6 (2), 18 (8)

4 16th OAR12_49.6 Mb SAMD11 15 1.70 12 (14), 17 (1)

5 17th OAR14_54.6 Mb GYS1 10 2.55 2 (6), 4 (1), 10 (1), 18 (2)

5 18th OAR3_21.9 Mb PNPLA3

5 19th OAR21_39.7 Mb FADS2

5 20th OAR19_30.8 Mb 5S-rRNA

5 21st OAR20_44.1 Mb SMIM13 9 2.83 20 (9)

5 22nd OAR21_14.96 Mb

5 23rd OAR15_47.5 Mb U1 1 25.51 25 (1)
a = Group of the lead SNPs that were clustered together as shown on Fig. 5
b = 23 linear indexes corresponding to the 23 lead SNPs
c = Genes located within 30 kb from each of lead SNPs excluding LCORL, and gene names are in Table 6
d = Total number of significant SNPs which are significantly (P < 5 × 10−7) associated with each of linear indexes
e = Number of significant SNP on each chromosome is in parentheses
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Table 5 Effects of 23 lead SNPs on the individual traits (signed values with |t| > 1 are shown)

Group 1a Group 2a Group 3a Group 4a Group 5a

Lead SNP orderb 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th 21st 22nd 23rd

PSWT 1.8 8.3 6.3 2.4 −1.8 3.7 2.3 2.3 −1.4 2.2

HCWT 5.6 1.6 1.3 −1.4 1.1 3.0 1.0 4.0

LLWT 1.4 1.6 1.1 2.1 3.1 6.5 −1.3 1.6 −1.7 1.3

TOP 2.0 3.4 5.5 −1.2 −1.8 2.9 2.4 3.3 1.2 −1.6 1.4 2.5

RND 2.5 7.2 8.1 −1.7 3.1 1.9 1.4 −1.0 −1.0 2.5

BONE 2.7 2.7 10.9 13.7 2.2 2.6 1.3 −2.2 1.7 1.2

LEGBONE 5.7 2.4 12.3 19.1 −1.3 2.7 −1.6 −1.1 −1.0 2.3

LMY 3.3 1.2 5.0 8.7 1.2 −1.5 1.9 −1.2 2.9 1.8 −2.5 −2.5 −1.0

DRESS% −3.6 −3.1 −3.4 −8.7 −2.4 1.2 1.1 −1.6 −1.3 1.5 4.7

DMLOIN −1.2 −2.6 −6.4 −2.1 −1.3 −2.1 2.7 1.9 1.1

IMF −1.7 −1.8 −4.0 2.2 −1.8 −2.0 −5.9 −1.6 2.7 1.3 −1.4 −1.5 1.2 −1.3

LLFAT −2.5 −4.1 −6.4 2.0 1.8 1.7 1.9 1.1 2.5 3.2 2.7

CFATSCORE −2.4 1.1 −4.1 −4.0 1.1 1.2 1.4 −1.5 −1.4 2.0

CCFAT −2.5 −2.9 −3.1 −9.2 3.0 1.4 −2.1 1.9 −1.7 1.2 −1.5 −1.7 1.3

HGRFAT −3.4 −1.9 −7.1 −9.3 1.8 2.2 −2.0 1.6 1.3 −1.5 1.9 1.5 1.5 1.0

CFAT5 −2.2 −2.2 −4.6 −4.6 −2.0 2.0 1.4 1.9 −1.2 −1.5 2.9

CEMW 2.1 1.2 5.4 1.1 1.2 1.1 −2.2 −1.9 2.3

CEMD −2.9 −1.8 −5.0 −3.8 1.4 3.7 1.5 −2.5 1.6 1.6 −1.5

CEMA −1.0 −1.9 −3.4 1.1 2.7 1.6 2.0 −3.5 1.0 −1.6 1.9

SHEARF5 2.5 1.2 3.3 3.7 1.2 −1.0 −3.4 −2.6 8.0 5.6 1.2 −1.1 1.8 1.2 −4.5

SHEARF1 2.7 1.8 1.1 1.8 1.4 −1.2 −2.4 −1.3 5.5 3.3 −1.5 −1.3 2.6 −1.3

MYOGLOBIN 2.4 −2.3 −3.6 −1.3 5.4 5.5 6.3 2.1 2.0 2.1 1.4 −1.9 −1.2

GLYCOGEN 2.0 −1.9 1.5 7.2 1.0 1.0 8.8 −1.0

ICDHACTIVITY −1.2 −1.5 1.4 −1.4 5.4 −1.8 −6.9 −1.8 1.4 −1.0 −1.4

RCL4 −1.1 1.4 2.3 1.3 −4.9 −4.3 −5.1 −1.5 −3.0 −1.5 −2.5 −3.4 1.6 2.3

RCL3 −2.1 2.0 2.2 −4.0 −5.5 −4.6 −2.5 −3.7 −2.3 −2.2 −3.1 2.0 2.5

RCL2 −1.4 1.6 2.8 −3.7 −5.3 −4.2 −2.9 −3.7 −2.7 −2.5 −3.5 −1.5 1.3 1.2 1.7

RCL1 1.2 1.8 −3.8 −2.3 −3.8 −1.6 −2.7 −1.1 3.7 1.1 1.9 1.9 1.3 1.2

RCb4 1.2 −1.3 −2.6 1.1 2.9 1.6 1.6 −1.1

RCb3 −1.7 −2.0 1.7 1.0 1.5 1.2 1.8 −2.8

RCb2 −2.8 −1.2 1.1 −1.1 2.5 1.5 2.0 2.6 2.2
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Table 5 Effects of 23 lead SNPs on the individual traits (signed values with |t| > 1 are shown) (Continued)

RCb1 −1.7 −2.6 −2.0 −1.8 5.0 1.9 3.6 3.2 1.4 1.3

RCa4 −1.6 −3.3 −1.6 4.1 3.9 2.1 1.3 1.4 7.4 4.1 1.5 2.1 2.4 −1.5 −1.1

RCa3 1.1 −2.7 −1.1 −3.9 1.2 −1.7 2.0 3.7 5.6 2.6 2.0 7.5 4.7 1.6 1.6

RCa2 1.2 −2.4 −1.7 −4.1 −1.3 −1.6 3.6 3.2 5.3 2.3 1.6 7.2 6.0 1.4 1.5 1.3 −1.1

RCa1 −1.1 −3.3 −4.1 −1.8 2.0 6.7 2.8 3.2 2.0 1.5 6.6 3.0 1.4 −2.6

CFb −1.2 −3.1 1.3 −2.9 1.3 −1.2 2.4 2.9 3.1

CFa −1.6 −3.9 −2.4 6.9 3.9 −1.0 3.4 4.3 −1.4 −1.2 1.9

CFL −1.2 1.0 1.3 1.3 −5.9 −2.4 −6.1 −3.7 −2.3 1.7 2.5 −1.1

PH24LL 2.5 3.0 −2.1 −11.1 −2.5 −1.1 −4.9 −3.1 −1.9 1.6

PH24ST −1.4 −2.0 −9.0 −1.1 1.3 −5.6 −1.2 −1.1 −2.5

IRON −2.8 −1.5 1.4 5.2 6.2 3.7 1.4 1.5 −1.9 −1.3 1.1 1.2 −2.7 −3.5

ZINC 1.3 −2.3 −3.7 −2.3 1.1 −1.7 −1.9

EPADPADHA 1.1 −1.8 1.1 −1.3 2.5 3.3 −1.1 −1.2 −7.6 −2.2 3.6 −1.3 1.3

EPADHA 1.0 1.2 1.9 4.3 1.5 −1.3 −7.5 −2.1 2.6 1.6 1.9 −1.2 −1.8

FA_C22_6n3 2.5 1.1 −1.4 2.8 1.0 −1.8 2.4 3.6 −1.3 −1.3 −6.8 −1.0 1.5 2.6 6.8 −1.6

FA_C22_5n3 −1.5 2.8 1.0 −1.4 −1.1 1.0 −1.3 −5.8 3.5 −2.7

FA_C20_5n3 1.1 2.4 4.1 −1.6 2.2 −1.1 −8.2 3.3 2.4

FA_C20_4n6 2.0 1.3 1.5 1.3 −1.4 1.9 5.4 −2.3 1.2 1.1 −4.6 −2.9 −1.6 3.1

FA_C20_3n6 2.1 −1.4 −1.2 2.6 −1.2 2.2 2.8 −2.0 2.1 −5.7 2.4 8.2 1.3

FA_C18_2n6 2.7 3.7 −2.0 −6.1 −1.8 −2.2

FA_C18_0 −1.3 2.3 2.5 −2.5 −1.6 −1.8 −1.0 −2.1 −3.0 −2.7 5.5 1.4 1.2 1.2

FA_C16_0 −1.8 3.6 4.9 6.0 −1.6 −1.1 −1.3 −1.6 1.2 −2.0 1.2 −1.0 −1.1

FA_C14_0 −2.7 −2.7 4.9 8.4 3.7 −2.9 −1.2

FA_C12_0 −1.7 1.0 −3.6 −4.5 2.2 3.3 3.0 −3.3 −1.7 2.9 2.3 −1.9

FA_C10_0 1.5 −3.3 7.2 3.8 3.0 −2.1 −3.0 −1.2 −1.1 1.3 1.2 2.4 −2.0
aGroup of the lead SNPs that were clustered together as shown on Fig. 5, bThis SNP order refers SNPs, which are given on Table 4

Bolorm
aa

et
al.BM

C
G
enom

ics
 (2016) 17:224 

Page
10

of
21



FACL2), AGPAT9, and ISYNA1) in metabolic pathways
(Bonferroni P = 7.6 × 10−3), and 4 proteins (FASN,
ELOVL6, ACSL1, and ISYNA1) in lipid biosynthesis
process (Bonferroni P = 3.8 × 10−2).
Group 3 (Fig. 6c) consisted of 19 SNPs including 5

SNPlead that were assigned in this group previously. We
called Group 3 SNPs “meat colour” SNPs because this is
the most consistent feature of the group. The allele that
made the meat redder and darker also tended to increase
myoglobin and iron content, decrease pH and increase
muscling. However, in other respects the SNPs in group
3 differ in their phenotypic effects. The 9th and 10th
SNPlead decrease shear force while the 12th and 13th
SNPlead increase it. Considering the differences in
phenotype and in the function of the candidate genes,
there may be no single physiological process that is com-
mon to all SNPs in group 3.
One group of SNPs were found within OAR 18 63.3-

65.6 Mb near MEG3 (or GTL2), MEG8, DLK1, oar-mir-
136 (or PEG11), BEGAIN, and WARS (Fig. 7). This SNP
increases muscling and shear force which is the pheno-
type of the callipyge mutation which maps to the same
region [15, 16]. The callipyge mutation is not known to
occur in Australian sheep but the Carwell mutation has
a similar, but less dramatic phenotype, and maps to the
same region [16, 23] so it is likely that the SNPlead 13 is
tagging the Carwell mutation. The SNPlead 12 tags CAST
and the linear index derived from this SNP was signifi-
cant for a SNP tagging CAPN1. Both CAST and CAPN1
have also been linked to tenderness in cattle [24–26].
The effects of the SNPlead 12 (tagging CAST) and 13
(tagging Carwell) were highly correlated (Fig. 5). Al-
though these genes do not have similar functions, both
decrease muscle protein turnover which may help to

explain why they both increase muscling and decrease
tenderness. The SNPlead 11 (OAR3_17.8 Mb) was
mapped near the genes APOL6 (apolipoprotein L6) and
MB (myoglobin) and was strongly associated with meat
myoglobin content and also FA composition.
Group 4 and 5 consist of a total of 18 SNPs which do

not cluster tightly and do not show any obvious common
mechanism although individual candidate genes do have a
function closely related to the phenotypic effects of the
SNP tagging them. The SNPlead 17 at OAR14_54.5 Mb of
Group 5 has a strong association with muscle glycogen
content but not with ICDH activity (Table 5) and mapped
within the region of the gene GYS1 (glycogen synthase).
The SNPlead 19 (OAR21_39.7 Mb) and 18 (OAR3_
21.8 Mb) mapped near genes FADS2 (a component of a
lipid metabolic pathway that catalyzes biosynthesis of
highly unsaturated FA) and PNPLA3 (which is in-
volved in both triacylglycerol lipase and acylglycerol
O-acyltransferase activities), respectively. In this study,
these SNPs were strongly associated with poly-
unsaturated FA concentration. Similarly, the linear
index of the 21th SNPlead (OAR20_44.1 Mb) was as-
sociated with a SNP only 100 kb from the SNPlead
and close to the gene ELOVL2 (Table 6). This SNPlead
had a strong positive effect (t = 6.8) on docosapentae-
noic acid (DHA or FA_C22_6n3), but not with ei-
cosapentaenoic acid (EPA or FA_C20_5n3) (Table 5).
ELOVL2 adds 2 carbons to polyunsaturated long
chain FAs so it is a logical candidate for the effect of
both SNPs. The same pattern of effects of a SNP in
ELOVL2 was observed in the human GOLDN study
[19]. Furthermore, SCD (delta-9 desaturase), which is
involved in fatty acid biosynthesis, primarily the syn-
thesis of oleic acid (FA_C18_1n-9) by desaturation of

Fig. 5 Correlation matrix between the 23 lead SNPs calculated from SNP effects on 56 traits
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Table 6 List of plausible candidate genes

Group Lead SNP OAR POS Gene code Gene name Comments

Group1 1st 16 31882270 GHR Growth hormone receptor precursor Lead SNP

Group1 1st 8 73201627 UST uronyl-2-sulfotransferase Linear Index SNP

Group1 2nd 14 34761382 LCAT lecithin-cholesterol acyltransferase Lead SNP

Group1 3rd 11 26445930 SLC16A13 (TP53a) Solute carrier family 16 member Lead SNP

Group1 3rd 13 700413 PLCB1 Phosphoinositide phospholipase C Linear Index SNP

Group1 3rd 5 28332019 SNX24 Sorting nexin-24 Linear Index SNP

Group1 3rd 6 40133729 PACRGL PARK2 Co-Regulated-Like Linear Index SNP

Group1 3rd 6 44672729 PI4K2B phosphatidylinositol 4-kinase type 2 beta Linear Index SNP

Group1 4 th 6 43309694 PPARGC1A Peroxisome proliferator-activated receptor gamma coactivator 1-alpha Linear Index SNP

Group1 4 th 11 26415211 ALOX12 12-lipoxygenase Fragment Linear Index SNP

Group1 4 th 11 28366019 STX8 Syntaxin 8 Linear Index SNP

Group1 4 th 1 171579973 MYH15 myosin, heavy chain 15 Linear Index SNP

Group1 4 th 6 13255764 ALPK1 alpha-kinase 1 Linear Index SNP

Group1 4 th 6 19164907 TBCK TBC1 domain containing kinase Linear Index SNP

Group1 4 th 6 23695577 PPP3CA protein phosphatase 3, Catalytic Subunit, Alpha Isozyme Linear Index SNP

Group1 4 th 6 26074029 RAP1GDS1 Rap1 GTPase-GDP dissociation stimulator 1 Linear Index SNP

Group1 4 th 6 29441012 BMPR1B bone morphogenetic protein receptor, type IB Linear Index SNP

Group1 4 th 6 36811936 MEPE Matrix Extracellular Phosphoglycoprotein Linear Index SNP

Group1 4 th 6 37237578 NCAPG non-SMC condensin I complex, subunit G Linear Index SNP

Group1 4 th 6 37530647 LCORL Ligand Dependent Nuclear Receptor Corepressor-Like Lead SNP

Group1 4 th 6 55607047 ARAP2 ArfGAP with RhoGAP domain, ankyrin repeat and PH domain 2 Linear Index SNP

Group1 4 t 6 67191744 FRYL FRY-like Linear Index SNP

Group1 4th 9 36164331 PLAG1 pleiomorphic adenoma gene 1 Linear Index SNP

Group2 5th 26 13991962 ACSL1 acyl-CoA synthetase long-chain family member 1 Lead SNP

Group2 6th 11 13223903 ACACA acetyl-CoA carboxylase alpha Linear Index SNP

Group2 6th 11 13272203 Lead SNP

Group2 6th 11 13472077 SYNRG synergin, gamma Linear Index SNP

Group2 7th 11 49936709 FASN Fatty acid synthase Fragment Lead SNP

Group2 7th 13 71732382 SGK2 serum/glucocorticoid regulated kinase 2 Linear Index SNP

Group2 7th 24 33535204 MLXIPL MLX interacting protein-like Linear Index SNP

Group2 7th 5 4503837 ISYNA1 Inositol-3-phosphate synthase 1 Linear Index SNP

Group2 8th 6 15245427 SNORA70 small nucleolar RNA, H/ACA box 70 Lead SNP

Group2 8th 6 15303638 ELOVL6 ELOVL fatty acid elongase 6 Linear Index SNP

Group2 8th 6 97914579 AGPAT9 1-acylglycerol-3-phosphate O-acyltransferase 9 Linear Index SNP

Group3 9th 19 57102703 MRPS25 28S ribosomal protein S25, mitochondrial Lead SNP

Group3 9th 3 178861487 MB Myoglobin Linear Index SNP

Group3 10th 1 31018467 PRKAA2 protein kinase, AMP-activated, alpha 2 catalytic subunit Linear Index SNP

Group3 10th 2 212089089 ERBB4 v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 4 Linear Index SNP

Group3 10th 2 219569259 PLCD4 1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase delta-4 Lead SNP

Group3 10th 2 219741728 CYP27A1 cytochrome P450, family 27, subfamily A, polypeptide 1 Linear Index SNP

Group3 11th 23 5077077 NETO1 neuropilin (NRP) and tolloid (TLL)-like 1 Linear Index SNP

Group3 11th 3 178935942 APOL6 apolipoprotein L, 6 Lead SNP

Group3 12th 11 19757132 PROCA1 Protein PROCA1 Linear Index SNP

Group3 12th 21 42744428 CAPN1 Calpain-1 catalytic subunit Linear Index SNP

Bolormaa et al. BMC Genomics  (2016) 17:224 Page 12 of 21



Table 6 List of plausible candidate genes (Continued)

Group3 12th 3 193152752 ABCC9 ATP-binding cassette, sub-family C (CFTR/MRP), member 9 Linear Index SNP

Group3 12th 5 93437720 CAST Calpastatin Lead SNP

Group3 13th 18 63919438 WARS Tryptophanyl-tRNA synthetase, cytoplasmic Linear Index SNP

Group3 13th 18 64095685 BEGAIN brain-enriched guanylate kinase-associated Linear Index SNP

Group3 13th 18 64349803 DLK1 delta-like 1 homolog Linear Index SNP

Group3 13th 18 64452243 MEG3_2 maternally expressed 3 Linear Index SNP

Group3 13th 18 64496663 MEG8_2 maternally expressed 8 Lead SNP

Group3 13th 18 66755669 MARK3 MAP/microtubule affinity-regulating kinase 3 Linear Index SNP

Group4 14th 8 25030751 (LAMA4) laminin, alpha 4 Lead SNP

Group4 15th 18 6026853 MEF2A Myocyte-specific enhancer factor 2A Linear Index SNP

Group4 15th 1 373512 FARP2 FERM, RhoGEF and pleckstrin domain protein 2 Linear Index SNP

Group4 15th 22 20348430 PKD2L1 (SCDb) polycystic kidney disease 2-like 1 Lead SNP

Group4 16th 12 49339905 B3GALT6 UDP-Gal-betaGal beta 1,3-galactosyltransferase polypeptide 6 Linear Index SNP

Group4 16th 12 49639530 SAMD11 sterile alpha motif domain containing 11 Lead SNP

Group4 16th 17 63396022 MYO1H myosin IH Linear Index SNP

Group4 16th 12 49270130 GLTPD1 glycolipid transfer protein domain containing 1 Linear Index SNP

Group5 17th 14 54580893 GYS1 Glycogen synthase, muscle Lead SNP

Group5 17th 4 54562436 PPP1R3A protein phosphatase 1, regulatory (inhibitor) subunit 3A Linear Index SNP

Group5 18th 3 218656000 PNPLA3 patatin-like phospholipase domain containing 3 Lead SNP

Group5 19th 21 39759701 FADS2 Fatty acid desaturase 2 Lead SNP

Group5 20th 19 30808702 5S_rRNA RNA, 5S ribosomal Lead SNP

Group5 21th 20 44129579 SMIM13 small integral membrane protein 13 Lead SNP

Group5 21th 20 44237093 ELOVL2 ELOVL fatty acid elongase 2 Linear Index SNP

Group5 22th 21 14965281 Lead SNP

Group5 23th 15 47513135 U1 RNA, variant U1 Lead SNP

Group5 23th 25 29372500 USP54 ubiquitin specific peptidase 54 Linear Index SNP
aTP53 and bSCD genes which were mapped near this region could be the plausible candidates

Fig. 6 Dendrogram drawn based on correlation matrix between the effects of the lead SNPs and their linear index SNPs within each group: a
Group 1 SNPs (chromosome and position in base pair) along with their annotated gene names; b Group 2 SNPs; and c Group 3 SNPs. Lead SNPs
within each group are highlighted with blue stars; Genes (in brackets) are the alternative most likely putative candidates within the regions
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stearic acid (FA_C18_0), was located just in 45 kb
away from the 15th SNPlead (OAR22_20.3 Mb) (Add-
itional file 1: Figure S1b). So, SCD may be a plausible
candidate gene for this region. We investigated further if
there were any significant SNPs near or within SCD,
which are in LD with the SNPlead OAR22_20.3 Mb. There
were 3 significant SNPs (P < 3.1 × 10−4), located
8.5 kb-22.5 kb upstream to the SCD gene and all 3
were in LD (r2 = 0.16-0.67) with this SNPlead (Additional
file 1: Figure S1b).

Do these candidate genes affect similar phenotypes in
other species?
Comparison with cattle
Of the genes in Table 6 (i.e. near 23 SNPlead or SNPs
highly significantly associated with linear indices derived
from the SNPlead), 3 (LCAT, FADS and PLAG1) were
also highly significant and had similar effects in a multi-
trait analysis of beef cattle [27]. Of the other genes
found by [27], in this study we found 6 SNPs (P < 10−3)
within the region of gene LEPR, 1 SNP (P = 1.5 × 10−3)
within HMGA2, 1 SNP (P = 4.1 × 10−5) within PLIN3,
and 1 SNP (P = 8.8 × 10−6) within PACRG. Saatchi et al.
[9] also found QTL regions harbouring genes associated
with growth including PLAG1, LCORL, NCAPG, and
HMGA2 in their GWAS in 18,000 animals from 10 US
beef cattle breeds.

Comparison with human GWAS
We also investigated the overlap of our QTL with genes
associated with height, BMI, waist to hip ratio, and obes-
ity in humans, which are well documented and have
been validated in multiple studies. We selected the BMI
and BMI-related gene lists reported in 3 recent human

meta-analyses [2, 27–29]. In total, 229 unique genes
from these 3 studies (96 [2], 58 [27], and 78 [28, 29]
genes) were tested. 184 of these genes could be mapped
to positions on the sheep reference genome (OAR 3.1;
[30]). We detected 137 SNPs that were significant (P <
10−3) in our meta-analysis and that mapped to 55 of the
184 human genes (Additional file 3: Table S1). In 1,000
permutations of the data we did not observe a case with
these many SNPs and genes overlapping between the
human and sheep results. These 55 genes included
PPARGC1A (identified from the 4 th SNPlead linear
index) and PLCD4 (tagged by the 10th SNPlead), and the
two genes identified by the linear index of the 10th
SNPlead, CYP27A1 and ERBB4. PLCD4, CYP27A1 and
ERBB4 map near each other so it is uncertain how many
causal mutations are involved (Additional file 2: Table S1).
We also detected 9 SNPs with P values from 8 × 10−4 to
9.7 × 10−18 near the gene FTL (ferritin light polypeptide),
which is known to be strongly associated with human
obesity and carriers of the risk allele reported to have in-
creased appetite [31]. The position of FTL gene in ovine
genome was partially overlapped with GYS1 gene.
We also evaluated the overlap between the sheep

GWAS results described above and GWAS for human
height. Out of 697 SNPs annotated to 604 genes associ-
ated with human height [6], 494 genes mapped to the
sheep reference genome and 287 SNPs which were sig-
nificant (P < 10−3) in our meta-analysis mapped to 118
of these 494 human genes. Again in 1,000 permutations
we did not observe a case with this much overlap be-
tween sheep and human lists. Out of these 287 SNPs, 73
SNPs at P < 10−5 were mapped within or near 11 genes
which was presented in Additional file 3: Table S1.
These 11 genes [6] included LCORL (tagged by the 4 th

Fig. 7 The –log10 (P-values) of SNP effects from the multi-trait test results for OAR18_64.5 Mb, where not all genes in this region are shown: The
lead SNP is shown by a purple diamond in each plot (labelled with chromosome and position, Mb) and the LD between this variant and all
others is colour coded
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SNPlead of group 1), GHR (tagged by the 1st SNPlead of
group 1), and MARK3 (tagged by SNP associated linear
index of the 13th SNPlead of group 3). Gene TP53 from
[6] (Additional file 3: Table S1) was located on OAR11
at 26.9 Mb, which is close to gene SLC16A11 that was
near the 3rd SNPlead in group 1, so TP53 might be the
plausible candidate gene in this region.

Discussion
Multi-trait analysis increases power
We have demonstrated that for a wide range of carcass
and fat composition traits, a multi-trait GWAS strategy
(combining single-trait GWAS in a meta-analysis) de-
tected and validated more QTL than simple single-trait
GWAS. The FDR was low for the majority of traits stud-
ied (Table 2 and Fig. 2). The Q-Q plot deviated from ex-
pectation at very low values of –log10 (P value) for the
multi-trait analysis but, since we fitted a breed and a
polygenic effect in the model, this deviation is not likely
due to uncontrolled population structure. This type of
deviation from expectation is observed if many loci
cause genetic variation for a particular trait [18]. The in-
crease in power from the multi-trait analysis was pos-
sibly due to the fact that all traits measure aspects of
muscle and fat growth and thus share some underlying
biological mechanisms.

Candidate genes
The gene closest to the most significant SNP is not ne-
cessarily the gene responsible for the effect on pheno-
type. However, in some cases the candidate genes in
Tables 4 and 6 are likely to be correct based on two
sources of evidence. In some cases the known function
of the candidate gene fits the observed phenotype very
well. For instance, the gene glycogen synthase is a good
candidate for affecting muscle glycogen concentration.
In other cases, the same gene has been reported to affect
the same trait in another species. For instance, LCAT af-
fects mature size in cattle even though a causal relation-
ship is not apparent from a metabolic biochemsitry
perspective [17]. Both types of evidence support some
candidates such as CAST, CAPN1, and GHR. However,
in some cases we identified more than one closely linked
genes as candidates. The causal gene could be any one
of these or, in some cases, multiple causal variants may
exist in the same region. For instance, the effects of
SNPlead 11 involve both myoglobin content and FA com-
position which suggest that both MB and APOL6 play a
role.

Do detailed phenotypes help to identify the causal gene?
In some cases they do. For instance, the group 2 genes
have a large effect on FA composition and a small effect
on fatness. Without the FA data, their effect on fatness

would have been overlooked. Similarly, GYS1 has a large
effect on muscle glycogen and pH and a smaller effect
on other traits. These cases might be described as meas-
uring a phenotype which is close to the primary action
of the gene. For instance, GYS1 codes for the enzyme
that synthesises glycogen. By contrast, traits such as
body weight are far removed from the direct action of
any one gene. When a gene codes for an enzyme it is
easier to specify a phenotype close to the primary action
of the gene (e.g. the amount of the product) than in
many other cases.

Do QTL with similar patterns of effects across traits tag
genes in the same pathway?
We used two methods to identify SNPs with a similar
pattern of associations across traits–clustering the lead
SNPs and using a linear index designed for one SNP to
find others with similar effects. The genes that cluster
together in group 2 belong to the fat synthesis pathway
but the candidate genes in other groups do not share an
obvious pathway or mechanism. Using the linear index
derived from one SNPlead did, in some cases, find other
genes in the same pathway. For instance, the linear index
that best predicts the CAST genotype shows a significant
effect of the genotype at CAPN1 and the index based on
GYS1 found PPP1R3A. In other cases the clusters do not
seem to belong to a common pathway. It seems likely
that “mature size” can be affected by many pathways.
Nevertheless, the pattern of effects across traits of
SNPlead 3 and 4 are so similar that there must be some
biological connection. The SNPlead 4 is close to LCORL/
NCAPG (also found in human height studies) while
SNPlead 3 is SLC16A11/ALOX12/TP53. SLC16A11 is a
monocarboxylate transporter and it does not seem a
good candidate for affecting mature size. ALOX12 is ara-
chidonate 12 lipoxygenase, which oxidizes arachidonic
acid to a spectrum of bio-active lipid mediators.
Genes related to fat synthesis occurred in groups other

than group 2, possibly because FA traits are over repre-
sented in our 56 traits. For instance, in group 5 are
PNPLA3, FADS2 and EVOVL2. When all 71 candidate
genes in Table 6 are considered, 25 have a direct in-
volvement in lipid metabolism. Even when the 8 genes
in group 2 and these 3 genes named above are removed
there are still 14 ‘lipid’ genes, many of which are in-
volved in intra-cellular signalling using lipids, particu-
larly the PI3K pathway. PI3K hydrolyses PIP3 to IP3
(Inositol 1,4,5-triphosphate) and DAG (1,2-Diacylglyc-
erol), which are second messengers. The PI3K pathway
connects extracellular signals, such as GPCR and typo-
sine kinase receptors, to key molecules such as AKT and
mTOR which integrate signals related to energy and nu-
trient status, and which in turn regulate many activities
such as cell growth and cycling, apoptosis and glucose
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metabolism [32]. For instance, PLCD4 (also found in hu-
man height studies) and PLCB1 are phospholipases that
cleave PIP2 (Phosphatidylinositol-4,5-Bisphosphate) into
the second messengers IP3 and DAG (http://www.sa-
biosciences.com/iapp/ip3.html). ISYNA1 is IP3 synthase
1. PROCA1 also has phospholipase activity. PI4K2B gen-
erates PIP4, a starting point for other PI messengers.
The linear index derived from PLCD4 was significant for
a SNP close to PRKAA2 that is a part of AMP kinase,
which is important for energy homeostasis (Low ATP
causes AMPK to decrease the activity of ACACA and
GYS1, causing reduced FA synthesis and glycogen syn-
thesis, respectively. ACACA is close to SNPlead 6 and
GYS to SNPlead 17. ACACA is the rate limiting step for
lipogenesis de nova.). AMPK connects to the PI3K path-
way via Akt, which integrates many signals and in turn
affects cell proliferation or apoptosis, and glucose me-
tabolism. GHR and ErbB have numerous connections to
the PI3K pathway. LCAT is a lecithin-cholesterol acyl
transferase and APOL6 is an apolipoprotein that trans-
ports cholesterol. SGK2 is a kinase activated by signals
that activate PI3K.
There are also a number of candidate genes associated

with the cytoskeleton – FRYL, MYO1H, MYO15.
MYO15 was also found to affect growth traits in cattle.
FARP2 binds to both phospholipids and cytoskeleton
and regulates integrin signalling and cell adhesion.
ARAP2 is a PIP3 dependent Arf GAP which regulates
focal adhesion. The gene closest to SNPlead 14 is laminin
alpha 4 (LAMA4) which codes for a major protein in the
basement membrane involved in cell adhesion and sig-
nalling and is related to the PI3K pathway. TBCK is
thought to play a role in actin cytoskeleton organization,
cell growth and proliferation via the mTOR pathway.
AMPK, AKT and mTOR are critical controllers of en-
ergy use and protein synthesis.
Thus a hypothesis can be formed that the collection of

56 traits that we have analysed is controlled, in part, by
cytokine signals (e.g. GHR) mediated by intra-cellular
signalling pathways, especially PI3K, that control energy
homeostasis, insulin sensitivity [33] and cell growth
through effectors such as enzymes (e.g. GYS) and cell
cytoskeleton changes. The gross effect of these pathways
is that substrates get directed to different products (e.g.
glycogen or FA) and eventually the balance of cell types
(muscle fibre types or muscle vs fat) is affected.
Signalling systems within the cell are complex and

inter-connected so it probably does not make sense to
think of a linear pathway with all genes in the pathway
having a similar phenotypic effect. Rather each gene has
a unique position in a large network and therefore a
unique pattern of pleiotropic effects. Nevertheless, the
similarity of phenotypes of SNPs in group1 suggests that
they must share some common parts of the network.

The hypothesis put forward here is that this involves sig-
nalling, often via PI3K, to AMPK, AKT and mTOR.

Application to sheep breeding
Sheep breeders are keen to improve the genetic merit
of their sheep for carcass and meat quality traits. The
pattern of effects of each QTL studied here indicates
that some would be more useful for selection than
others. Some QTL have an allele with desirable ef-
fects on more than one trait and appear to be good
targets for selection. For instance, the QTL on OAR
2 (mapped near PLCD4) has an allele that increases
tenderness, improves meat colour (i.e. increased red-
ness of meat), increases myoglobin, glycogen, and un-
saturated (omega-3 and -6) fatty acids and decreases
saturated fatty acids, which is a highly valuable pat-
tern. Selection for this allele would be beneficial in
sheep intended for most markets.

Conclusion
All traits appear to be highly polygenic with dozens to
hundreds of SNPs (P < 10−5) across the genome inde-
pendently associated with each trait. The FDR was lower
in the multi-trait analysis than in single trait analyses,
showing that it had increased power to detect significant
associations with this group of traits implying that many
SNPs are associated with more than one trait. The de-
tailed phenotyping of 56 related traits helped to identify
convincing candidate genes in cases where the pheno-
type was closely related to the primary action of the
gene (e.g. FA synthesis genes). Cluster analysis arranged
the significant SNPs into 5 groups so that SNPs within a
group had a similar pattern of phenotypic effects. The
genes near group 2 SNPs, which are associated with fat-
ness and fat composition, are predominantly genes in-
volved in FA and fat synthesis. By contrast, the genes
near SNPs in group 1, which affect mature size, do not
share a clear mechanism. However, these genes are also
found in cattle and humans associated with size and fat-
ness traits so it is unlikely that most of them are false as-
sociations. Rather it indicates our lack of understanding
of the many processes that control mature size. Across
the 5 groups there are many genes involved in lipid me-
tabolism. These may act directly on measures of fatness
but it seems likely that some of them are involved in sig-
naling pathways within the cell. There was considerable
overlap in the genes identified in our study and those re-
ported to affect height and fatness in humans, and body
composition in cattle. The incorporation of the identi-
fied causal mutations into genomic selection strategies
could improve their accuracy and robustness, while
allowing targeted selection to achieve more rapid genetic
improvement.
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Methods
Genotype data
This study utilised the Ovine Infinium® HD SNP Bead-
Chip, comprising 603,350 (HD) SNPs (Illumina Inc., San
Diego, CA, USA) and the Illumina 50k Ovine SNP chip
(Illumina Inc., San Diego, CA, USA), comprising 54,241
(50k) SNPs. All SNP were mapped to the OAR 3.1 build
of the ovine genome sequence assembled by the
SNPchiMp v.3 [34]. The genotypes for each SNP of both
50k and HD SNP chips were encoded in the Illumina A/
B format and then genotypes were reduced to 0, 1, and 2
copies of the B allele.
Stringent quality control procedures were applied to

the SNP data. SNP were excluded if the call rate per
SNP (this is the proportion of SNP genotypes that have
a GC (Illumina GenCall) score above 0.6) was less than
95 % or minor allele frequency were less than 0.01 or an
extreme departure from Hardy-Weinberg equilibrium
(P < 10−5) occurred. Furthermore, if the average call rate
per individual was less than 90 %, those animals were re-
moved from the SNP data. Further details on quality
control can be found in Daetwyler et al. [35]. The final
set of our 50k SNPs consisted 38,942 SNPs and the spor-
adic missing genotypes of 10,613 animals were filled
using the BEAGLE 4 program pedigree option [36].
After all the quality control tests were applied, 510,174

SNPs of the HD SNP chip remained on 1,735 animals
and the sporadic missing genotypes were filled using
FImpute [37]. Out of 10,613 animals with 50k and 1,735
HD genotypes, 1,682 animals were genotyped for both
SNP arrays. The correlation between real 50k and HD
genotypes for the 38,942 50 k-SNPs of these 1,682 ani-
mals was 0.9988.
The imputation of the 50k to HD was done using Fim-

pute [37]. All 1,735 HD genotypes were used as a refer-
ence set to impute from the 50k genotypes within each
breed. Cross-validation within the 1,735 HD genotypes
revealed an average accuracy of imputation (correlation
of imputed empirical non-50k genotypes) of 0.9871.
Most sires of phenotyped animals were genotyped at HD
density. Thus, imputation accuracy in this study can be
expected to be high as well. In total, 10,613 animals had
real or imputed HD genotypes for 510,174 SNPs and a
phenotypic records for at least one trait.

Phenotype data and traits
The 10,613 animals (from 9 sheep breeds or populations
including MER, PD, BL, SUF, WS, TEX, CORR, COOP,
and MIX; Fig. 1) used in this study were sourced from
the information nucleus flock of Cooperative Research
Centre for Sheep Industry Innovation (Sheep CRC) and
the SheepGENOMICS (SG) project [38, 39]. In total, 56
traits were measured (carcass weight, fatness, muscling,
tenderness, meat colour, pH level, and fatty acid profile)

and trait definitions, number of records for each trait,
raw means and standard deviations based on the geno-
typed animals are given in Table 1. The pedigree file in-
cluded 27,618 animals (including 1,236 sires and 9,638
dams) over 8 generations. A complete description of the
design, methods and analyses of carcass and meat qual-
ity assessments is given by Mortimer et al. [4, 40]. Not
all sheep were measured for all traits.

Single-trait genome-wide association studies
Model used for GWAS
Mixed models fitting fixed and random effects simultan-
eously were used for estimating heritabilities and associ-
ations with SNP. The estimates of heritability were
calculated based on pedigrees for all animals that have
genotype and phenotype data. The same model was used
for GWAS, except that each SNP (SNPi, i = 1, 2, 3, …,
510,174) was added to the model, one at a time, and
tested for an association with the trait. The analysis was
performed using the ASReml software [41] based on the
following mixed model:

y ¼ 1nμþXbþ siαi þ Z1aþ Z1Qqþ Z2dþ Z3s:f þ e

where y is the vector of observed phenotypic values of
the animals, 1n is an nx1 vector of 1’s (n = number of an-
imals with phenotypes), μ is the overall mean, X, Z1, Z2,
and Z3 are all design matrices relating observations to
the corresponding fixed and random effects, b is a vec-
tor of fixed effects (described below), a is a vector of
polygenic additive genetic effects sampled from the
distribution N ~ (0, Aσa

2), where σa
2 is additive genetic

variance and A is the additive relationship matrix con-
structed from the pedigree of the animals and their an-
cestors, q, d, s.f, and e are the vectors of random effects
of breed (including Merino strains), dam (permanent en-
vironment), sire by flock interaction, and residual error,
respectively. Q is a matrix with breed and strain propor-
tions calculated from pedigree (q ~N (0, Qσq

2) [42]; si is
a vector of the genotype of each animal at the ith SNP, si
is fitted as covariates. The maternal group and/or sire by
flock interaction were significant (P < 0.05) to be in-
cluded in the model for carcass weights, fatness, and
muscling traits, whereas it was not significant for tender-
ness, IMF, meat colour, pH level, and fatty acid traits.
All models included dataset (or project) origin (Sheep

CRC and SG), management group, flock, date of obser-
vation, birth year, sex, birth type, and rear type as fixed
effects. All fixed effects were fitted as nested within a
dataset. Flock, date of observation and birth year were
combined in one contemporary group. Also, birth type
and rear type were grouped together. Also, the labora-
tory effect was fitted as a fixed effect, and it was signifi-
cant (P < 0.05) only for shear force and FA traits. Carcass

Bolormaa et al. BMC Genomics  (2016) 17:224 Page 17 of 21



traits, excluding HCWT, DMLION and IMF, were cor-
rected for HCWT, and saturated FA traits were cor-
rected for IMF. Age of dam and its square and age at
observation were fitted as covariates. Age of dam ranged
between 1 and 9 years. The age at observation varied
from 134 to 705 days.

Significance of SNP effect
SNP were tested for a significant association with par-
ticular traits at different probability thresholds (Table 2).
Following Bolormaa et al. [43], the false discovery rate

(FDR) was estimated as
P 1−A

Tð Þ
A
Tð Þ 1−Pð Þ where P is the P-value

tested (e.g. 0.00001), A is the number of SNP that were
significant at the P -value tested and T is the total num-
ber of SNP tested.

Validation of SNP effects
In order to validate statistically significant SNP effects
in an independent population, the animals with
phenotype and genotype data for each trait were split
into five sets by allocating all of the offspring of ran-
domly selected sires to one of the five datasets. Then
one of the 5 divisions was randomly used as a valid-
ation population and the other 4 divisions as the ref-
erence population. Only one 4:1 division of the data
was used per trait. In this way no animal used for
validation had paternal half sibs in the reference
population. The GWAS for 4 traits, which are
amongst the traits with the highest number of signifi-
cant associations, were performed in the reference
population (Table 3). For SNPs with a significant ef-
fect in reference population, the analysis was repeated
in the validation population. We counted the number
of times that the estimated SNP effect was in the
same direction in the validation population.

Multi-trait analysis to detect pleiotropy
Multi-trait significance test
Multi-trait, meta-analysis, following the procedure in
Bolormaa et al. [17] were performed based on SNP ef-
fects estimated from 56 individual single-trait GWAS.
The multi-trait χ2 statistic was calculated as: multi-trait
χ2=, where ti is a 56 × 1 vector of the signed t-values of
SNPi effects for the 56 traits, ti’ is a transpose of vector
ti (1 × 56), and V−1 is an inverse of the 56 × 56 correl-
ation matrix where the correlation is calculated over the
510,174 estimated SNP effects (signed t-values) of the
two traits. The power of QTL detection was investigated
by comparing FDR [43] calculated in the multi-trait test
with FDR [43] calculated in the single-trait GWAS
(Table 3).

Use of linear indices in multi-trait validation
A linear index of 56 traits that had the maximum correl-
ation with genotypes for significant SNP was used for
multi-trait validation. The linear index on individual ani-
mals could only be calculated for animals with all traits
measured. Not all animals were measured for all traits,
so missing values were filled in by a prediction using a
multiple regression approach as described by Bolormaa
et al. [44]. Using this approach, the actual effects (not
signed t values) of 510,174 SNPs for 56 traits that were
estimated based on all animals were used in order to
have the same units as the phenotype values. Before the
missing phenotypes were predicted, the raw phenotypes
for each trait were corrected for fixed effects using the
following model: corrected phenotype = phenotype −
fixed effects. Please note that missing phenotypes were
not predicted for single trait GWAS and the multi-trait
significance test above.
As a validation, after filling missing values, all data was

split into discovery and validation populations using
same approach described in the single-trait GWAS sec-
tion. Then the individual trait GWAS and the multi-trait
significance test on signed t-values described in the pre-
vious sections were performed using only the discovery
population (only one 4:1 division of the total data was
used per trait). Only the most significant SNPs (P < 10−5)
within a 1 Mb window (to avoid testing a large number
of closely linked SNPs) from the multi-trait analysis in
the discovery set were validated in an independent set of
animals. After this, a linear index (yI) of 56 traits that
had maximum correlation in the discovery population
with each selected (significant) SNP was calculated using
the following formula [43]: yI = b 'C− 1y, where b’ is the
transpose of a vector of the estimated effects of the SNP
(not t values) on the 56 traits (1 × 56) that was estimated
from only the discovery population, C−1 is an inverse of
the 56 × 56 (co) variance matrix among the 56 traits cal-
culated from the estimated SNP effects of 510,174 SNPs
only in the reference population, and y is a 56 × 1 vector
of the phenotype values for 56 traits for each animal in
the validation sample. The association between each lin-
ear index (yI) and each SNP (only significant SNPs in
every 1 Mb window from GWAS in discovery popula-
tion) was then tested in the validation population. The yI
was treated as a new trait (dependent variable). The as-
sociation was assessed by a regression analysis (GWAS)
using the following model: yI ~mean + SNPi + animal +
error, where animal and error were fitted as random ef-
fects and SNPi were fitted as a covariate one at a time
(other fixed effects were removed from the trait mea-
surements before forming the linear index). In order to
see whether the SNPs validated in the validation popula-
tion have the same direction of effects (positive or nega-
tive) as SNPs in the discovery population, we also
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calculated linear index and performed linear index GWAS
by using the phenotypes of the discovery population in-
stead of the phenotypes of the validation population. Then
the directions of SNP effects for the linear index in both
reference and validation populations were checked and
the proportion of SNPs whose effects were in the same
direction in the reference population was calculated.

Conditional analyses accounting for 23 lead SNPs
The 23 SNPlead were selected as follows: On each
chromosome the most significant SNP (P < 10−5), based
on the multi-trait analysis, was selected. Up to three
SNPs on the same chromosome were selected only if
they were at least 4 Mb apart and represented two or
three different QTL (showing clearly differentiated peaks
on Manhattan plot from the multi-trait analysis).
The regression analyses (GWAS) were repeated and,

additionally, the 23 SNPlead were fitted simultaneously in
the model. The statistical model used was the same as in
single-trait GWAS with an addition of the 23 SNPlead,
which were fitted simultaneously as covariate effects.
Then a multi-trait chi-squared statistic was calculated
for each SNP to test the effects of the SNP across traits
after fitting the 23 SNPlead.

Cluster analysis to find QTL with a similar pattern of
effects across traits
The SNP effects estimated from single-trait GWAS
based on all animals were used to investigate the rela-
tionships between SNPs. For each pair of SNPs among
the 23 SNPlead, the correlation of their effects across the
56 traits was calculated. Highly positive or negative
correlations indicate 2 SNPs with the same pattern of
effects across traits. Then this correlation matrix was
used to do the hierarchical clustering of the 23
SNPlead leading to 5 groups or clusters as shown in
the dendrogram drawn using the heatmap function of
the R program [45].

Searching for more QTL in the same pathway using linear
indices of SNPlead
For each of the 23 SNPlead, we searched for additional
SNPs in the 5 groups defined by the cluster analysis. To
do this we used the linear index that showed the highest
association with the corresponding SNPlead genotype, as
previously defined for validation of the multi-trait ana-
lysis. The linear index of traits that had a maximum cor-
relation with the genotypes for each of 23 SNPlead was
calculated based on all data. A new GWAS was per-
formed for each of 23 linear indexes (yI) treating it as a
new trait (dependent variable). To avoid identifying QTL
already represented by the 23 lead SNPs, the 23 SNPlead
were also fitted simultaneously in the model. In this way,
we could discover new QTL which are associated with

one of the linear indices corresponding to the 23 SNPlead.
The following model was used: ~ mean + fixed effects +
SNPi + leadSNP1 + leadSNP2 +… + leadSNP23 + animal +
error, where animal and error were fitted as random ef-
fects and the ith SNP (SNPi, i = 1, 2, 3, …, 510174) and 23
SNPlead were fitted simultaneously as covariate effects.
The SNPs that have significant associations (P < 5 × 10−7)

with at least one of the indexes based on SNPlead
were selected for assigning into 5 groups. These
additional significant SNPs were assigned to the same
group as the SNPlead with whose linear index they
had the most significant association.

Identifying plausible candidates
The genes that occur within 30 kb of the SNPs in this
expanded list of significant SNPs were identified using
UCSC Genome Bioinformatics (http://genome.ucsc.edu/)
and Ensembl (www.ensembl.org/biomart/). If there were
more than one gene within 2 Mb, then only one gene was
retained within the 2 Mb regions by selecting the nearest
to the SNP or the particular gene has concomitant rela-
tionship with SNP effects associated for traits studied. GO
and KEGG analysis in STRING (Search Tool for the Re-
trieval of Interacting Genes/Proteins) network program
[22] was used to identify functional similarity between the
genes near group 2 SNPs.

Do these candidate genes affect similar phenotypes in
other species?
30 kb upstream and downstream of 184 genes associated
with fatness in humans were examined in the multi-trait
sheep GWAS and found to contain 137 significant SNPs
(P < 10−3) in 55 genes associated with fatness in humans.
To test if this degree of overlap could be due to chance
we randomly selected 184 genes and performed the
same analysis. This was done 1,000 times to establish
the distribution of the number of significant SNPs and
genes under the null hypothesis that the genes that are
significantly associated with fatness in humans are no
more likely to contain significant SNPs in sheep than ex-
pected by chance. To test the results for genes associ-
ated with human height, a similar test was performed
using 494 randomly selected genes.

Availability of supporting data
The data sets supporting the results of this article are
available in the additional files (Additional files 4, 5, 6,
and 7).

Ethics approval and consent to participate
Animal Care and Use Committee approval was not ob-
tained for this study because no new animals were han-
dled in this experiment. The experiment was performed
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on trait records and DNA samples that had been col-
lected previously.

Additional files

Additional file 1: Figure S1. Multiple plots of the –log10 (P-values) of
SNP effects from the multi-trait test results for lead SNP OAR6_37.5 Mb
(a) and OAR22_20.3 Mb (b): The lead SNP is shown by a purple diamond
in each plot (labelled with chromosome and position, Mb) and the LD
between this variant and all others is colour coded. (TIFF 322 kb)

Additional file 2: Figure S2. Network graphic showing the interactions
between Group 2 gene encoding proteins: Stronger associations are
represented by ticker lines [22]. (TIFF 281 kb)

Additional file 3: Table S1. A list of the overlapped candidate genes in
QTL regions from our sheep study with genes associated with body mass
index and height in human. (XLSX 15 kb)

Additional file 4: The signed t-values of SNP effects (1 to 150,000 in
“chromosome: position” order) for the 56 traits used in multi-trait, meta-
analysis. (GZ 30545 kb)

Additional file 5: The signed t-values of SNP effects (150,001 to 300,000
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