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Abstract

Background: Plant architecture attributes, such as plant height, ear height, and internode number, have played an
important role in the historical increases in grain yield, lodging resistance, and biomass in maize (Zea mays L.
Analyzing the genetic basis of variation in plant architecture using high density QTL mapping will be of benefit for the
breeding of maize for many traits. However, the low density of molecular markers in existing genetic maps has limited
the efficiency and accuracy of QTL mapping. Genotyping by sequencing (GBS) is an improved strategy for addressing a
complex genome via next-generation sequencing technology. GBS has been a powerful tool for SNP discovery and
high-density genetic map construction. The creation of ultra-high density genetic maps using large populations of
advanced recombinant inbred lines (RILs) is an efficient way to identify QTL for complex agronomic traits.

Results: A set of 314 RiLs derived from inbreds Ye478 and Qi319 were generated and subjected to GBS. A
total of 137,699,000 reads with an average of 357,376 reads per individual RIL were generated, which is equivalent to
approximately 0.07-fold coverage of the maize B73 RefGen_V3 genome for each individual RIL. A high-density genetic
map was constructed using 4183 bin markers (100-Kb intervals with no recombination events). The total
genetic distance covered by the linkage map was 1545.65 cM and the average distance between adjacent
markers was 0.37 cM with a physical distance of about 0.51 Mb. Our results demonstrated a relatively high
degree of collinearity between the genetic map and the B73 reference genome. The quality and accuracy of
the bin map for QTL detection was verified by the mapping of a known gene, pericarp color 1 (P1), which
controls the color of the cob, with a high LOD value of 80.78 on chromosome 1. Using this high-density
bin map, 35 QTL affecting plant architecture, including 14 for plant height, 14 for ear height, and seven for
internode number were detected across three environments. Interestingly, pQTL10, which influences all three
of these traits, was stably detected in three environments on chromosome 10 within an interval of 14.6 Mb.
Two MYB transcription factor genes, GRMZM2G325907 and GRMZM2G108892, which might regulate plant
cell wall metabolism are the candidate genes for gPHI0.

Conclusions: Here, an ultra-high density accurate linkage map for a set of maize RILs was constructed using
a GBS strategy. This map will facilitate identification of genes and exploration of QTL for plant architecture
in maize. It will also be helpful for further research into the mechanisms that control plant architecture while
also providing a basis for marker-assisted selection.
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Background

Plant architecture directly affects biomass in higher
plants, and particularly influences grain yields in agricul-
tural crops. The genetics of various aspects of maize
(Zea mays L.) plant architecture, a complicated agro-
nomic trait that is mainly determined by plant height
(PH), ear height (EH), and internode number (IN), have
recently been extensively investigated [1-3]. These three
components reflect the spatial conformation of the
maize plant, which is closely correlated with biomass,
lodging resistance, and tolerance of stress associated
with high plant density. Therefore, improved plant con-
formation not only increases maize productivity and
thereby vyield, but also assists breeding efforts to coord-
inate the sometimes contradictory manifestation of traits
in populations compared to an individual plants [4, 5].
For specific maize varieties, plant height under certain
circumstances may be associated with increased inter-
node number and reduced ear height, thus achieving a
lower center of gravity and enhancing lodging resistance
[6]. So in developing cultivars for maize breeding, it is
crucial to optimize these three components of plant
architecture while avoiding yield losses.

The first genetic linkage map of maize was constructed
in 1986 based on restriction fragment length polymor-
phisms (RFLP) in the F, mapping population of a cross
between H427 and 761 [7]. Subsequently, the advent of
PCR-based markers, such as simple sequence repeats
(SSRs) [8], expressed sequence tags (ESTs) [9], and amp-
lified fragment length polymorphisms (AFLPs) [10] sup-
plied greater impetus to detect DNA polymorphism and
generate a highly saturated genetic linkage map in maize.
Using these genetic maps, numerous quantitative trait
loci (QTL) for many complex agronomic traits have
been identified and mapped to all 10 maize chromo-
somes [11, 12]. However, most of the genetic maps
based on low-throughput molecular markers are of low
density, which limits the efficiency and accuracy of QTL
mapping and reduces the coverage of genetic markers
for maize breeding [13]. The resolution of QTL mapping
largely depends on marker density, and population size
and types [14, 15]. Compared with other populations
such as early generation populations, the development,
genotyping, and phenotyping of advanced-generation
RIL populations for QTL mapping of crop species is very
costly and time-consuming. Because RILs are permanent
populations, all of the homozygous lines of which they
are comprised can be tested at various points over mul-
tiple years, which can help refine understanding of the
genetics of a trait and increase the accuracy of QTL de-
tection in many environments. In comparison to the
other kinds of segregating populations, RILs have par-
ticular advantages, such the absence of dominance ef-
fects, fewer genetic parameters, and lower experimental
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error. RILs are therefore an ideal type of population for
quantitative trait analysis.

Single-nucleotide polymorphisms (SNPs) are the most
abundant form of genetic variation in genomes [16, 17].
Next-generation sequencing technologies have made it
possible to develop numerous SNP markers for genotyp-
ing large populations, which has successfully accelerated
the genetic analysis of various crop species, such as
maize, rice, barley, wheat, and soybean [18-20]. Re-
cently, a set of 1359 maize developed using Sequenom
technology were genotyped in recombinant inbred lines
from the IBM population to generate a SNPs-based gen-
etic map [21]. Genotyping by sequencing (GBS) is a
powerful strategy for assessing large, complex genomes
that has proven a useful tool for SNP discovery and gen-
etic mapping [22]. With the same sequence data, the ac-
curacy of a marker increases as the sequencing depth for
a single locus increases. GBS not only cuts the cost of
sequence-based genetic analyses through the use of
techniques that initially reduce genome complexity, but
can markedly reduce SNP imputation errors via a modi-
fied sliding-window approach [18], by which adjacent
SNPs with the same genotype in an interval are com-
bined into bins (100-Kb intervals with no recombination
events) that demarcate recombination events across the
entire population. Bins can then be used as markers to
construct an ultra-high density genetic map. Recently,
this strategy was used with an F, and the US-NAM
population to increase the marker density of consensus
maize genetic maps that were constructed with 6533
and 5296 markers, respectively [23, 24]. Both of these
maps were shown to be more powerful for detecting
QTL than were traditional methods and they have also
been used to fine map tassel and ear architecture loci
and identify the genetic determinants of flowering-time.

Plant architecture and its three components are
among the most heritable traits that can be genetically
manipulated. Several approaches have been successfully
used for the genetic analysis of plant architecture, such
as map-based cloning and association mapping. To date,
using different linkage mapping populations, more than
245 QTL for traits related to plant architecture have
been identified on different chromosomal regions of the
maize genome, such as bins 1.07, 3.01, 3.03-3.04, and
5.05-5.06 (2010 December update to Gramene QTL
database). For instance, a maize introgression library that
was produced using Gaspe’ Flint as the donor and B73
as the receptor, had a much lower number of internodes
than did B73. Using this library, four QTL for IN were
detected as major QTL related to plant architecture,
indicating that variation in internode number drives
variation in plant architecture [25, 26]. In addition,
genome-wide association analysis (GWAS), by which
genetic and phenotypic variation in a population is
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evaluated to discover new marker-phenotype associa-
tions, has also been used to scan for novel loci affecting
maize plant architecture [27].

Maize plant architecture, especially plant height, is a
complicated quantitative trait controlled by a large num-
ber of genes that encode proteins involved in hormone
synthesis, transport, and signaling, such as anl, br2, di,
d2, d3, d5, d8, d9, qgPH3.1, DWFI1, and DWF4 [28-34].
Most of these genes play roles in the metabolism of the
plant hormone gibberellic acid (GA) and are involved in
diverse aspects of plant growth and development, espe-
cially internode elongation [35, 36]. In addition, the con-
stituents of plant primary and secondary walls such as
cellulose, hemicelluloses, and pectin strongly influence
overall plant architecture, growth, and development [37].
For example, maize cellulose synthase-like D1 (ZmCSLDI)
is essential for plant cell division, and affects cell number
and size by acting during the early phases of cross-wall
formation. Thus, mutants in this gene have characteristic
phenotypes including narrow and warty leaves and stems
[38]. Recently, the MYB transcription factor family was
identified as a member of the transcriptional network
regulating secondary wall biosynthesis in xylem tissues of
Arabidopsis, and was proposed to act on cellulose and
lignin biosynthesis [39-41]. However, due to the ad-
verse effects on grain yield and various reproductive
abnormalities associated with these genes or mutants,
they are not particularly useful in maize breeding to
control plant architecture.

In the present study, therefore, the objectives were (1)
to identify bin markers from high-throughput GBS data
in a set of 314 recombinant inbred lines (RILs) derived
from two maize elite inbred lines Ye478 and Qi319 in
China; (2) to construct a high-density linkage map based
on these bin markers and to validate the map using
well-characterized genes from the reference genome; (3)
to map QTL for plant height, ear height, and internode
number combining their phenotypes in the RILs across
three environments, and to validate the detected QTL
using maize gene annotations.

Results

Resequencing parental lines and GBS of RILs

Maize elite inbred lines Ye478 and Qi319, the two
founder lines of the RILs used in the present study, were
sequenced at effective sequencing depths of about 29.5-
fold and 33.7-fold, respectively. For Ye478 and Qi319,
678,819,425 and 803,698,828 reads were mapped to the
B73 RefGen_V3 genome, and a total of 5,400,526 and
6,909,395 SNPs were identified, respectively. Further
analysis revealed 3,549,088 homozygous polymorphic
SNPs and 429,116 homozygous polymorphic Indels be-
tween Ye478 and Qi319 (Fig. 1).
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The RIL population was then genotyped using GBS
technology. The enzyme digestion was highly efficient
and 90.9 % complete. A total of 137,699,000 reads were
generated. On average, there were 357,376 reads per in-
dividual, which is equivalent to approximately 0.07-fold
coverage of the maize genome. The overall GC content
of the sequences was about 41.8 % and Q20 scores were
about 92.1 %. Because the two parents are homozygous
inbred lines with genotypes of aa and bb, only 3,549,088
homozygous polymorphic SNPs fell into the aa x bb
segregation pattern. Based on the reference parental
polymorphic loci, a total of 164,919 SNPs were identified
by low-coverage sequencing of the RIL population. In a
population comprised of RILs, SNPs should segregate in
a 1:1 ratio. After filtering out SNPs exhibiting significant
segregation distortion (p <0.001, X* test), a total of
88,268 SNPs were retained to determine bin markers
(Additional file 1: Figure S1).

Genetic linkage map with bin markers

The breakpoints in the RIL population were determined
using a sliding-window approach [18] in which geno-
types were called based on SNP ratios. A total of 12,835
breakpoints were identified for 314 RILs with 40.87
breakpoints per individual, which corresponds to the
number of breakpoints identified using GBS data in the
US-NAM and CN-NAM populations by Li et al. [24].
(Additional file 1: Figure S2). To conduct genetic
analysis, the recombination maps were divided into a
skeleton bin map and all chromosomes of the 314 RILs
were aligned and compared over minimum 100-Kb in-
tervals (Figure 2). Adjacent 100-Kb intervals with the
same genotype across the entire RIL population are con-
sidered a single recombination bin. Thus a total of 4183
recombination bins were determined, which indicated
that the vast majority of recombination events could be
captured in the RIL population.

The physical lengths of the recombination bins ranged
from 100 Kb to 21 Mb, with an average of 492 Kb and a
median of 200 Kb (Table 1). A total of 79.7 % of these
bins were less than 0.5 Mb in length and 8.4 % of bins
ranged from 1 Mb to 10 Mb in length (Additional file 1:
Figure S3). Seventeen bins were greater than 10 Mb in
length, 15 of which were located in centromeric or peri-
centromeric regions with suppressed recombination
(Additional file 1: Table S1). The other two long recom-
bination bins, mk853 and mk855, were located in re-
gions of very low SNP coverage but high recombination
rates on chromosome 2, in the physical positions 141.9—
153.4 Mb and 153.9-166.8 Mb, respectively (Additional
file 1: Figure S1).

A high-density genetic map was constructed by map-
ping these 4183 bin markers onto the 10 maize chromo-
somes (Additional file 1: Figure S4). About 0.4 % of
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Fig. 1 Genome-wide distribution of SNPs and genetic variants throughout the Ye478 and Qi319 genomes. The outermost box with scale
represents the 10 maize chromosomes. The orange histogram represents the density of SNPs that are polymorphic between Ye478 and
Qi319; the green histogram represents the density of polymorphic SNPs within coding sequences between Ye478 and Qi319; the blue
histogram indicates the density of insertions or deletions (Indels) between Ye478 and Qi319

genotypic data was missing. The total genetic distance of
the linkage map was 1545.65 cM. The average distance
between two adjacent markers was 0.37 ¢cM, which cor-
responds to a physical distance of about 0.51 Mb. For
chromosome 1, there were 738 bin markers covering a
genetic length of 239.48 cM, which was the longest

genetic length covered among the 10 maize chromo-
somes. In contrast, for chromosome 6 there were 346
bin markers that covered 120.38 cM, the shortest genetic
length covered in this map. There were five gaps that
ranged from 5 ¢cM to 12 cM in length and the largest
gap of 11.15 cM was on chromosome 9 (Table 1).

Chr1 Chr2 Chr3 Chr4

50
100
150
200

250
300

Ye478 genotype; yellow: heterozygote

Fig. 2 Recombination bin map of the RIL population derived from Ye478 and Qi319. The bin map is comprised of 4183 bin markers inferred from
88,268 high-quality SNPs mapped in the RIL population. Physical position is based on B73 RefGen_V3 sequence. Red: Qi319 genotype; blue:

Chr5 Chr6  Chr7  Chr8 Chr9 Chr10
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Table 1 Characteristics of the high-density genetic map derived from a cross between Ye478 and Qi319

Chr? No. markers® Physical distance (Mb) Genetic distance (cM) Avg. distance between markers (cM) <5 cM Gap Max. gap (cM)
1 738 30143 23948 0.32 738 481
2 337 237.89 151.46 045 336 493
3 476 232.23 163.33 034 474 557
4 447 242.03 163.22 037 445 6.51
5 487 21793 170.86 035 486 252
6 346 169.38 120.38 035 344 5.11
7 395 176.81 143.24 0.36 394 294
8 358 175.35 142.66 04 357 296
9 323 157.02 122.05 038 321 11.15
10 276 149.63 12897 047 274 511
Total 4183 2059.7 1545.65 037 4169 11.15

Chr,, indicates chromosome
PNo.markers, the number of markers on chromosome

The quality and accuracy of the map

To assess the quality and accuracy of this genetic
map, bin markers were mapped to the maize B73
RefGen_V3 reference genome. The scatter plot of
markers in the 10 linkage groups aligned well with
the B73 reference chromosomes, which indicated ex-
cellent collinearity between the maize B73 reference
genome and these bin markers (Additional file 1:
Figure S5). In order to evaluate the power and accur-
acy of this genetic map for a highly heritable trait,
QTL analysis of cob color was performed in the RIL
population. The QTL ¢gC1, whose peak encompassed
the cloned gene pericarp color 1 (P1) [42] was de-
tected on chromosome 1 with a high LOD value of

pericarp, tassel glumes, and husks, and is located at
mk187 on chromosome 1 at position 48.1 Mb.

Phenotypic features of plant height, ear height, and
internode number

Tremendous phenotypic variation was observed for
PH, EH, and IN in the RIL population across the
three environments (Table 2). Analysis of variance for
plant architecture was performed to detect the sources of
phenotypic variation. Phenotypic variances were sig-
nificantly influenced by both genetic and environmen-
tal factors (Fig. 4). However, the fraction of variation
attributable to genotype-by-environment interaction
was still significantly greater for IN than for the other

80.78 (Fig. 3). PI regulates red pigmentation in cob, two traits. Estimates of broad-sense heritability
N
E
g
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]
46 48 50 52 54
Chromosome 1 (Mb)
- b —,
| — — — — — — — — — —
1 2 3 4 5 6 7 8 9 10
Chromosome
Fig. 3 Mapping of P1, which controls cob color, in the RIL population. Curves in plot indicate the genetic coordinates along chromosomes or the
physical coordinates within a chromosome (x-axis) and LOD score (y-axis) of the detected QTL. Mapping curve of the QTL that controls cob color
of is located on chromosome 1; the box shows a magnification of the peak on chromosome 1. The red dot represents the relative physical position of
the PT gene
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Table 2 Phenotypes of the parental lines and RIL population across three environments

Trait® Env.? Ye478 Qi319 RIL population
Range Mean + SD° Skewness Kurtosis v (%) Heritability (%)
PH E1 177.80 218.00 163.50-247.40 20092 + 1638 0.01 —-063 8.15 93.20
E2 187.00 237.00 175.17-266.00 21758 +20 0.03 -0.74 9.19 99.06
E3 18047 248.53 161.00-255.50 20871+ 1748 -0.03 -0.10 838 92.35
EH E1 72.80 96.50 61.63-100.10 80.05+ 7.81 0.14 -048 8.15 83.30
E2 68.20 98.08 50.20-116.13 77.65+13.13 049 -0.03 9.19 86.37
E3 68.50 101.00 51.18-116.50 7781 +13.06 049 0.01 838 86.06
IN E1 1547 14.64 11.67-18.80 14.66 +£0.92 0.08 148 10.10 84.18
E2 15.20 14.73 13.17-19.00 1561+1.19 0.36 -0.34 12.90 80.61
E3 1567 1467 12.50-19.00 1554+ 1.02 0.19 025 1203 82.19

*Trait is the name of the component of plant architecture: PH, plant height; EH, ear height; IN, internode number
PEnv,, the specific environment: E1 is 2013 Shunyi; E2 is 2013 Gongzhuling; and E3 is 2014 Gongzhuling

SD, standard deviation
eV, coefficient of variation

indicated that a proportion of genetic variance was
attributable to the phenotypic variance of the entire
RIL population. These estimates were high for all
traits across three environments. The most heritable
trait across the RIL population was PH, for which the
heritability was 94.87 % (Table 2), followed by EH
(85.24 %) and IN (82.33 %). The largest positive cor-
relation of values between lines occurred between PH
and EH (r=0.68, P<2.2e-16), which showed a uni-
form trend across three environments (Fig. 5). Due to
the environmental effect, the QTL for plant architec-
ture were identified separately in each environment.
The loci detected in common across multiple envi-
ronments were considered as consistent QTL for
plant architecture.

Bin markers associated with plant height, ear height, and
internode number

QTL for the three plant architecture components in
each environment were detected in the bin map using
the R/qtl package implemented in R software [43]. A
total of 35 QTL were identified: 14 of them influence
PH and are distributed on chromosomes 1, 2, 4, 5, and
10; 14 of them influence EH and are distributed on

chromosomes 1, 3, 5, 6, 7, 8, and 10; and 7 of them
influence IN and are distributed on chromosomes 1,
3, 8, and 10 (Fig. 6). The confidence intervals for
these 35 QTL spanned physical distances from
3.8 Mb to 46.9 Mb, with an average of 10.65 Mb by
comparison to the B73 RefGen_v3 genome. The
phenotypic variation explained by each QTL ranged
from 2.60 to 15.68 % of the variation in a trait, with
means of 6.17, 6.89, and 12.50 % for PH, EH, and IN,
respectively (Table 3). In addition, when QTL for the
three plant architecture components were detected by
analysis in three environments combined, only a total
of 10 QTL were identified. Three of them influence
PH, three of them influence EH, and four of them in-
fluence IN (Additional file 1: Figure S8). The confi-
dence intervals for these 10 QTL spanned physical
distances from 2.65 Mb to 7.5 Mb, with an average of
5.01 Mb by comparison to the B73 RefGen_v3 gen-
ome. The phenotypic variation explained by each
QTL ranged from 3.88 to 20.13 % of the variation in
a trait, with means of 9.23, 10.15, and 10.24 % for
PH, EH, and IN, respectively (Additional file 1: Table
S2). These QTL include some of the QTL that also
can be detected in a single environment.

100% -
80% -
60% -
40% -
20% |

% Variance Explained

0% -
PH EH

Fig. 4 Variation in PH, EH, and IN was attributed to genetic and environmental factors across the RIL population. The different shades of grey in
the stacked bar diagram indicate the various factors that explain phenotypic variance. PH: plant height; EH: ear height; IN: internode number
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with IN across all three environments. PH: plant height; EH: ear height; IN: internode number. Red arrow: Ye478; green arrow: Qi319; orange
arrow: mid-parent. a, 2013 Shunyi; b, 2013 Gongzhuling; and ¢, 2014 Gongzhuling
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Table 3 QTL identified for PH, EH, and IN using high-density bin map

Trait Name® Name® Effect® Chrd Flanking marker® Interval® (Mb) Physical length?® (Mb) LoD" PVE' ADD!

PH gPHI-1 E1E2 1 mk328-mk336 161.10-169.60 85 6.42 744 1049
qPHI-2 E3 1 mk271-mk280 91.00-98.40 6.3 10.63 12.01 13.98
qgPH2 E1E2E3 2 mk926-mk950 193.10-201.40 83 531 591 9.22
qPH4 E3 4 mk1569-mk1610 3.20-16.20 1335 8.95 26 6.51
qPH5-1 E2 5 mk2112-mk2119 22.70-29.10 575 74 413 8.64
qgPH5-2 E3 5 mk2312-mk2433 175.20-207.50 3205 353 423 8.32
gPH8 E1E2 8 mk3521-mk3550 166.00-170.20 42 3.58 3.81 -7.09
qPHI10 E1E2E3 10 mk4016-mk4026 81.30-85.10 38 9.09 935 11.93

EH gEH1-1 E1E2 1 mk271-mk280 91.00-98.40 6.3 8.72 9.96 7.6
gEH1-2 E3 1 mk309-mk314 146.50-154.90 6.85 14.63 15.68 8.75
gEH3 E2E3 3 mk1278-mk1284 138.70-145.30 59 3.68 343 —4.58
gEH5 E3 5 mk2302-mk2320 172.90-178.60 545 3.98 39 428
gEH6-1 E2 6 mk2598-mk2610 95.30-101.10 545 462 4.78 5.75
gEH6-2 E3 6 mk2541-mk2549 60.90-72.20 74 423 4.16 4.59
gEH7 E1 7 mk3037-mk3044 133.00-137.60 4.25 6.15 6.26 473
qEH8-1 E2 8 mk3401-mk3531 120.30-167.40 469 3.68 3.92 =517
gEH10 E1E2E3 10 mk4012-mk4037 80.10-94.70 146 9.99 99 7.14

IN qINT E2 1 mk271-mk295 91.00-111.70 194 6.26 6.48 0.61
gIN3 E1 3 mk1339-mk1357 167.60-173.00 525 6.54 8.11 -0.52
qIN8-1 E1E2 8 mk3405-mk3412 121.90-127.40 55 13.08 15.53 -0.83
qIN8&-2 E3 8 mk3371-mk3382 106.30-112.50 59 12.5 18.73 -091
gINT10 E2E3 10 mk4016-mk4036 81.30-94.20 129 1.1 13.66 0.84

*Trait is the name of the component of plant architecture: PH plant height, EH ear height, IN internode number

®The name of each QTL is a composite of the influenced trait: PH, EH, IN

“The effect of each QTL in a specific environment: E1 is 2013 Shunyi; E2 is 2013 Gongzhuling; and E3 2014 is Gongzhuling

dChr., chromosome

®Flanking markers, the markers to the left and right of the QTL
finterval, confidence interval between two bin markers

9Physical length, interval between the two markers on the B73 genome
"LOD, the logarithm of odds score

IPVE, the phenotypic variance explained by individual QTL

JADD, the additive effect value. The LOD scores, PVE values, and ADD values are shown as mean values for QTL with multiple effects

Nine QTL regions were consistently detected in more
than two environments, and thus were viewed as stable
QTL in this study. Four of the nine stable QTL influence
PH, three of them influence EH, and two of them influ-
ence IN. gPHI10 had the largest effect of the five stable
QTL influencing PH and explained 9.35 % of the pheno-
typic variation in PH. Alleles from Qi319 increased PH
by 11.93 cm. The genetic length of the gPHI10 region
was about 2.26 ¢cM, which corresponds to a physical dis-
tance of about 3.8 Mb in B73 RefGen_v3 (Additional file
1: Figure S6). gEHI-1, which explained 9.96 % of the
phenotypic variation in EH, had the largest effect of the
three stable QTL for that trait. Alleles from Qi319 in-
creased the ear height by 14.28 c¢cm. The genetic length
of the gEHI-1 region was about 1.76 cM, corresponding
to a physical distance of about 6.30 Mb. Only two stable
QTL for IN were identified, with gIN8-2 having the lar-
gest effect and explaining a total of 1553 % of the

phenotypic variation. Ultimately, a total of six pleiotropic
QTL (pQTL) distributed on chromosomes 1, 3, 5, 8, and
10 were obtained by integrating the 35 QTL for the
three traits (Table 4). Notably, pQTL10, which was de-
tected for all three traits across more than two environ-
ments, was located within the region between mk4012
and mk4037, corresponding to a physical distance of
about 14.6 Mb in the present study (Additional file 1:
Figure S7).

Candidate gene prediction

According to the maize gene annotation database ac-
cessible at MaizeGDB (http://www.maizegdb.org), the
shortest physical intervals of gPHI0 encompassed 45
protein-coding genes, but only seven protein functions
had so far been annotated in this region (Additional file
1: Table S3). Among the candidate genes within the 1.5-
LOD drop on either side of the peak bin that delimits
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Table 4 Pleiotropic QTL (pQTL) for three plant architecture traits in three environments

pQTL® ChrP Flanking marker® Interval® (Mb) Physical length® (Mb) NO. of QTLs Integrated QTLs
pQTL1 1 mk271-mk295 91.00-111.70 20.7 4 qPH1-2, gEH1-1, qIN1
pQTL3 3 mk1278-mk1431 138.70-201.00 62.3 3 qEH3-2, gIN3-2
pQTL5 5 mk2302-mk2320 172.90-178.60 5.7 2 qPH5-2, qEH5
pQTL8-1 8 mk3401-mk3531 120.30-167.40 47.1 3 qEH8-2, gIN8-1
pQTL8-2 8 mk3510-mk3550 164.70-170.20 55 3 qPH8, gEH8-1
pQTL10 10 mk4012-mk4037 80.10-94.70 146 8 QPH10, GEH10, gINTO

“The pleiotropic QTL name

BChr., chromosome

Flanking markers, the markers to the left and right of the QTL
9Interval, confidence interval between two bin markers

®Physical length, interval between the two markers on the B73 genome

the gPHIO interval, are MYB transcription factors
GRMZM2G325907 and GRMZM2G108892 that might
regulate plant height.

Discussion

QTL mapping has been an efficient strategy for the dis-
section of quantitative trait in maize breeding [23]. How-
ever, the quality of genetic maps significantly affects the
accuracy of the QTL mapping. Increasing the density of
markers distributed around the entire genome improves
the resolution of genetic maps [44]. Nevertheless, the
linkage disequilibrium (LD) of maize is about 300 Kb,
which is significantly lower than that of other plants. It
is critical to increase marker density and improve the
resolution of genetic maps for QTL mapping [27, 45].
With the development of next-generation sequencing
technology and the complete re-sequencing of the whole
genome of the maize elite inbred line B73, numerous
SNP markers have become useful for high-density gen-
etic map construction in maize [46, 47].

GBS is a cost-effective, rapid, informative, and reliable
genotyping method for assessing large, complex ge-
nomes for SNP discovery and genotyping [48]. The ad-
vantage of this technology is that prior genome
information is not required for inference or map con-
struction [23], although imputation of SNPs can become
more accurate in bi-parental mapping populations when a
reference genome is available for tested species [18]. In
the present study, the average effective depth of sequen-
cing of the populations derived from these two parents
was approximately 31.6-fold and the re-sequencing error
rate was only 0.05 %. This result suggests that the genome
sequences of the parents were of high quality, and that the
accuracy of genotype calling was relatively insensitive to
even the relatively high error rates of low-coverage se-
quence data [18]. Because of the quality of the parental se-
quence information, the inferior SNP calls in their
progenies could be found and filtered out. We also geno-
typed RILs in their Fg to Fiq generations using 114 SSR
markers and constructed a linkage map. This linkage map

had average marker coverage of about 13.1 cM, corre-
sponding to a physical distance of about 17.5 Mb. In
contrast to PCR-based SSR markers, a recombination
breakpoint between two bin markers that are an aver-
age of about 0.51 Mb apart can be identified by GBS,
which represents a 34-fold improvement in the reso-
lution of recombination breakpoints. Additionally, a
higher average coverage of one marker per 0.37 cM
achievable by GBS would reduce the chance of miss-
ing any double-crossovers in the mapping population
that were not identified by a PCR-based method [18].

Based on the GBS results we obtained with Illumina
short-read sequencing technology, we constructed a gen-
etic map of a maize RIL population derived from Qi319
and Ye478 using 4183 bin markers representing 88,268
SNP markers. Within the RIL population, we observed a
region on chromosome 2 of approximately 24 Mb that
had less informative markers (Additional file 1: Figure
S1). The lack of informative markers in this large region
likely indicates a region of identity-by-descent (IBD) that
was not efficiently disrupted by recombination during
artificial selection [49]. Recently, Chen et al. [23] and
Wen et al. [50] developed a high-density integrated gen-
etic linkage map for maize by compositing the SNP data
obtained from F, and RIL mapping populations, respect-
ively. The two maps consisted of 6533 and 2496 markers
and spanned a genomic map distance of 1396 cM and
1790.2 cM, respectively. The mean genetic distances be-
tween adjacent bin markers in their maps were 0.2 cM
and 0.72 cM, respectively. Compared to those RIL
population-based genetic maps, our genetic map covered
a similar distance in terms of genome size but had more
markers, thus the mean genetic distance between adja-
cent markers was narrowed to 0.37 ¢cM. This means that
a GBS-based SNP genetic map can detect more recom-
bination events in larger RIL populations, which would
increase the total number of bins while reducing bin
size. In addition, compared with previous studies, our
population allowed detection of more breakpoints than
did RIL-based genetic maps in rice, wheat, barley and,
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soybean [19, 20, 51]. Moreover, construction of our
high-density genetic map was based on a single RIL
population, thus QTL mapping could be performed
more conveniently and efficiently than in the F, popula-
tion for a given phenotypic trait. This is because F, pop-
ulations require much more frequent calling between
homozygous and heterozygous genotypes, and maps
based on F, populations have higher error rates than do
maps based on RILs. With high-density genetic maps
and the high-quality sequence of the B73 genome, we
can more accurately predict candidate genes within nar-
row regions between two adjacent bin markers when
high genomic collinearity between the genetic map and
the maize reference genome is identified for a region.
Our results demonstrated a relatively high collinearity
between our genetic map and the B73 reference genome
(Additional file 1: Figure S5). This indicates that identify-
ing candidate genes through comparative mapping will
be feasible. Finally, the quality and accuracy of the bin
map for QTL detection was verified by the mapping of
PI1, which regulates red pigmentation in cob, pericarp,
tassel glumes, and husks.

Plant architecture is the final expression of the spatial
distribution of plant organs in maize. It is important to
attain reasonable spatial distribution of plant organs to
improve the photosynthetic performance and yield of
maize grown in high-density fields [52]. Previous studies
have detected QTL for plant architecture traits, particu-
larly plant height and ear height, on the 10 chromo-
somes of maize [2, 26, 53]. Most of these results showed
that only a few QTL have consistent and strong additive
effects in different environments or populations. How-
ever, most QTL for plant architecture are affected by en-
vironmental factors and are under the control of several
genes with minor effects. However, only stable and
highly heritable QTL are useful for MAS, which might
take place in different environments and even different
genetic backgrounds.

In the present study, a RIL population comprised of
314 families was used to map QTL for plant height, ear
height, and internode number in three environments.
The results showed that the genetics of these compo-
nents of plant architecture are complex. A total of 35
QTL were detected in the present study, including three
QTL that could be detected in all three environments,
six QTL that could be detected in two environments
and 10 QTL that could be detected by combined ana-
lysis. These stable and consistent QTL could be consid-
ered priority candidates for MAS. The QTL identified
here, including gPHI-1, gPH2, gPHS8, and qPH10 for PH;
qEHI-1, gEH3, and gEHI0 for EH; and ¢IN8-1 and
qINI0 for IN, are likely important QTL for these plant
architecture-related traits (Fig. 6). Meanwhile, there are
six pQTL regions, such as pQTL10 that might show

Page 10 of 15

pleiotropy or tight linkage to other QTL. The regions in
which these QTL are located might also represent hot
spots for important QTL that control plant height and
ear height closely linked to QTL influencing other traits,
such as loci for that control flowering time. According
to the maize gene annotation database at MaizeGDB,
the physical interval containing pQTL10 encompassed
at least five genes that affect flowering traits, such as
FIE, CHI and ZmCCT [54], which have been cloned and
functionally verified, and homologs of known flowering-
related genes from other species. Understanding the
functions of the genes in these co-localizing regions will
help breeder achieve the full yield potential of maize.
Notably, the present study also detected a number of
separate QTL controlling either plant height or ear
height, but not both. For example, gPH2 only controls
plant height, gEH3 only controls ear height, and gIN8-1
only controls internode number. Plant height, ear height,
and internode number each still seem to have a relatively
independent genetic basis, and are likely subject to dif-
ferent mechanisms of genetic regulation. Therefore, the
fine mapping of these QTL and validation of the poten-
tial candidate genes may be a reliable and feasible strat-
egy for QTL cloning to isolate loci that may be even
more valuable for maize breeding. Our results provide
important information for such further fine mapping to
find quantitative trait genes and may help reveal the mo-
lecular mechanisms responsible for plant architecture.
The QTL-by-environment interaction (G xE, QEI)
may be due to the specific expression of certain genes
during the process of adaptation to different ecological
environments. Li et al. [55] suggested that three condi-
tions could occur: (1) the specific QTL might be expressed
in one environment, but not in another environment; (2)
the specific QTL might be strongly expressed in a certain
environment and weakly expressed in another environ-
ment; (3) or the specific QTL could have opposite effects
in different environments. In our study, ten QTL for PH,
EH, and IN were insensitive to different environments and
these QTL were detected in multiple environments, which
indicated that the QTL-by-environment interaction had a
smaller effect. This could be for at least two reasons. The
first reason is that QTL that explain a higher of pheno-
typic variation also have larger direct effects on pheno-
types and smaller genotype-by-environment interaction
effects. The second reason is that QTL that explain lower
proportions of phenotypic variation tend to have larger
genotype-by-environment interaction effects and can be
overlooked using current statistical methods [56]. Previous
studies demonstrated that QTL x environment interaction
are an important property of many QTL, even for highly
heritable traits such as plant height and that these interac-
tions are trait- and gene-specific [55]. When detected in
multiple environments, the main effects of most QTL are
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consistent in direction but vary considerably in magnitude
across multiple environments. In addition, it remains un-
clear whether inconsistent QTL detection is due to type-II
error arising from the use of single minimum thresholds
or to true differential trait expression across environ-
ments. So information about QTL x environment inter-
action should be considered particularly carefully when
performing marker-assisted manipulation of plant archi-
tecture, especially for more environment-specific QTL.
[57].

In comparison to the other kinds of segregating popu-
lations, such as early generation populations, RILs have
particular advantages, such the absence of dominance ef-
fects, fewer genetic parameters, and lower experimental
error. With the rapid development of GBS technology,
the reduction of QTL intervals in dense marker maps
for fine mapping is valuable for better defining candidate
genes underlying mapped loci. Among the QTL we de-
tected, the minimum physical interval for gPHIO was
3.80 Mb, which suggests that this approach is highly effi-
cient for the identification and mapping of QTL relative
to traditional methods. This analysis of the hot spots for
maize plant architecture will provide an important refer-
ence for the cloning of key genes involved in this set of
traits. For example, according to the maize gene annota-
tion data at MaizeGDB (http://www.maizegdb.org), the
shortest physical intervals of gPHI10 encompassed 45
protein-coding genes, but only seven protein functions
had so far been annotated in this region (Additional file
1: Table S3). Recent studies in Arabidopsis and rice iden-
tified the MYB transcription factor family as a member
of the transcriptional network regulating secondary wall
biosynthesis in xylem tissues and as an actor in cell
wall formation and plant growth [39]. Among the
candidate genes within the 1.5-LOD drop on either
side of the peak bin that delimits the gPHI0 interval,
are MYB transcription factors GRMZM2G325907 and
GRMZM2G108892 that might regulate plant height.
These results will not only promote further research
into the mechanisms that control plant height, ear
height, and internode number of maize, but will also
provide a basis for MAS of these traits, the develop-
ment of elite inbred lines, and the breeding of hy-
brids. Further, we propose that QTL mapping using
GBS in large RIL populations is a highly efficient way
to rapidly identify useful alleles present in germplasm.
Elucidating the genetic control of complex traits
could substantially accelerate crop improvement in a
cost-effective fashion.

Conclusions

In the present study, we constructed an ultra-high dens-
ity maize linkage map after large-scale development of
markers by GBS of an RIL population. These results
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showed that this high-density map is accurate enough to
use for efficient QTL mapping. Using this map, we
mapped three plant architecture traits in maize and
identified major QTL in three environments. Further,
within these QTL, two candidate genes could be pre-
dicted. Future studies leading to additional phenotype
annotations for introgressed genomic regions would ac-
celerate the identification and accumulation of known
QTL and genes related to the development of plant
architecture in maize.

Methods

Plant materials and phenotyping

A RIL mapping population consisting of 314 F;; indi-
viduals was derived from the selfed cross of maize
elite inbred lines Qi319 as male and Ye478 as female.
Each plot contained one row 4 m long and 0.6 m
wide, with a total of 17 plants at a density of 60,000
plants/ha. Two replicates were conducted with a ran-
domized incomplete block design. For QTL analysis,
phenotypic data for PH, EH, and IN were determined
as the mean of measurements from five randomly se-
lected individuals per RIL. The two parents and their
progeny were grown at three locations (location/years)
in China, including Gongzhuling Experimental Station
(N43°52", E124°82°) in 2013 and 2014, and Shunyi
Experimental Station (N40°13°, E116°34’) in 2013.
These location/year combinations were designated as
El, E2, and E3, respectively. In all environments, PH
was measured as the distance in centimeters from the
soil to the top of the plant at reproductive maturity;
EH was scored as the distance from the soil to the
primary ear node, at the same developmental stage.
IN was scored as the number of internodes between
the top brace root internode and the top of the plant,
including the part of tassel, but excluding any vari-
ation in brace root internodes and any subterranean
internodes [58].

Broad-sense heritability (H?) of plant height-related
traits across multiple environments was calculated ac-
cording to Knapp et al. [59]. Heritability was calculated
as: H2 = 65/ (6§ + 6§e/e +6%/e x 1), where 6; is the genetic
variance, 5§e is genotype x environment interaction, 8° is
the error variance, e is the number of environments, and
r is the number of replications per environment. The es-
timates for 55, 552, and & were obtained by standard
analysis of variance (ANOVA) using the general linear
model procedure (PROC GLM) in Statistical Analysis
System (SAS) software 9.0. Estimates of the variance
components associated with all terms in the model were
calculated using PROC MIXED. Spearman rank correl-
ation coefficients and related statistics were calculated
using R software.
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DNA extraction

The core panel of 314 RILs for genotyping was
planted in May 2014 at the Chinese Academy of
Agricultural Sciences, Beijing, China. Young, healthy
leaves from two parents and each of 314 RIL individ-
uals were collected and frozen in liquid nitrogen,
ground in a SPEX GENO 2010 GRINDER®, and then
transferred to a -80 °C freezer. Total genomic DNA
was extracted from each parental and RIL leaf sample
following the manufacturer’s protocols with the Plant
Genomic DNA Kit (TIANGEN, Beijing, China). The
integrity and quality of the extracted DNA was evalu-
ated by electrophoresis on 1 % agarose gels run with
a A DNA ladder size standard ladder, and the nucleic
acid concentration of each sample was determined using a
Qubit® 2.0 Fluorometer (Invitrogen, Carlsbad, USA) and
NanoDrop 2000 (Thermo Scientific, MA, USA).

Genotyping by high-throughput sequencing

For each of the two parents, a total of 1.5 pg DNA
was used as input material for the DNA sample prep-
arations. Sequencing libraries were generated as de-
scribed by Cheng et al. [60]. These parental libraries
were sequenced on an Illumina HiSeq 2000 platform
and 125-bp paired-end reads with insert sizes of
around 350 bp were generated.

The genomic DNAs from the each of the RIL lines were
incubated with Msel (New England Biolabs, Ipswitch,
MA), T4 DNA ligase (NEB), ATP, and the Y-adapter N
containing a barcode. The digestion was conducted at
37 °C and heated at 65 °C to inactivate the enzymes.
Restriction digestion-ligation reactions were com-
pleted in the same tube, and then further digested
with Nlalll (NEB) and EcoRI (NEB) at 37 °C. The re-
striction digestion-ligation samples were purified using
the Agencourt AMPure XP System. Each clean read
was checked using a Perl script to identify whether a
read begins with a TAA site that can be recognized
by the restriction enzyme AMsel. The percent com-
pleteness of enzyme digestion equals the number of
clean reads that contain a TAA site divided by the
total number of clean reads times 100. The efficiency
of enzymatic digestion for each sample was calculated
in this manner. PCR amplifications were carried out
in a single tube with purified samples and Phusion
Master Mix (NEB) after adding universal primer and
index primer to each sample. The PCR reactions were
purified using Agencourt AMPure XP (Beckman) and
pooled, then run out on a 2 % agarose gel. Fragments
of 350 to 400 bp (including indexes and adaptors) in
size were isolated using a Gel Extraction Kit (Qiagen,
Valencia, CA). These fragments were then purified
using the Agencourt AMPure XP System, then diluted
for sequencing. Finally, paired-end sequencing was
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performed on the selected tags using an Illumina
2500 platform (Illumina, USA) by Novogene Bioinfor-
matics Institute, Beijing, China.

Sequence data grouping and SNP identification

The sequences of each individual RIL were sorted ac-
cording to the barcoded adapters. Four stringent filtering
steps were carried out: 1) removing reads with>10 %
unidentified nucleotides (N); 2) removing reads with >
50 % bases having phred quality scores of < 5; 3) remov-
ing reads with > 10 nt aligned to the barcode adapter,
allowing < 10 % mismatches; and 4) removing reads that
contain Nlalll or EcoRI cut site remnant sequences.

To identify SNPs in the RIL population, the Burrows-
Wheeler Aligner (BWA) was used to align the clean
reads from each sample against the reference genome
with the settings ‘mem -t 4 -k 32 -M -R; where -t is the
number of threads, -k is the minimum seed length, -M
is an option used to mark shorter split alignment hits
as secondary alignments, and -R is the read group
header line [61]. Alignment files were converted into
BAM files using the sort setting in SAMtools software
[62]. Variant calling was performed for all samples
using the SAMtools software. SNPs were filtered using
a custom Perl script and those exhibiting segregation
distortion or sequencing errors were discarded. In
order to determine the physical positions of each SNP,
the software tool ANNOVAR [63], was used to align
and annotate SNPs or InDels based on the GFF3 files
from the B73RefGen_V3 sequence (ftp://ftp.ensembl-
genomes.org/pub/release-20/plants/fasta/zea_mays/dna/
Zea_mays.AGPv3.20.dna.toplevel.fa.gz). Polymorphic par-
ental markers were classified into eight segregation pat-
terns, such as ab x cd, ef x eg, hk x hk, Im x 1, nn x np,
aa x bb, abx cc and ccxab, but aa and bb would be
considered for the RIL population. However, variants
with a heterozygous SNP call and unexpected base due
to sequencing errors would be considered missing data.

Bin map construction

Chi-square (X?) tests were conducted for all SNPs to de-
tect segregation distortion. A sliding-window approach
was applied for variant calling errors and to calculate
the ratio of SNP alleles derived from Ye478 and Qi319
[18]. Genotypic data was scanned with a window size of
15 SNPs and a step size of one SNP. Windows with 11
or more SNPs from either parent were considered to be
homozygous but those with fewer SNPs from a single
parent were considered heterozygous. Adjacent windows
with the same genotypes were combined into a single
block, whereas adjacent blocks with different genotypes
were assumed to be at or near a recombination break-
point. A bin marker was designated when consecutive
100-Kb intervals lacked a recombination event in the
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entire population. For construction of the linkage
map, the genetic distance between bin markers was
determined using a Kosambi mapping function and
the est.map function in the R/gtl package [43]. A Perl
SVG module was used to draw the linkage map.

QTL analysis using high-density genetic map

QTL for plant architecture in three environments were
detected by composition-interval mapping using the R/
qtl package. The threshold of LOD scores for evaluating
the statistical significance of QTL effects was deter-
mined using 1000 permutations and a threshold p value
of 0.05 with the mgmpermutation function in R/gtl.
With 1000 permutations, a LOD score of 3.5 was con-
sidered the minimum to declare the presence of a QTL
in a particular genomic region. The confidence interval
for each QTL was assigned as a 1.5-LOD drop relative
to the peak LOD for each bin. The filtered working
gene list of the maize genome was downloaded from
MaizeGDB (http://www.maizegdb.org) to identify pos-
sible candidate genes within each QTL. We selected the
most likely candidate within the confidence interval by
testing for either associations with gene function or as-
sociations between the gene and the pathways in which
the phenotype is involved. Other analyses of genotypic
data and construction of figures were also performed
using R software.

Availability of supporting data

The B73RefGen_V3 sequence supporting the results
of this article is available in the Ensembl Genomes re-
pository (ftp://ftp.ensemblgenomes.org/pub/release-20/
plants/fasta/zea_mays/dna/Zea_mays.AGPv3.20.dna.tople-
vel.fa.gz). The filtered working gene list of the maize
genome was downloaded from MaizeGDB (http://
www.maizegdb.org).
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identified from low-coverage sequencing of 314 individual RILs. 2. Fig-
ure S2. Recombination map of R001. Figure S3. Distribution of bin length.
Figure S4. Comparison of the physical map and genetic maps created de-
rived from 4183 bin markers. Figure S5. Collinearity analysis of maize marker
linkage groups (Ig) with the maize reference genome B73 RefGen_V3. Fig-
ure S6. Mapping of QTL controlling PH across three environments. Figure
S7. Mapping of QTL controlling PH, EH, and IN across three environments
to chromosome 10. Figure S8. Mapping of QTL for PH, EH, and IN on the
ten maize chromosomes in three environments combined. Table S1. De-
tailed information regarding the 17 bins that were greater than 10 Mb in
length. Table S2. QTL identified for PH, EH, and IN with combined analysis
of three environments. Table S3. Genes located in the intervals of gPH10.
(DOC 2190 kb)
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