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Abstract

Background: Multi-layer perceptron (MLP) and radial basis function neural networks (RBFNN) have been shown to
be effective in genome-enabled prediction. Here, we evaluated and compared the classification performance of an
MLP classifier versus that of a probabilistic neural network (PNN), to predict the probability of membership of one
individual in a phenotypic class of interest, using genomic and phenotypic data as input variables. We used 16
maize and 17 wheat genomic and phenotypic datasets with different trait-environment combinations (sample sizes
ranged from 290 to 300 individuals) with 1.4 k and 55 k SNP chips. Classifiers were tested using continuous traits
that were categorized into three classes (upper, middle and lower) based on the empirical distribution of each trait,
constructed on the basis of two percentiles (15–85 % and 30–70 %). We focused on the 15 and 30 % percentiles
for the upper and lower classes for selecting the best individuals, as commonly done in genomic selection. Wheat
datasets were also used with two classes. The criteria for assessing the predictive accuracy of the two classifiers
were the area under the receiver operating characteristic curve (AUC) and the area under the precision-recall curve
(AUCpr). Parameters of both classifiers were estimated by optimizing the AUC for a specific class of interest.

Results: The AUC and AUCpr criteria provided enough evidence to conclude that PNN was more accurate than MLP
for assigning maize and wheat lines to the correct upper, middle or lower class for the complex traits analyzed.
Results for the wheat datasets with continuous traits split into two and three classes showed that the performance
of PNN with three classes was higher than with two classes when classifying individuals into the upper and lower
(15 or 30 %) categories.

Conclusions: The PNN classifier outperformed the MLP classifier in all 33 (maize and wheat) datasets when using
AUC and AUCpr for selecting individuals of a specific class. Use of PNN with Gaussian radial basis functions seems
promising in genomic selection for identifying the best individuals. Categorizing continuous traits into three classes
generally provided better classification than when using two classes, because classification accuracy improved
when classes were balanced.

Keywords: Average precision, Bayesian classifier, Genomic selection, Machine-learning algorithm, Multi-layer
perceptron, Non-parametric model
Background
Complex traits of economic importance in animal and
plant breeding seem to be affected by many quantitative
trait loci (QTL), each having a small effect, and are
greatly influenced by the environment. Predicting these
complex traits using information from dense molecular
markers exploits linkage disequilibrium (LD) between
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molecular markers and QTL. Basically, genomic selec-
tion works by capturing realized relationships between
individuals and, to an extent, by capturing the effects of
QTL via their linkage or LD with markers. Genomic se-
lection (GS) regression models use all available molecu-
lar marker and phenotypic data from an observed base
(training population) to predict the genetic values of yet
unphenotyped candidates for selection (testing popula-
tion) whose marker genotypes are known.
There is a vast literature describing statistical methods

that use different functional forms on markers for pre-
dicting genetic values, e.g., [1, 2], starting with the
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seminal work of [3], which proposed regressing pheno-
types on all available markers using a Gaussian linear
model with different prior distributions on marker ef-
fects. Several parametric and semi-parametric methods
have been described and used thereafter for genome-
enabled prediction in animals and plants [4–11].
The basic quantitative genetic model yi = gi + γi (i =

1,… n individuals) describes the ith response or
phenotype (yi) expressed as a deviation from some
general mean (μ) as the sum of an unknown genetic
value (gi) plus a model residual γi. The unknown gen-
etic value can be represented as a complex function
of genotypes with a large number of genes. However,
since the genes affecting a trait are unknown, this
complex function can be approximated by a regres-
sion of phenotype on marker genotypes where a large
number of markers {xi1,…, xip} (xij is the number of
copies of one of the two alleles observed in the ith in-
dividual at the jth marker) may be used as regressors
for predicting the genetic value of the ith individual.
Thus, for u(xi) = u(xi1,… xip), the basic model be-
comes yi = ui + γi, where γi includes errors due to un-
specified environmental effects, imperfect linkage
disequilibrium between markers and the QTL affect-
ing the trait, and unaccounted gene × gene and gene ×
environment interactions.
In several applications, u(xi) is a parametric linear

regression with form u(xi1,… xip) = ∑j = 1
p xijβj,, where βj

is the substitution effect of the allele coded as ‘one’ at
the jth marker. The linear regression function be-
comes yi = ∑j = 1

p xijβj + γi. The regression function u(xi)
can also be represented by semi-parametric models,
such as reproducing kernel Hilbert space (RKHS) re-
gressions or by different types of neural networks
(NN) such as the multilayer perceptron or radial basis
functions [5, 8, 11–14]. Several penalized linear re-
gression models and Bayesian shrinkage estimation
methods have been applied to genome-enabled pre-
diction [1]. Similarly, regularized machine learning
has been used for predicting complex traits [15].
Recently, two-layer feed-forward NN with backpropa-
gation were implemented in various forms using
German Fleckvieh and Holstein-Friesian bull data and
high prediction accuracies were achieved [16]. Like-
wise, a multi-layer NN classifier was applied to study
genetic diversity in simulated experiments [17].
Nonparametric classification models are a branch of

supervised machine learning that has been successfully
applied in several fields of knowledge, e.g., text mining,
bioinformatics and genomics [18, 19]. Particularly in ap-
plied genomic breeding programs and depending on the
trait under consideration, the objective of classification
is to focus on candidates for selection contained in the
upper or lower classes of the prediction space. A
common classification problem arises when an input
marker vector xi ∈ℝ

p is to be assigned to one of S clas-
ses by a classifier. The classifier is trained using a set of
training pairs (xi, ci), (i = 1,… n individuals), where ci
describes the class label (k) to which xi belongs, (k = 1…
S), where S represents the number of classes. Usually, ci
is transformed into a vector ci of dimension S × 1, with 1
in class k and 0 otherwise.
The multi-layer perceptron (MLP) classifier is a typical

architecture of feed-forward NN with at least a hidden
layer and an output layer, where both layers have nonlin-
ear and differentiable transfer functions. The nonlinear
transfer function in the hidden layer enables an NN to
act as a universal approximation method. The training
process of an MLP for each individual i, with input vec-
tor xi and target class ci, typically uses the error back-
propagation learning algorithm [20]. This process
requires a lot of computational time when the number
of input variables is large.
The probabilistic neural network (PNN) was proposed

by [21] and is widely used in pattern recognition and
classification. PNN classifies an input vector xi into a
specific k class such that the specific class has the max-
imum probability of being a correct assignment. PNN
provides an optimum pattern classifier that minimizes
the expected risk of wrongly classifying an object, and is
a very efficient (in terms of computational time) classifi-
cation method. The PNN training algorithm is simpler
and faster than that of the MLP approach because PNN
parameters are estimated directly from the input data
and an iterative procedure is not required. Further, PNN
guarantees convergence to a Bayes classifier if enough
training examples are provided [22]. Several classifica-
tion methods such as support vector machines and ran-
dom forests have been applied in GS [23–25]. However,
despite the apparent advantages of PNN, no PNN classi-
fiers have been applied in GS so far.
The objective of this research was to assess the per-

formance of two NN classifiers, MLP and PNN
(based on Gaussian kernels), to select individuals be-
longing to a specific class of interest (target class). In
an applied GS context, the problem should be formu-
lated according to whether the focus is on selecting
individuals into the upper, middle or lower classes,
depending on the trait under selection. Then the
question is how many of the predicted individuals
classified in the target class are actually observed in
that class. The problem is posed as follows: given an
input vector xi of p markers for the ith individual,
each individual i in the testing set must be classified
in a class of interest of the phenotypic response. Clas-
ses were defined considering different percentiles of
the target trait, specifically, 15 and 30 % for the
upper and lower classes were analyzed.
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Methods
This section has four parts: first the two datasets are de-
scribed; second, the strategy for categorizing the datasets
is explained; third, the multilayer perceptron neural net-
work (MLP) and probabilistic neural network (PNN) are
described, and finally, the criteria used to assess model
accuracy for classifying the best individuals based on
genomic information are described.
Maize datasets
The maize datasets include 16 trait-environment combi-
nations measured on 300 tropical lines genotyped with
55,000 SNPs each; these datasets were previously used
by [8]. Four datasets contain information on the com-
plex trait grain yield (GY) evaluated under severe
drought stress (GY-SS) and well-watered conditions
(GY-WW), and in high yielding (GY-HI) and low yield-
ing (GY-LO) environments. Another six datasets include
information on days to anthesis or male flowering
(MFL), on days to silking or female flowering (FFL), and
the MFL to FFL interval (ASI) evaluated under severe
drought stress (SS) and well-watered (WW) environ-
ments. The remaining six datasets contain information
on gray leaf spot (GLS) resistance evaluated in six CIM-
MYT international trials (GLS-1 to GLS-6). The number
Table 1 Maize datasets – three classes

Data set Trait-environment combination Number of SNP
markers

GY-HI Yield in high yielding environment 46374

GY-LO Yield in low yielding environment 46374

GY-WW Yield in well watered 46374

GY-SS Yield in drought stressed 46374

ASI-WW Anthesis-silking interval in well watered 46374

ASI-SS Anthesis-silking interval in drought stressed 46374

MFL-WW Male flowering time in well watered 46374

MFL-SS Male flowering time in drought stressed 46374

FFL-WW Female flowering time in well watered 46374

FFL-SS Female flowering time in drought stressed 46374

GLS-1 Gray leaf spot in environment 1 46374

GLS-2 Gray leaf spot in environment 2 46374

GLS-3 Gray leaf spot in environment 3 46374

GLS-4 Gray leaf spot in environment 4 46374

GLS-5 Gray leaf spot in environment 5 46374

GLS-6 Gray leaf spot in environment 6 46374

Trait–environment combination, number of markers, total number of individuals, nu
70 % classes, and in the lower 15 and 30 % classes from the empirical cumulative d
of individuals and the type and number of markers are
presented in Table 1; for further details, see [8].

Wheat datasets
These datasets include 306 wheat lines from the CIM-
MYT Global Wheat Program (GWP) that were genotyped
with 1717 Diversity Array Technology (DArT) markers
generated by Triticarte Pty. Ltd. (Canberra, Australia;
http://www.diversityarrays.com), which is a whole-genome
profiling service laboratory. Two traits were analyzed,
grain yield (GY) and days to heading (DTH), which were
evaluated in different environments (year-drought stress-
agronomic treatments). GY was measured in seven envi-
ronments and DTH in ten environments. The number of
individuals and the type and number of markers are pre-
sented in Table 2; for further details, see [11].

Transforming phenotypic responses into three or two
classes
The continuous phenotypic responses yi for each strati-
fied random partition in the datasets were grouped into
three classes (upper, middle and lower), based on 15–
85 % and 30–70 % percentiles of the response of each
trait analyzed. For example, for 15–85 % percentiles, the
quantiles q0.15 and q0.85 were used to split yi into three
classes: yi ∈ upper class, if yi > q0.85; yi ∈ middle class, if
Number of
individuals

Number of
individuals

Number of
individuals

Total number
of individuals

Upper Upper Middle Middle Lower Lower

15 % 30 % 40 % 70 % 15 % 30 %

267 40 80 107 187 40 80

269 40 81 107 189 40 81

242 36 73 96 170 36 73

242 36 73 96 170 36 73

258 39 79 102 180 39 77

258 40 77 103 179 39 78

258 40 139 103 178 40 78

258 39 77 104 179 40 77

258 39 77 104 179 40 77

258 39 77 104 180 39 77

272 42 87 68 170 60 117

280 48 85 77 176 56 118

278 47 85 107 168 63 86

261 48 96 74 154 59 91

279 48 97 84 188 43 98

281 63 85 90 140 78 106

mber of individuals in the upper 15 and 30 % classes, in the middle 40 and
istribution function

http://www.diversityarrays.com


Table 2 Wheat datasets – three classes

Number of
individuals

Number of
individuals

Number of
individuals

Data set Agronomic management Site in Mexico Year Number of SNP
markers

Total number
of individuals

Upper Upper Middle Middle Lower Lower

15 % 30 % 40 % 70 % 15 % 30 %

GY-1 Drought-bed Cd. Obregon 2009 1717 306 46 92 119 211 49 95

GY-2 Drought-bed Cd. Obregon 2010 1717 306 47 92 122 213 46 92

GY-3 Drought-flat Cd. Obregon 2010 1717 263 39 80 104 185 39 79

GY-4 Full irrigation-bed Cd. Obregon 2009 1717 304 46 92 120 212 46 92

GY-5 Full irrigation-bed Cd. Obregon 2010 1717 306 46 94 118 214 46 94

GY-6 Heat-bed Cd. Obregon 2010 1717 306 46 94 120 214 46 92

GY-7 Full irrigation-flat Cd. Obregon 2010 1717 263 39 79 105 185 39 79

DTH-1 Drought-bed Cd. Obregon 2009 1717 306 53 100 93 197 56 113

DTH-2 Drought-bed Cd. Obregon 2010 1717 306 50 93 117 198 58 96

DTH-3 Drought-flat Cd. Obregon 2010 1717 263 40 86 77 177 46 100

DTH-4 Full irrigation-bed Cd. Obregon 2009 1717 306 59 107 107 173 74 92

DTH-5 Full irrigation-bed Cd. Obregon 2010 1717 306 47 101 105 207 52 100

DTH-6 Toluca Toluca 2009 1717 306 122 122 75 93 91 109

DTH-7 El Batan El Batan 2009 1717 306 66 104 101 175 65 101

DTH-8 Small observation plot Cd. Obregon 2009 1717 301 58 101 100 182 61 100

DTH-9 Small observation plot Cd. Obregon 2010 1717 263 45 100 76 173 45 87

DTH-10 Agua Fria Agua Fria 2010 1717 261 49 81 93 125 87 87

Environment code of 12 combinations of sites in Mexico, agronomic management, and year for two wheat traits (grain yield, GY, and days to heading, DTH) from
[11]. Number of markers, total number of individuals, number of individuals in the upper 15 and 30 % classes, in the middle 40 and 70 % classes, and in the lower
15 and 30 % classes from the empirical cumulative distribution
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q0.15 < yi ≤ q0.85; and, yi ∈ lower class; if yi ≤ q0.15 A similar
rule was applied to split yi into three classes with 30-
70 % percentiles.
For the two species, the target classes were the upper

15 and 30 % classes (GY for maize and wheat); the mid-
dle 40 and 70 % classes (ASI for maize), and the lower
15 and 30 % classes (FFL, MFL, and GLS for maize and
DTH for wheat).
Comparison of prediction accuracy of PNN based

on two or three classes was performed only on the
wheat datasets to simplify computations. Firstly, the
phenotypic responses yi for each stratified random
partition of the wheat datasets were grouped into two
classes from the datasets previously grouped into
three classes. The upper 15 % of the binary class was
defined by using the upper 15 % of the trichotomous
classes, and the lower class was the sum of the mid-
dle and lower classes of the trichotomous classes; a
similar strategy was applied for the lower 15 % of the
binary class. The same random partitions (training,
testing sets) were used when comparing PNN with
two classes versus PNN with three classes. Partitions
of the wheat datasets into two classes for GY and
DTH are shown in Table 3.
Multilayer perceptron neural network (MLP) classifier
An MLP can be trained to classify items into S dif-
ferent disjoint classes. Each target class ci is trans-
formed into a target vector ci of zeroes except for a
1 in element k, (k = 1,…, S) the class to be repre-
sented. We arranged a set of n input vectors xi into
a matrix X of dimension n × p. Then we arranged
the n target vectors ci into a matrix C of dimension
S × n. The rows of X correspond to columns of C,
individual-by-individual. Statistical learning is in-
ferred from the data only, with no assumption about
the joint distribution of inputs and outcomes. This
gives MLP great flexibility for capturing complex
patterns frequently found in plant breeding [26].
We begin by describing a standard MLP for a

categorical response (PNN is introduced subse-
quently). MLP is an NN that can be thought of as a
two-stage regression (e.g., [18]). In the first stage
(hidden layer), M data-derived basis functions,
{zm}m = 1

m =M are inferred; in the second stage (the out-
put layer has S neurons, S classes), each neuron’s
output is computed on the basis functions inferred
in the hidden layer using a nonlinear transfer func-
tion (Fig. 1).



Table 3 Wheat datasets – two classes

Number of individuals Number of individuals

Data set Agronomic management Site in Mexico Year Upper Lower Upper Lower

15 % 85 % 30 % 70 %

GY-1 Drought-bed Cd. Obregon 2009 46 260 92 214

GY-2 Drought-bed Cd. Obregon 2010 47 259 92 214

GY-3 Drought-flat Cd. Obregon 2010 39 224 80 183

GY-4 Full irrigation-bed Cd. Obregon 2009 46 258 92 212

GY-5 Full irrigation-bed Cd. Obregon 2010 46 260 94 212

GY-6 Heat-bed Cd. Obregon 2010 46 260 94 212

GY-7 Full irrigation-flat-borders Cd. Obregon 2010 39 224 79 184

Lower Upper Lower Upper

15 % 85 % 30 % 70 %

DTH-1 Drought-bed Cd. Obregon 2009 53 253 100 206

DTH-2 Drought-bed Cd. Obregon 2010 50 256 93 213

DTH-3 Drought-flat Cd. Obregon 2010 40 223 86 177

DTH-4 Full irrigation-bed Cd. Obregon 2009 59 247 107 199

DTH-5 Full irrigation-bed Cd. Obregon 2010 47 259 101 205

DTH-6 Toluca Toluca 2009 122 184 122 184

DTH-7 El Batan El Batan 2009 66 240 104 202

DTH-8 Small observation plot Cd. Obregon 2009 58 243 101 200

DTH-9 Small observation plot Cd. Obregon 2010 45 218 100 163

DTH-10 Agua Fria Agua Fria 2010 49 212 81 160

Environment code of 12 combinations of sites in Mexico, agronomic management, and year for two wheat traits (grain yield, GY, and days to heading, DTH) from
[11]. Number of markers, total number of individuals, number of individuals in the upper 15 and 30 % classes, and in the lower 85 and 70 % classes

Fig. 1 Architecture of classifier MLP with the input (markers) layer, hidden layer, and sum-output layer

González-Camacho et al. BMC Genomics  (2016) 17:208 Page 5 of 16
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In the hidden layer, one data-derived predictor is in-
ferred at each of M neurons. These data-derived predic-
tors are computed by first inferring a score (umi), which
is a linear combination of the input weights and the in-
put markers plus a bias (intercept) term. Subsequently,
this score is transformed using a nonlinear transfer func-
tion, φ(⋅), that is, zmi = φ(wmo + ∑j = 1

p wmjxij), where wmo is
the bias term, and Wm = {Wmj}m = 1; j = 1

m =M; j = p is an input
weight matrix. The transfer function maps from a score
defined in the real line onto the interval [−1, 1] (e.g., a
hyperbolic tangent sigmoid transfer function is tansig uð Þ
¼ 2

1þexp −2ð Þð Þ−1ð Þ. Subsequently, in the output layer, phe-

notypes are regressed on the data-derived features,
{zmi}i = 1; m = 1

i = n; m =M, according to the model E(yki|para-
meters) = vki = wko + ∑m = 1

M wmi, where φk(vki) and φk(.)
is the tansig transfer function, k = 1,…, S. Finally, the
predicted score vector ĉi = {yki}k = 1

k = S, and the predicted
class ĉi is ĉ(xi) = arg max1 ≤ k ≤ S(ĉk) are obtained.
Training of an MLP (given a fixed number of transfer

functions in the hidden layer) involves estimating all of
the classifier’s parameters by means of an iterative back-
propagation error algorithm, based on the scaled conju-
gate gradient algorithm described by [27]. To improve
the generalization capacity of MLP, an early stopping en-
semble strategy can be applied [28]; early stopping ef-
fects non-Bayesian shrinkage of coefficients. In this
approach, we divided the available data into three sub-
sets. The first subset is the training set, used for comput-
ing the gradient and updating network weights and
biases. The second subset is the validation set, where the
error in the set is monitored during the training process.
The validation error normally decreases during the ini-
tial training phase, as does the training set error. How-
ever, when the network begins to over-fit the data, the
error in the validation set typically begins to rise. When
the validation error increases at some point in the iter-
ation, the training is stopped, and the weights and biases
at the minimum validation error are returned. The third
subset is used as testing set.
The performance function to optimize an MLP is usu-

ally the mean squared error (mse), which is the average
squared error between the predicted classes Ĉ and the
target classes C. Ĉ is also a matrix of dimension S × n,
where each column contains values in the [0,1] range.
The index of the largest element in the column indicates
which of the S classes that vector represents.
Probabilistic neural network (PNN) classifier
The architecture of a PNN is similar to that of a radial
basis function NN [8]; a PNN has two layers, the pattern
layer and the summation-output layer, as illustrated in
Fig. 2. The pattern layer computes distances (using a
Gaussian radial basis function (RBF)) between the input
vector xi and the training (centers) input vectors cm ∈
ℝp; m = 1,…,M neurons (M= n individuals of the input
data set) and returns an output vector ui ∈ℝ

M whose el-

ements umi = bm‖xi − cm‖, where bm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−In 0:5ð Þð Þ

p
h is a

weight and h is the width of the Gaussian RBF, indicat-
ing how close the input vector xi is to cm [22]. Then
each umi is transformed into a vector zi ∈ℝ

M, whose ele-
ments are defined by the Gaussian operation zmi =
exp(−umi

2 ). The summation-output layer sums these con-
tributions for each class k, that is, vki = ∑m = 1

M wkmzmi,
where wkm are weights obtained from the target classes
C matrix, to generate a vector of probabilities ĉi = soft-
max(vi) of dimension S × 1 as its net output, where the
softmax transfer function σ(.) is given by

σ við Þ ¼ exp vkð Þ
XS

j¼1
exp vj

� � ; f or k ¼ 1;…; S classes

where vi is a target vector of dimension S × 1 with ele-
ments vk. The softmax transfer function on the
summation-output layer transforms the outputs of pro-
cessing units for each k class in the interval [0,1].
The pattern layer of a PNN is a neural representation

of a Bayes classifier, where the class density functions
are approximated using a windows Parzen estimator
[29]. The standard training method for a PNN (given a
value of h for the Gaussian RBFs) requires a single pass
over all the xi markers of the training set. For this rea-
son, PNN requires short training time and produce as
output (ĉi), posterior probabilities of class membership.

Criteria for assessing classifier prediction accuracy
The prediction accuracy of MLP and PNN was evaluated
using a cross-validation procedure. For each data set, 50
random partitions stratified by classes were generated.
Each partition randomly assigned 90 % of the data to the
training set and the remaining 10 % to the testing set.
We used stratified sampling by class to make sure there
were no empty classes in the training and testing sets.
For each data set, partition index matrices PINDX(n, 50)
were generated, where n is the number of individuals in
each data set analyzed; PINDX(i,j) has a value equal to 1
(training) or 2 (testing) for the ith individual in the jth

partition. Each model was trained and evaluated with
the same pair of training and testing sets of each parti-
tion. For MLP the training sets defined in PINDX(n, 50)
were subdivided by stratified random sampling by class
into two disjoint sets, one for training (88 %) and an-
other for validation (12 %); this was done with the
objective of applying the training early stopping en-
semble strategy[28]. For each random partition, ten
replications (random seeds) were used to evaluate the
performance of MLP.



Fig. 2 Architecture of classifier PNN with the input (markers) layer, pattern layer, and sum-output layer

Table 4 Description of a confusion matrix for binary classes
with observed values and classifier predicted values

Classifier predicted value Sum

1 0

Observed 1 tp fn (Type II error) tp + fn

0 fp (Type I error) tn fp + tn

Sum tp + fp fn + tn n

tp true positive, fp false positive, fn false negative, tn true negative, n total
number of individuals
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Two performance measures for assessing prediction
accuracy of the two classifiers (averaged across 50 ran-
dom partitions) were used: (1) the area under the re-
ceiver operating characteristic curve (AUC), and (2) the
area under the precision-recall curve (AUCpr), or aver-
age precision.
For GY in both species, models were trained to

maximize the AUC of the upper class; for FL, GLS, and
DTH, models were trained to maximize the AUC of the
lower class; for ASI, the target value is zero (perfect syn-
chrony between anthesis and silking interval), models
were trained to maximize the AUC of the middle class.

The area under the receiver operating characteristic curve
(AUC)
Rather than computing the recall (R) [also called sensi-
tivity or true positive rate (tpr)] and the false positive
rate (fpr) for a fixed threshold τ, a set of thresholds was
defined and then tpr vs fpr(R vs f pr) was plotted as
an implicit function of τ; this is called an ROC curve.
The recall or sensitivity is R ¼ tp

tpþf n ; where tp is the

number of positives predicted as positives and fn is the
number of positives predicted as negatives. This measure
evaluates the number of individuals that are correctly
classified as a proportion of all the observed individuals

in the target class. f pr ¼ f p
f pþtn ; where fp is the number

of negatives predicted as positives and tn is the number
of negatives predicted as negatives (Table 4).
To compare the performance of classifiers, the receiver

operating characteristic curve (ROC) has to be reduced
to a single scalar value representing the expected per-
formance. A common method is to compute the area
under the ROC curve (AUC), which produces a value
between 0 and 1. If AUC(a) > AUC(b), then classifier a
has a better average performance than classifier b. AUC
can be interpreted as the probability that a randomly
chosen individual is ranked as more likely to be of the
target class than a randomly chosen individual of an-
other class. The ROC graphs are a useful tool for visual-
izing the performance of the classifiers because they
provide a richer measure of classification performance
than other scalar measures [30].
The area under the precision-recall curve (AUCpr)
A precision-recall curve is a plot of precision (P) vs R
for a set of thresholds τ. P ¼ tp

tpþf p is defined as the frac-

tion of positives predicted as positives with respect to all
predicted positives (Table 4). Thus P measures the frac-
tion of the predicted positives that is really positive,
while R measures the fraction of the predictive positives
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that was in fact detected. This curve is summarized as a
single number using the average precision (AUCpr),
which approximates the area under the precision-recall
curve [31]. This measure is recommended for classes of
different sizes; upper or lower classes of 15 % had a
lower number of individuals than the corresponding
upper or lower classes of 85 %. AUC is commonly
used to present results of binary decision problems in
machine learning algorithms. However, when dealing
with unbalanced classes, AUCpr curves give a more
informative idea of a machine learning algorithm than
AUC [32, 33].

Software
Scripts for fitting models and performing cross-validations
were written in MATLAB r2010b. All the analyses were
performed in a Linux Workstation.
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Fig. 3 Histograms of the AUC criterion and their standard deviation (error b
conditions (HI and WW) and stress conditions (LO and SS) of classifiers MLP
(ASI) under optimal conditions (WW) and drought stress conditions (SS) of
time (FFL), male flowering time (MFL) under optimal well-watered (WW) co
lower 15 and 30 % classes; d gray leaf spot resistance (GLS) in 6 environme
Results and discussion
Results of the value of AUC for classifiers MLP and PNN
in each trait-environment combination are depicted in his-
tograms in Fig. 3a–d (maize datasets) and Fig. 4a–b (wheat
datasets) for the traits selected in the upper and lower (15
and 30 %) and middle (40 and 70 %) classes, respectively.
The first clear trend using the AUC criterion is that

PNN outperformed MLP for most of the individuals in
the upper, middle and lower classes. Depending on the
trait-environment combination, the PNN30% or PNN15%
upper and lower and the PNN40% and PNN70% middle
were usually larger than those of MLP; the only exception
was PNN15% for GY-SS (Fig. 3a), which was lower than
MLP15% (Additional file 1: Table S1).
We also describe AUC and AUCpr results of comparing

the performance of PNN for wheat trait-environment
combinations using two or three classes.
ars) for the maize datasets. a grain yield (GY) under optimal
and PNN in the upper 15 and 30 % classes; b anthesis-silking interval
MLP and PNN of the middle 40 and 70 % classes; c female flowering
nditions and drought stress conditions (SS) of MLP and PNN of the
nts (1–6) of MLP and PNN of the lower 15 and 30 % classes
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b

Fig. 4 Histograms of the AUC criterion and their standard deviation (error bars) for the wheat datasets. a grain yield (GY) in seven environments
(1–7) of classifiers MLP and PNN of the upper 15 and 30 % classes; b days to heading (DTH) in ten environments (1–10) of MLP and PNN in the
lower 15 and 30 % classes
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Comparing classifiers to select individuals in the upper,
middle and lower classes in the maize datasets
Upper classes (15 and 30 %)
Results of the prediction accuracy criterion AUC of
the two classifiers MLP and PNN for traits selected
in the 15 and 30 % upper classes for GY under the
different environmental conditions are reported in
Fig. 3a. PNN was more accurate than MLP in the
upper 30 % class, for assigning individuals based on
GY under stress conditions. Additional file 1: Table
S1 shows the results based on the AUC criterion for
the upper, middle and lower classes.
When using the AUCpr criterion, which relates P and R
for the upper class, PNN outperformed MLP, which is
clearly shown in Table 5 (as shown for the AUC criterion in
Fig. 3a). Also, AUCpr for PNN30% was always better than
PNN15% for all the traits in the upper class. These results
lead to the conclusion that PNN was more accurate than
MLP for assigning maize lines to the correct upper class for
GY under WW and SS conditions. Also under the AUC
criterion, PNN30% was similar to PNN15% for GY-HI and
GY-WW, but better than PNN15% for GY-LO and GY-SS.
Under the criterion AUCpr, PNN30% was always better
than PNN15% for all GY.



Table 5 Maize datasets

Upper class

MLP15% PNN15% MLP30% PNN30%

GY-HI 0.235 (0.126) 0.306 (0.118) 0.429 (0.108) 0.509 (0.102)

GY-LO 0.168 (0.065) 0.188 (0.076) 0.358 (0.107) 0.408 (0.107)

GY-SS 0.199 (0.093) 0.204 (0.110) 0.363 (0.111) 0.453 (0.119)

GY-WW 0.239 (0.131) 0.382 (0.175) 0.410 (0.117) 0.477 (0.111)

Middle class

MLP40% PNN40% MLP70% PNN70%

ASI-SS 0.465 (0.096) 0.495 (0.092) 0.724 (0.076) 0.746 (0.074)

ASI-WW 0.436 (0.091) 0.481 (0.088) 0.706 (0.072) 0.722 (0.084)

Lower class

MLP15% PNN15% MLP30% PNN30%

FFL-SS 0.185 (0.087) 0.288 (0.137) 0.383 (0.106) 0.465 (0.096)

MFL-SS 0.205 (0.101) 0.343 (0.149) 0.421 (0.119) 0.499 (0.112)

FFL-WW 0.197 (0.102) 0.298 (0.161) 0.413 (0.120) 0.506 (0.133)

MFL-WW 0.199 (0.094) 0.288 (0.155) 0.437 (0.133) 0.516 (0.139)

GLS-1 0.269 (0.096) 0.338 (0.135) 0.476 (0.096) 0.526 (0.092)

GLS-2 0.320 (0.140) 0.447 (0.157) 0.524 (0.101) 0.642 (0.093)

GLS-3 0.372 (0.138) 0.456 (0.149) 0.496 (0.128) 0.589 (0.116)

GLS-4 0.350 (0.135) 0.487 (0.147) 0.439 (0.110) 0.512 (0.111)

GLS-5 0.161 (0.072) 0.208 (0.107) 0.429 (0.098) 0.538 (0.118)

GLS-6 0.320 (0.091) 0.400 (0.109) 0.431 (0.094) 0.491 (0.098)

Mean values of the area under the precision-recall curve AUCpr AUCpr
(standard deviation in parentheses) of 50 random partitions for 15 and 30 %
upper classes for grain yield (GY) in four environments (HI, LO, SS, and WW), for
40 and 70 % middle class for anthesis-silking interval (ASI) in two environments
(SS and WW), and for 15 and 30 % lower classes for four traits, female flowering
(FFL) and male flowering (MFL) in two environments (SS and WW); for
gray leaf spot resistance (GLS) in six environments (1–6) and for classifiers
MLP and PNN. Numbers in bold are the highest AUCpr values between
MLP and PNN for 15 and 30 %
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Middle classes (40 and 70 %)
Concerning the AUC criterion for the middle class based
on ASI-SS and ASI-WW, Fig. 3b shows a slight super-
iority of PNN over MLP for both 40 and 70 %; however,
PNN40% was, on average, slightly better than PNN70%.
On the other hand, results using the AUCpr criterion
also show a slight superiority of PNN over MLP for
MLP40% for ASI-SS and MLP70% for both ASI-SS and
ASI-WW (Table 5). For this middle class, the AUCpr re-
sults favored PNN as a better predictor than MLP for
assigning maize lines to the correct middle class.

Lower classes (15 and 30 %)
For the lower class, Fig. 3c for FL and Fig. 3d for GLS
(both traits in different environments) show a clear su-
periority in terms of the AUC criterion of PNN over
MLP for both lower classes. The better prediction accur-
acy of classifier PNN is reflected in AUCpr prediction
accuracy, where PNN outperformed MLP for both lower
classes, and PNN30% was higher than PNN15% for all
10 traits (Table 5).

Comparing classifiers for selecting individuals in the
upper and lower classes in the wheat datasets
Upper classes (15 and 30 %)
Results of AUC for GY that were selected in the upper
15 and 30 % classes are presented in Fig. 4a and in
Additional file 2: Table S2. PNN outperformed MLP for
both upper classes for all GY. PNN30% gave better pre-
diction accuracy than PNN15% in most traits, with the
exception of GY-3 and GY-6, where PNN15% had better
prediction than PNN30%.
Criterion AUCpr showed that PNN was better than

MLP for both upper classes; PNN appeared as the best
class predictive models in all GY traits. Furthermore,
under the AUCpr criterion, PNN30% was higher than
PNN15% in all wheat GY traits (Table 6). In summary,
results of the upper 15 and 30 % classes show that PNN
was a more accurate predictor than MLP when using
the AUC and AUCpr criteria.

Lower classes (15 and 30 %)
For the lower classes involving wheat DTH, AUC of
PNN was higher than MLP for both 15 and 30 % per-
centiles and all traits (Fig. 4b). In five instances (DTH-2,
DTH-3, DTH-5, DTH-6 and DTH-9), the PNN15%
model was slightly more accurate than PNN30% when
classifying individuals in this lower class.
The best performance of PNN was reflected in the

prediction accuracy given by the AUCpr criterion, where
PNN was better than MLP in both lower classes for all
DTH traits. Likewise, PNN30% was always higher than
PNN15% (Table 6).

Prediction accuracy of PNN classifier with two and three
classes in the wheat datasets
This section compares the performance of PNN in the
upper and lower (15 and 30 %) classes for wheat GY and
DTH traits, when two and three classes are formed and
evaluated using the AUC (Table 7) and AUCpr (Table 8)
criteria. For the AUC criterion, PNN with three classes
was slightly better than PNN with two classes for most
traits in the upper and lower 15 and 30 % classes
(Table 7). For the AUCpr criterion, results were not as
clear as for AUC; however, PNN with three classes was
globally better than PNN with two classes (Table 8).
In summary, results for the wheat datasets comparing

the performance of PNN for selecting individuals in the
lower and upper 15 and 30 % classes, based on the split-
ting of continuous traits into two or three classes,
showed that for the lower 15 %, the performance of
PNN with three classes was better than PNN with two
classes (in seven of ten traits). However, PNN with two



Table 6 Wheat datasets

MLP15% PNN15% MLP30% PNN30%

Upper class

GY-1 0.204 (0.084) 0.288 (0.140) 0.406 (0.113) 0.475 (0.102)

GY-2 0.270 (0.108) 0.307 (0.111) 0.485 (0.113) 0.567 (0.116)

GY-3 0.227 (0.114) 0.268 (0.108) 0.366 (0.100) 0.453 (0.118)

GY-4 0.242 (0.110) 0.325 (0.118) 0.409 (0.107) 0.518 (0.115)

GY-5 0.284 (0.115) 0.326 (0.142) 0.505 (0.116) 0.550 (0.107)

GY-6 0.504 (0.172) 0.561 (0.157) 0.637 (0.115) 0.701 (0.083)

GY-7 0.199 (0.091) 0.290 (0.117) 0.423 (0.114) 0.529 (0.115)

Lower class

DTH-1 0.304 (0.113) 0.414 (0.124) 0.522 (0.107) 0.630 (0.091)

DTH-2 0.297 (0.117) 0.429 (0.132) 0.433 (0.110) 0.521 (0.104)

DTH-3 0.364 (0.149) 0.511 (0.151) 0.547 (0.115) 0.650 (0.095)

DTH-4 0.254 (0.077) 0.298 (0.089) 0.297 (0.070) 0.363 (0.097)

DTH-5 0.275 (0.131) 0.384 (0.164) 0.440 (0.104) 0.546 (0.087)

DTH-6 0.380 (0.091) 0.467 (0.094) 0.465 (0.099) 0.520 (0.112)

DTH-7 0.368 (0.114) 0.482 (0.113) 0.521 (0.124) 0.591 (0.115)

DTH-8 0.264 (0.097) 0.382 (0.103) 0.452 (0.102) 0.599 (0.095)

DTH-9 0.261 (0.103) 0.367 (0.112) 0.416 (0.099) 0.535 (0.107)

DTH-10 0.447 (0.109) 0.553 (0.114) 0.462 (0.112) 0.578 (0.124)

Mean values of the area under the precision-recall curve AUCpr (standard
deviation in parentheses) of 50 random partitions for the 15 and 30 % upper
classes for grain yield (GY) in 7 environments (1–7) and 15 and 30 % lower
classes for days to heading (DTH) in 10 environments (1–10) for classifiers MLP
and PNN. Numbers in bold are the highest AUCpr values between MLP and
PNN for 15 and 30 %
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classes gave better predictions than PNN with three
classes in the upper 15 % (four over seven traits). This is
not the case when predicting individuals in the upper
and lower 30 %, where PNN with three classes was a
better predictor than PNN with two classes for most
traits.
ROC and precision-recall curves for the maize and wheat
datasets
Some results of the ROC and precision-recall curves for
various maize and wheat datasets for upper and lower
15 and 30 %, with the middle class in maize for 40 and
70 %, are displayed in a series of figures (for the maize
datasets, Fig. 5a–f; for the wheat datasets, Fig. 6a–d). For
the maize and wheat datasets, it is clear that the ROC
curves of PNN for the upper and lower 15 and 30 % and
the middle 40 and 70 % dominated the corresponding
curves of MLP. Also, AUC values for PNN were always
greater than those for MLP.
Furthermore, the P vs R graphs show that for all the

maize and wheat datasets, PNN was better than MLP,
indicating that the precision of PNN remains better than
that of the MLP for all recall values. The precision of
PNN started declining at higher values of R than the
values of R for MLP.

Discussion
Accuracy of the MLP and PNN classifiers for selecting the
best individuals
Genomic selection aims to accurately predict genetic
values with genome-wide marker data using a three-step
process: 1) model training and validation, 2) predicting
genetic values, and 3) selecting based on these predic-
tions [34].
We evaluated the performance of classifiers MLP and

PNN for selecting the best individuals in maize and
wheat datasets (Tables 1 and 2). Results indicated that,
overall, PNN was more precise in identifying individuals
in the correct class than MLP. Previous studies using
RBFNN and Bayesian regularized NN on the same wheat
datasets [8, 11] used in this study showed their predic-
tion advantage over the linear parametric models for
complex traits such as GY because these models can
capture cryptic epistatic effects in gene × gene networks
such as those usually present in wheat (e.g., additive ×
additive interactions). The good performance of PNN
for selecting individuals in the correct classes may also
be due to its ability for capturing small and complex in-
teractions, while MLP may fail to do so.
The fact that these classifiers are trained to maximize

the probability of membership of an individual to the
target class, rather than searching for an overall per-
formance, makes it attractive for applying these tools in
GS. Results from MLP and PNN indicated that PNN
was much more efficient in maximizing the probability
of membership for the upper, middle, and lower classes
than MLP.
From a practical genome-assisted plant breeding per-

spective, this study attempts to mimic the breeder’s deci-
sion, for example when selecting the upper 15 or 30 %
class candidates for GY, or when selecting the lower 15
or 30 % class candidates for DTH, GLS or FL. In maize
breeding, ASI synchrony close to zero is a crucial “mid-
dle class trait” under SS conditions because it will ensure
selecting plants that will simultaneously produce pollen
and silk; thus grains can be harvested. Therefore, PNN
should help genomic-assisted breeding select appropriate
candidates in each class of interest.
Breeding values have two main components, parental

average (accounting for between family variation) and
Mendelian sampling (accounting for within family vari-
ation). Genomic prediction should account for these two
main components and try to control potential popula-
tion structures that could modify prediction accuracy
between the selected training and testing populations.
An important practical question is how well PNN and
MLP predict the breeding value of individuals between



Table 7 Wheat datasets

PNN15% (two classes) PNN15% (three classes) PNN30% (two classes) PNN30% (three classes)

Upper class

GY-1 0.658 (0.140) 0.675 (0.135) 0.708 (0.082) 0.735 (0.085)

GY-2 0.691 (0.091) 0.713 (0.100) 0.765 (0.081) 0.805 (0.076)

GY-3 0.694 (0.123) 0.697 (0.120) 0.664 (0.115) 0.663 (0.115)

GY-4 0.674 (0.120) 0.693 (0.105) 0.701 (0.112) 0.748 (0.107)

GY-5 0.710 (0.123) 0.727 (0.115) 0.775 (0.083) 0.782 (0.089)

GY-6 0.880 (0.097) 0.878 (0.100) 0.830 (0.075) 0.864 (0.070)

GY-7 0.649 (0.160) 0.690 (0.158) 0.708 (0.116) 0.736 (0.106)

Lower class

DTH-1 0.724 (0.112) 0.779 (0.109) 0.791 (0.074) 0.791 (0.072)

DTH-2 0.773 (0.094) 0.789 (0.090) 0.763 (0.100) 0.751 (0.092)

DTH-3 0.840 (0.100) 0.843 (0.101) 0.802 (0.074) 0.806 (0.074)

DTH-4 0.584 (0.098) 0.585 (0.097) 0.568 (0.094) 0.587 (0.102)

DTH-5 0.763 (0.121) 0.779 (0.128) 0.754 (0.075) 0.756 (0.072)

DTH-6 0.708 (0.086) 0.736 (0.085) 0.722 (0.097) 0.722 (0.098)

DTH-7 0.765 (0.096) 0.775 (0.095) 0.775 (0.097) 0.785 (0.088)

DTH-8 0.750 (0.080) 0.755 (0.082) 0.803 (0.065) 0.799 (0.067)

DTH-9 0.764 (0.105) 0.774 (0.090) 0.736 (0.088) 0.743 (0.087)

DTH-10 0.763 (0.763) 0.768 (0.098) 0.774 (0.094) 0.787 (0.102)

Mean values of the area under the ROC curve AUC (standard deviation in parentheses) of 50 random partitions for the 15 and 30 % upper class for grain yield (GY) in 7
environments (1–7) and for 15 and 30 % lower class for days to heading (DTH) for classifier PNN with two and three classes. Numbers in bold are the highest AUC values

Table 8 Wheat datasets

PNN15% (two classes) PNN15% (three classes) PNN30% (two classes) PNN30% (three classes)

Upper class

GY-1 0.270 (0.134) 0.288 (0.140) 0.499 (0.118) 0.475 (0.102)

GY-2 0.322 (0.118) 0.307 (0.111) 0.538 (0.117) 0.567 (0.116)

GY-3 0.310 (0.138) 0.268 (0.108) 0.452 (0.117) 0.453 (0.118)

GY-4 0.319 (0.121) 0.325 (0.118) 0.482 (0.112) 0.518 (0.115)

GY-5 0.333 (0.161) 0.326 (0.142) 0.545 (0.104) 0.550 (0.107)

GY-6 0.562 (0.159) 0.561 (0.157) 0.668 (0.087) 0.701 (0.083)

GY-7 0.263 (0.124) 0.290 (0.117) 0.503 (0.117) 0.529 (0.115)

Lower class

DTH-1 0.370 (0.114) 0.414 (0.124) 0.629 (0.091) 0.630 (0.091)

DTH-2 0.417 (0.134) 0.429 (0.132) 0.548 (0.116) 0.521 (0.104)

DTH-3 0.506 (0.158) 0.511 (0.151) 0.641 (0.093) 0.650 (0.095)

DTH-4 0.292 (0.090) 0.298 (0.089) 0.350 (0.094) 0.363 (0.097)

DTH-5 0.355 (0.158) 0.384 (0.164) 0.551 (0.091) 0.546 (0.087)

DTH-6 0.444 (0.087) 0.467 (0.094) 0.530 (0.119) 0.520 (0.112)

DTH-7 0.462 (0.116) 0.482 (0.113) 0.580 (0.122) 0.591 (0.115)

DTH-8 0.387 (0.104) 0.382 (0.103) 0.603 (0.089) 0.599 (0.095)

DTH-9 0.376 (0.138) 0.367 (0.112) 0.532 (0.105) 0.535 (0.107)

DTH-10 0.557 (0.112) 0.553 (0.114) 0.575 (0.117) 0.578 (0.124)

Mean values of the area under the precision-recall curve AUCpr (standard deviation in parentheses) of 50 random partitions for the 15 and 30 % upper classes for
grain yield (GY) in 7 environments (1–7) and for 15 and 30 % lower classes for days to heading (DTH) for classifier PNN with two and three classes. Numbers in
bold are the highest AUCpr values

González-Camacho et al. BMC Genomics  (2016) 17:208 Page 12 of 16



Fig. 5 The upper curve is the ROC curve (AUC) with recall vs false positive rate. The lower curve is the precision-recall curve AUCpr with precision vs
recall for the a upper 15 % class of grain yield under well-watered conditions (GY-WW) of classifiers MLP (green) and PNN (blue); b upper 30 % class of
trait grain yield under well-watered conditions (GY-WW) of MLP (green) and PNN (blue); c middle 40 % class of trait anthesis-silking interval under
well-watered conditions (ASI-WW) of MLP (green) and PNN (blue) and d middle 70 % class of trait anthesis-silking interval under well-watered
conditions (ASI-WW) of MLP (green) and PNN (blue); e lower 15 % class of trait female flowering under well-watered conditions (FFL-WW) of MLP
(green) and PNN (blue); f lower 30 % class of trait female flowering under well-watered conditions (FFL-WW) of MLP (green) and PNN (blue)
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families and within families that were not phenotyped.
Although the elite maize and wheat lines used in this
study are not ideal as training sets, the cross-validation
scheme used in this study (where 50 random partitions
stratified by classes were generated for each data set) at-
tempts to mimic the prediction of non phenotyped indi-
viduals belonging to different families (crosses) or to the
same family. Although this cross-validation design may
not have chosen individuals between and within families
as precisely as they are in reality, it is likely that the 50
random partitions searched for all possible relationships
between individuals in the training and testing sets such
that some cross-validation partitions selected subsets of
training data that had high correlations with the ob-
served data, indicating a family relationship among indi-
viduals belonging to those training–testing subsets [11],
whereas other random partitions chose subsets of train-
ing individuals that had no family relationship with those
in the testing set, thus producing low correlations with
the observed values. When applied to both classifiers,
PNN consistently gave better average prediction accur-
acy (across the 50 random partitions) of the genetic



Fig. 6 The upper curve is the ROC curve (AUC) with recall (sensitivity) vs false positive rate. The lower curve is the precision-recall curve AUCpr
with precision vs recall for the a upper 15 % class of grain yield in environment 6 (GY-6) of classifiers MLP (green) and PNN (blue); b upper 30 %
class of grain yield in environment 6 (GY-6) of MLP (green) and PNN (blue); c lower 15 % class of days to heading in environment 3 (DTH-3) of
MLP (green) and PNN (blue); d lower 30 % class of days to heading in environment 3 (DTH-3) of MLP (green) and PNN (blue)
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values of the unobserved individuals than MLP in all 33
maize and wheat data sets.

AUC and AUCpr
For both datasets, the results of the AUCpr criterion
showed that the values of the upper and lower PNN30%
were higher than those for the upper and lower
PNN15%. Also, the values of the middle PNN70% were
higher than those for the PNN40% (Tables 5 and 6).
These results were similar but not equal to those found
by AUC (which does not account for imbalances in the
number of individuals comprising the upper, middle and
lower classes) in several instances. PNN15% was super-
ior to PNN30% in the maize data (e.g., ASI-SS, ASI-
WW, FFL-SS, MFL-SS, GL-1, GLS-4) and the wheat data
(e.g., DTH-2, DTH-3, DTH5, DTH-6, DTH-9). Predic-
tion accuracy of individuals was clearly hampered under
biotic stress in the maize data, which was also found by
[6, 8, 11, 35].
Figures 5a–f and 6a–d showing the ROC curve clearly

indicated the advantage of PNN over MLP. The R vs fpr
graph indicates that, for most of the traits, the probabil-
ity of correctly classifying an individual in the upper,
lower or middle classes was very often 0.80 or higher,
even with a small fpr. In most cases, at a value of fpr = 0,
the probability of classifying an individual in the correct
class was 0.80 or greater for PNN. For all traits, the
AUC of PNN15% was always better than the AUC of
MLP15% and the AUC of PNN30% was better than the
AUC of MLP30%.
For the AUCpr curve, Figs. 5a–f and 6a–d indicate

that, in most cases, PNN had higher precision than MLP
at higher sensitivity values. This criterion also indicates
the superior performance of PNN over MLP.

Prediction accuracy for 30 vs 15 % classes with binary
and trichotomous classes
Based on the AUC criterion, it is clear that PNN gave
better prediction accuracy than MLP when assigning
maize and wheat individuals to the classes of interest.
Using the AUCpr criterion, the results were equally clear
for the wheat and the maize datasets.
For the wheat datasets, the AUC criterion showed the

superiority of PNN30% with three classes over PNN30%
with two classes, as well as the superiority of PNN15%
with three classes over PNN15% with two classes
(Table 7). However, the differences given by the AUC
criterion were not as marked as those shown by the
AUCpr criterion. The AUCpr criterion applied with
PNN shows that for the upper 15 % classes (GY traits),
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partitioning the data into two classes assigned more
wheat lines to the correct observed classes than parti-
tioning the data into three classes. However, for the
lower 15 % classes (DTH traits) and for PNN 30 % upper
and lower classes, results indicate that three classes gave
better prediction than two classes (Table 8).

Conclusions
We compared the performance of the multilayer percep-
tron (MLP) and the probabilistic neural network (PNN)
classifiers for selecting the best individuals belonging to a
class of interest (target class) in maize and wheat datasets
using high-throughput molecular marker information (55 k
and 1.4 k). PNN outperformed MLP in most of the data-
sets. The performance criteria used to judge the predictive
accuracy of MLP and PNN for assigning individuals to the
right observed class were the area under ROC curve, AUC,
and the area under the precision-recall curve, AUCpr, PNN
had better accuracy than MLP. In genomic selection, where
p markers > > n individuals is the norm, PNN seems prom-
ising because of its better generalization capacity than MLP,
and is faster than MLP in obtaining optimal solutions, thus
presenting appealing computational advantages.

Availability of supporting data
The 33 datasets (16 maize and 17 wheat trials) and the
MATLAB scripts used in this work are available at
http://hdl.handle.net/11529/10576.
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Additional file 1: Table S1. Maize datasets. Mean values of the area
under the ROC curve AUC (standard deviation in parentheses) of 50
random partitions for upper 15 and 30 % classes for grain yield (GY) in
four environments (HI, LO, SS, and SS), for middle 40 and 70 % classes for
anthesis-silking interval (ASI) in two environments (SS) and (WW), and for
lower 15 and 30 % classes for four traits, female flowering (FFL) and male
flowering (MFL) in two environments (WW and SS); for gray leaf spot
resistance (GLS) in six environments and for both MLP and PNN classifiers.
Numbers in bold are the highest AUC values between MLP and PNN for
15 and 30 %. (DOC 62 kb)

Additional file 2 :Table S2. Wheat datasets. Mean values of the area
under the ROC curve AUC (standard deviation in parentheses) of 50
random partitions for the upper 15 and 30 % classes for grain yield (GY)
in seven environments (1-7) and for the lower 15 and 30 % classes for
days to heading (DTH) in ten environments (1-10) for both MLP and PNN
classifiers. Numbers in bold are the highest AUC values between MLP and
PNN for 15 and 30 %. (DOC 59 kb)
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