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Abstract

Background: The combination of bulk segregant analysis (BSA) and next generation sequencing (NGS), also known
as mapping by sequencing (MBS), has been shown to significantly accelerate the identification of causal mutations
for species with a reference genome sequence. The usual approach is to cross homozygous parents that differ for
the monogenic trait to address, to perform deep sequencing of DNA from F2 plants pooled according to their
phenotype, and subsequently to analyze the allele frequency distribution based on a marker table for the parents
studied. The method has been successfully applied for EMS induced mutations as well as natural variation. Here,
we show that pooling genetically diverse breeding lines according to a contrasting phenotype also allows high
resolution mapping of the causal gene in a crop species. The test case was the monogenic locus causing red vs.
green hypocotyl color in Beta vulgaris (R locus).

Results: We determined the allele frequencies of polymorphic sequences using sequence data from two diverging
phenotypic pools of 180 B. vulgaris accessions each. A single interval of about 31 kbp among the nine
chromosomes was identified which indeed contained the causative mutation.

Conclusions: By applying a variation of the mapping by sequencing approach, we demonstrated that phenotype-
based pooling of diverse accessions from breeding panels and subsequent direct determination of the allele
frequency distribution can be successfully applied for gene identification in a crop species. Our approach made it
possible to identify a small interval around the causative gene. Sequencing of parents or individual lines was not
necessary. Whenever the appropriate plant material is available, the approach described saves time compared to
the generation of an F2 population. In addition, we provide clues for planning similar experiments with regard to
pool size and the sequencing depth required.

Keywords: Mapping by sequencing, Allele frequency, R locus, Beta vulgaris, Sugar beet, SNP detection, Gene
identification, Phenotypic pools

Background

Linking a causal mutation to a phenotype by genetic
mapping is one of the major tools for uncovering gene
function. However, classical ‘positional gene cloning’ by
forward genetics and ‘genetic walking’ has been very
time-consuming [1]. Since more than 25 years, molecu-
lar markers have been used to detect allele frequencies
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in pools of phenotypically similar genotypes from segre-
gating populations, thus linking position information
from genetic markers to loci contributing to specific
traits [2, 3]. This method, called ‘bulk segregant analysis’
(BSA), relies on the application of molecular markers
which detect DNA polymorphisms between the parents
of a mapping population that are closely linked to a
locus relevant for a particular trait. Such markers will
co-segregate with that trait, i.e. segregate together with
the respective phenotype. While QTL analysis with

© 2016 Ries et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-016-2566-9&domain=pdf
http://orcid.org/0000-0002-7635-3473
mailto:bernd.weisshaar@uni-bielefeld.de
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Ries et al. BMC Genomics (2016) 17:236

mapping populations is usually the more precise method
to identify genes controlling a trait, pooling and BSA has
the advantage of avoiding the necessity to genotype
every member of the population [4, 5]. With regard to
the genetic and/or genomic resolution, or the size of the
genomic region to be identified, BSA and genetic map-
ping in general depend on the number of recombination
events evaluated. In addition, mapping can only be as
precise as the number of available markers allows. With
the advent of next generation sequencing (NGS), this
drawback has fallen away almost completely [6]. Also,
the number of genomes sequenced and assembled has
increased considerably over the last years [7], and elab-
orate tools for variant calling from whole genome
shotgun sequencing datasets have become available. To-
gether, and given that sequence variation as such exists,
this has allowed tremendous progress in linking geno-
type to phenotype as well as in uncovering gene func-
tions by forward genetics.

By combining BSA with NGS, the process of identify-
ing causal genes for monogenic traits or phenotypes has
been accelerated dramatically [8]. Data from NGS allow
reliable detection of allelic variation in the form of single
sequence polymorphisms (SNPs) and small insertions
and deletions (InDels), as well as the determination of
the relative abundance of these alleles. Phenotypic selec-
tion of individuals from a segregating F2 population af-
fects the allele frequency at loci linked to the phenotype.
The skews introduced by this targeted selection can be
revealed by genome-wide evaluation of allele frequencies
in pools of individuals that were built separately for the
different phenotypes of the same trait. Genomic regions
that showed diverging allele frequencies for the two par-
ental phases can then be analyzed for mutations respon-
sible for the phenotype in question [8].

Initially, NGS was applied to BSA for the model plant
Arabidopsis thaliana [9]. The general approach is now
referred to as ‘mapping by sequencing’ (MBS, [10]),
while the original bioinformatic analysis pipeline was
designated SHOREmap. Once the biological material, a
large segregating F2 population of A. thaliana, was pro-
duced and phenotyped, the MBS approach allowed to
map a causal gene to a small genomic region within
days. In fact, due to the high density of genetic markers
and the availability of reference sequences for both par-
ental genotypes, it was even possible to identify the indi-
vidual nucleotide sequence aberration that caused the
mutant phenotype. The initial proof-of-concept experi-
ment identified a non-synonymous SNP in a single gene
by sequencing a DNA pool derived from 500 mutant (re-
cessive homozygous) F2 plants [9].

While the general principle of MBS is fairly straight-
forward, the bioinformatics to realize reliable identifica-
tion of the responsible genetic interval or genome region
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is not. Therefore, a number of bioinformatic analysis
pipelines that deal with the massive amount of short
read data for DNA sequence variation detection and
allele frequency determination have been developed.
By using such pipelines, MBS has been successfully
applied in the model species arabidopsis, rice and
fruit fly [11-13]. To allow the basic principle of MBS
to work, the two alleles corresponding to the pheno-
typic difference that is sorted into the pools need to
be associated with haplophases that offer sequence
variation and thereby traceable molecular markers. To
introduce such traceable markers into the F2 gener-
ation, several crossing schemes have been suggested.
These include crossing to an accession that displays a rela-
tively high degree of variation like in the initial proof-of-
concept experiment where variation was derived from a
cross of Col-0 x Ler-1. In addition, mutagen-induced se-
quence polymorphisms have been used as markers which
allowed to create the F2 in essentially the same genetic
background (backcross to the unmutagenized parent of
the mutant collection). This strategy permitted increased
sensitivity for selecting subtle phenotypic differences [10,
13]. Common to all of these approaches is the necessity to
perform a dedicated crossing experiment as a basis for
phenotypic selection of F2 offspring, as well as the need to
sequence the parental genotype(s) in addition to the avail-
ability of a reference genome sequence. Also, extensions
of the strategy have been realized in maize. Sequence-
based determination of genome-wide allele frequencies
was used to assess the effect of selection for ear number
in an experimental population pre- and post-selection for
30 generations. This resulted in the identification of 28
loci contributing to control of number of ears per plant in
maize [14]. Recently, a method designated ‘extreme-
phenotype GWAS’ (XP-GWAS) was described that relies
on measurement of allele frequencies in pools of indi-
viduals from a diversity panel that have extreme pheno-
types. By using the kernel row number trait as an
example, several linked QTL were resolved and trait-
associated variants within a single gene under a QTL
peak were detected [15].

For all important crop plants, breeders maintain many
lines or accessions harboring important traits and phe-
notypes. These lines are usually phenotypically and gen-
etically well characterized. Using pools of such plant
lines (or accessions) for MBS could make, at least for
some cases, time consuming crossings to generate segre-
gating F2 populations unnecessary. Another aspect is
that the number of recombination events covered by the
pools subjected to BSA or MBS is a main determinant of
the resolution of the mapping, or, in other words, the
size of the genetic interval that should contain the causal
gene [16]. Because recombination events from several
generations are accumulated during the breeding history
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of plant lines in a breeding panel [17], the accessions from
a breeding panel included in a pool contribute more re-
combination events than F2 plants from a single cross.
This should shorten the genetic interval and allow to
more precisely reveal the position of the causative gene.

Sugar beet (Beta vulgaris ssp. vulgaris) is a diploid
crop plant with 9 chromosomes in the haploid genome
and an estimated genome size of about 730 Mbp [18]. A
567 Mbp reference sequence [18] with 26,923 annotated
protein-coding genes [19] has recently been published.
The taxonomic position of B. vulgaris lies within the
Amaranthaceae family which belongs to the order
Caryophyllales. In contrast to species from the asterid
and rosid clades, the red, violet and yellow pigments in
species of the Beta family are derived from the betalain
biosynthetic pathway (see [20] and references therein).
The capability to produce betalains is unique to some
families of the order Caryophylalles [21]. Betalain accu-
mulation in B. vulgaris is controlled by at least two loci,
called R and Y, which are under investigation since the
1930s [22]. R was found to control the red versus yellow
shift in beets, whereas the Y locus is responsible for pig-
ment versus no pigment in the interior of the beet root
[23]. Y was found to be separated from the R locus by a
genetic distance of 7 ¢cM [22]. The two loci were identi-
fied and molecularly described in 2012 [24] and 2015
[25], respectively. Usually, the R locus contains a domin-
ant allele that conditions a red hypocotyl. Since R is as-
sumed to be unlinked to other regions that are under
selection during sugar beet breeding, the R locus has
also been studied because of its role as a visible marker
in crosses. The gene BvCYP76AD]I that represents the R
locus was referred to as the RED gene. It codes for a
cytochrome P450 enzyme that is required for betalain
biosynthesis [24]. The characterized mutant allele r con-
tains a 5 bp long insertion in the coding region of the
gene leading to a premature stop codon. This loss of
function mutation in the recessive allele r results in a
lack of betalain accumulation in the hypocotyl, causing a
green to yellowish hypocotyl phenotype that is easy to
score (Fig. 1).

Using the hypocotyl color trait, we show that MBS can
be applied to phenotypic pools from breeding panels to
successfully identify a narrow genetic interval that con-
tains a causal gene in the crop B. vulgaris. Since the
plant lines displaying the contrasting red or green hypo-
cotyl color phenotype were selected from breeding
panels, multiple rounds of crossing, recombination and
selection were accessed in a convenient way. By selection
of homozygous inbred or DH lines we avoided the need
to deal with plants that are genotypically heterozygous
red/RED. The identified genetic interval had a size of 31
kbp and contained the known RED gene encoding
BvCYP76ADI.
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Fig. 1 The phenotype of sugar beet (B. vulgaris) seedlings
homozygous for a mutation in the RED gene. Betalain deficient
plants (right) do not show any red pigmentation, the hypocoty!
appears green due to the lack of betalain pigments. The two
phenotypes are easy to distinguish, since homozygous plants show
either a fully expressed red color in the hypocotyl, or a complete

lack of it. RR and rr, genotype of the respective seedling

Results and discussion

The starting point for the experiment to map the R locus
of B. vulgaris by MBS was the selection of the plant ma-
terial. A total of 360 different homozygous accessions
that had been phenotypically characterized for hypocotyl
color (Fig. 1) were selected. Of these, 180 displayed
green hypocotyl and were expected to be genetically rr,
while the other 180 accessions displayed red hypocotyl
and were expected to be genetically RR. The accessions
were randomly selected from the breeding programs of
three sugar beet breeding companies each contributing
60 rr (green) and 60 RR (red) accessions. Since it was
initially unknown if all three panels really contained the
same r allele (i.e. the identical mutation at the R locus),
DNA was extracted for each of the six pools of 60 acces-
sions separately. Genomic DNA of each of the six pools
was sequenced with Illumina PE technology (see
Methods) with the goal to reach a target coverage of
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about 25 fold, resulting in an overall coverage of about
75 fold for both superpools that were created in silico.

After stringent quality filtering the coverage of
uniquely mapped reads was close to the planned values
(Table 1). For the visualization and detection of a local
skew in the allele frequency, it was crucial to detect the
changes in allele frequency of sequence variants. There-
fore, the read data were mapped to the sequence of
pseudo-chromosomes which we derived from the or-
dered scaffolds of the reference sequence [18]. All steps
of the data analysis pipeline, from read mapping to vari-
ant calling, were implemented to run on a local compute
cluster (see Methods). Figure 2 depicts the work-flow
from sequencing of the pools via data processing to
evaluation of variants. Due to the sampling of accessions
into pools and inherent properties of short-read sequen-
cing methods, like stochasticity in sequencing coverage
or random sampling effects for read coverage at a given
polymorphic position, the values of the true allele fre-
quencies can only be estimated [26]. We used the term
allele frequency estimate (AFe) to reflect this fact (see
Methods for the definition of the term AFe and delta-
AFe). The final set of identified high quality biallelic var-
iations consisted of 5,470,336 SNPs and 964,904 InDels.
The results of the individual steps to the final set of vari-
ations are described in detail below.

Theoretically, it is possible that the mutated nucleotide
position(s) which cause the r allele to be non-functional
are also affected in functionally intact R alleles. This
would, since multiallelic nucleotide variations for a sin-
gle SNP or InDel were excluded, result in removal of the
causal variant from the data. However, we considered
this risk very low given the genetic background of the
material, and the fact that independent mutations affect-
ing identical positions are very rare. We determined the
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rate of positions with more than two alleles in our data
to be about 0.1 % for SNPs. In most of the cases, these
multiallelic nucleotide variations might be caused by er-
rors in variant detection.

Improvement of InDel detection

Obviously, not only the relatively easily detected SNPs
but also InDels have the potential to be causal for a
given trait. In addition, InDels are also useful for deter-
mination of additional AFe values and contribute to an
increased marker density. Therefore, a correct mapping
of reads to regions containing InDels was crucial. Unfor-
tunately, unprejudiced read mappers including BWA can
only map reads correctly that cover both sides, upstream
and downstream, of a given InDel. Reads that either
begin or end close to an InDel are often mapped incor-
rectly and can, therefore, contribute wrongly to either of
the true allelic options that exist at the studied position.
Often, the real insertion or deletion thus appears to be
less abundant than it truly is. The bioinformatics toolbox
GATK [27] offers the tool IndelRealign that locally re-
aligns reads at InDel positions, so that the number of
mismatching bases is minimized across all reads span-
ning a given InDel. This tool removes many misalign-
ment artifacts, resulting in significantly improved AFe
values for InDels and also for SNPs in their immediate
vicinity. Correct determination of AFe values is espe-
cially relevant for the detection of the causative InDel or
SNP, because this should, in theory, display an AFe of
close to the value 1. Since the mutation at the R locus
had previously been identified as an InDel in a somehow
repetitive sequence [24] that is even more affected by
mismapping, application of the local read realignment
tool was obligatory for success of MBS in our case.

Table 1 lllumina read data used and coverage of the concatenated RefBeet1.2 reference sequence

Depth of coverage ° Read length ° Insert size © Reference covered ¢
Breeding panel 1 red 2472 x 150 500 66.5
Breeding panel 1 green 23.60 x 150 500 62.0
Breeding panel 2 red 25.60 x 150 500 644
Breeding panel 2 green 25.08 x 150 500 63.0
Breeding panel 3 red 1941 x 150 500 47.2
Breeding panel 3 green 2345 x 150 500 62.9
Breeding panel 2 red total 7327 x 100/150 450/500 90.0
Breeding panel 2 green total 69.69 x 100/150 450/500 89.3
Superpool red 76.14 x 100/150 450/500 91.7
Superpool green 7841 x 100/150 450/500 91.9

@ Mean number of uniquely mapped reads covering each base of the reference sequence
P Length of the sequenced reads in base pairs; if more than one number is shown, two datasets with differing read length were merged; all generated as paired

ends (PE)

€ Targeted length of the PE sequenced fragments in base pairs; if more than one number is shown, two datasets with differing read length were merged

9 Percentage of the reference sequence with more than 15 fold read coverage
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green pool red pool
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green pool red pool
60 individ. 60 individ.
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| sequencing with HiSeq1500 |

preprocessing

| quality analysis of read data (FastQC) 1

1 raw read trimming and filtering (Trimmomatic 0.30) 1

mapping to reference (BWA-MEM 0.6.2, samtools 1.2)

data analysis

| add sample specific read groups (AddOrReplaceReadGroups; picard tools 1.101) :
1

| remove duplicated reads (MarkDuplicates; picard tools 1.101) 1

JR—

: realign reads around

InDels (Real

TargetCreator, IndelRealigner; GATK 3.2.2) :
1

: recalibrate base quality values (UnifiedGenotyper, BaseRecalibrator, PrintReads; GATK 3.2.2) 1
L i

| variant calling (HaplotypeCaller; GATK 3.2.2) I

:crea(e a merged file of quality filtered SNPs and InDels (SelectVariants, CombineVariants; GATK 3.2.2):
L 1

allele frequency analysis

I calculate AFe (python script) 1

1 plot AFe (python script) 1

| evaluate variation impact (SnpEff 4.0) |

\

Fig. 2 Experimental setup and work-flow. Overview of the bioinformatic processing steps, starting with sequence data from different DNA pools.
Program or tool versions used are indicated. For a more detailed description of the single steps, see Methods

Improvement of variant calling and variant filtering
To further improve the accuracy of variant calling,
GATK’s Base Quality Score Recalibration (BQSR) was
applied. BQSR requires a training set that was unavail-
able for B. vulgaris, and consequently a training set was
created. To account for run-specific errors, and because
variants may occur only in one pool and with low fre-
quency, a separate training set for each sequencing run
was created. This should avoid treatment of diluted vari-
ants as errors after merging of the data. After recalibra-
tion of the quality scores by BQRS, the sequencing runs
were merged into one set of reads. The final variant call-
ing was done with HaplotypeCaller (see Methods).
Variant  calling identified 8,202,758 variations
(7,006,049 SNPs and 1,201,615 InDels). After filtering
according to the “GATK best practice” (see Methods) to
reduce false positive variant calls, as well as exclusion of
multiallelic nucleotide variations, 5,471,088 SNPs and

965,211 InDels were considered as high confidence vari-
ations between the combined sequence data from all
breeding panels and the B. vulgaris reference sequence.
The removal of multiallelic nucleotide variations affected
24,977 polymorphic positions. For the final comparison
of the pools, we could only consider variations for which
we had sequence information from both pools. After fil-
tering out variations that were only covered in one of
the two superpools, a final set of 5,470,336 SNPs and
964,904 InDels was obtained.

Identification of a 31 kbp interval containing the RED
gene

For easy visual identification of genetic intervals showing
deviant AF introduced by the phenotypic selection when
building the pools, the AFe values of all detected vari-
ants were plotted along their position on the nine sugar
beet pseudo-chromosomes. Inspection of the sequence



Ries et al. BMC Genomics (2016) 17:236

data had shown that all three breeding panels contained
reads derived from the published r allele [24]. Therefore,
data from the three breeding panels were combined, and
AFe values from the ‘red’ and the ‘green’ superpool were
analyzed. To emphasize that the most relevant informa-
tion to be extracted from phenotypic pooling is the sep-
aration of alleles into the two pools, delta-AFe values
were determined. The mean delta-AFe is around 0.08
for each of the nine chromosomes, except for chromo-
some 2, for which it is 0.12. Figure 3 shows the result of
plotting the absolute values of delta-AFe along the gen-
ome sequence, represented by concatenated pseudo-
chromosomes. Inspection of the plot allowed ad-hoc
identification of a clear peak of the delta-AFe value dis-
tribution at the top of chromosome 2. The result of plot-
ting the delta-AFe values for an expanded pseudo-
chromosome 2 only is shown in Fig. 4.

A list of all variants with an AFe value close to zero in
the ‘green’ superpool (see Methods for a description of
the selection of seed variants and the algorithm for
interval definition) was extracted from all AFe data.
These variant positions were used as starting points for
interval detection. This resulted in detection of a single
interval on chromosome 2 with an exact length of
31,435 bp, overlapping the central part of the peak visu-
alized by plotting delta-AFe values. Non of the other
chromosomes displayed any variants with AFe values
close to zero in the “green” superpool, so no further in-
tervals were defined.

With a focus on the interval detected, AFe values from
the ‘red’ and the ‘green’ superpools were plotted (Fig. 5).
The distribution shows that variant positions in the inter-
val from the ‘green’ superpool follow the reference
sequence, while the variant positions from the ‘red’ super-
pool show fluctuating AFe values. This fits to the expect-
ation because the DH genotype KWS2320 that provided
the reference sequence is genetically rr and phenotypically
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delta allele frequency estimate

position [10 Mb] on Chromosome 2

Fig. 4 Plot of delta-AFe values for chromosome 2. The delta-AFe
values, indicated by yellow dots, clearly show a skew in the AFe
values of the two pools. The pink line indicates the ad-hoc identified

interval surrounding the peak

green. The gaps in the variant distribution, i.e. the regions
with no AFe values plotted in Fig. 5, were probably mostly
caused by the unique read mapping requirement applied
during variant detection, causing no mapping coverage in
repetitive, paralogous or duplicated regions.

Identification of the causal gene from three genes in the
interval

The interval on chromosome 2 of 31,435 bp in length
overlaps three annotated genes, of which one is the pub-
lished RED gene Bv2_030670_ucyh. As expected, all AFe
values from the green superpool were close to zero since
this criterion was used for interval detection. However,
most AFe values from the ‘red’ superpool were ranging
between 0.3 and 1. Thus, the data demonstrated the ex-
istence of exactly one ‘green’ haplophase (the r allele)
identical to the reference sequence, but multiple ‘red’

delta allele frequency estimate

A
& & & & (\b"@
Q_‘D

Fig. 3 Allele frequency estimate (AFe) of the red versus the green pool of 180 accessions each plotted as delta-AFe values. The delta-AFe values
for all detected variants (yellow dots) were plotted along the concatenated reference sequence sorted according to chromosome number.
B. vulgaris chromosome 2 shows a clear difference peak close to it's upper end (according to the standard orientation). Since the calculated AFe
values become less reliable with less coverage, only variants supported by a mapped coverage of between 0.75 and 2.5 fold of the mean coverage

of the respective chromosome were included in the plot
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Fig. 5 Plot of AFe and delta-AFe values for the genetic interval detected. AFe values of the variants detected in the identified interval were
plotted for the red” and the ‘green’ superpool, with a red dot on top of a green one if both were at an identical spot. The intron/exon structure
of genes (exons blue, intron pink) overlapping the interval are depicted at the bottom of the figure. The InDel bases present in the sequences of
the 'green’ pool and absent from the sequences of the 'red' pool are shown in the upper left area. This InDel affects the gene Bv2_030670_ucyh
which is the RED gene. Note that the accession KWS2320 from which the reference sequence has been derived was green and genotypically rr

phases or R alleles that contribute individual combina-
tions of variant positions. Of all variants within the
interval, only one had a delta-AFe of 1 and was overlap-
ping an exon. This single variant was identical to the
causative 5 bp insertion in the gene Bv2_030670_ucyh.
The insertion was present in all reads from the ‘green’
superpool mapping to the respective variant position,
and in the reference sequence resulting in the determin-
ation of an AFe value of 0 (zero). At the same time, the
causative 5 bp insertion showed an AFe of value 1 in the
‘red’ superpool. These results are in full concordance
with the previous identification of the RED gene [24].
The two other genes, Bv2_ 030680 _aogx and
Bv2_030690_isqu that are also contained within the de-
fined genetic interval would also be candidates if the
causal gene would not have been identified already.
However, they were less probable candidates compared
to Bv2_030670_ucyh for the following reasons. First, the
CDS regions of both of them do not carry variant posi-
tions that display delta-AFe values close to 1 (one).
Second, Bv2_030690_isqu, which is located at the down-
stream border of the interval, carries quite some variant
positions in its 5" region that display clearly AFe values
significantly higher than the expected value of zero.
Manual inspection of the reads supporting these values
of about 0.2 confirms that these AFe’s are real. Third,
Bv2_030680_aogx, although in the middle of the interval,
does not overlap with any strongly segregating variations
(the ‘red’ AFe values within the gene were all signifi-
cantly below 1). There were some variants outside anno-
tated genes (e.g. in the area around position 6,980,000)

that show delta-AFe values of 1, but based on the as-
sumption that the green hypocotyl phenotype is caused
by a gene affecting pigmentation these positions can be
considered less relevant. Finally, we analyzed and catego-
rized the effect of sequence variations on the coding re-
gions of the three genes within the interval with SnpEff
[28]. The gene Bv2_030670_ucyh was indeed the only
gene affected by a variant that most likely has a deleteri-
ous effect, indicating that even without knowledge about
the causal mutation the gene Bv2_030670_ucyh would
have been identified as the best candidate.

The number of accessions used has a high influence on
mapping resolution

To determine the effect of using either 120 (two times
60) or 360 (two times 180) accessions, the differences in
AFe values from the two superpools generated with 180
individuals were compared to those from one of the
pools generated from only two times 60 individuals. To
select one of the three breeding panels for this experi-
ment, the mean AFe value for the combined (‘green’ plus
‘red’) pools from the three panels was determined (see
Methods) with the goal to identify the panel with the
material that was the least similar to the reference se-
quence. The two ‘red’ and ‘green’ superpools showed a
mean AFe value of 0.37. Breeding panel 2 displayed a
mean AFe value of 0.44, while the two other panels
showed mean values of 0.35 and 0.37, respectively.
Breeding panel 2 also showed the highest number of var-
iants exclusive to one breeding panel, and the smallest
overlap with the other breeding panels (Fig. 6). During
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overlap
breeding panel 3 breeding panel 2

633050
236465

232189

4973708

782269
334193

208471

breeding panel 1

Fig. 6 Overview of common and independent variations in the
breeding panels studied. Venn diagram of shared and private
variations detected by pool sequencing. Only variations for which
information (read coverage) was available in all three pools
independently were taken into account

this evaluation, we also noted that more than 80 % of
the same biallelic variant positions were detected in all
breeding panels.

The two pools (‘green’ and ‘red’) from breeding panel
2 which diverged with a mean AFe value of 0.44 were
chosen for further sequencing to reach a coverage com-
parable to that of the two superpools (about 70 fold
uniquely mapped coverage). Variants were called for
both pools with 60 accessions, and delta-AFe values
were determined. For comparison to the results from
the superpool analyses that was based on two times 180
accessions, a sliding window approach was used (see
Methods). The results are summarized in Fig. 7. The
data showed that using 60 accessions per pool was still
sufficient to identify the correct genomic region. How-
ever, the interval detection procedure also applied to the
superpool data now yielded four intervals (length in bp:
33,930; 28,736; 20,920; 14,474 with gaps in between) that
were distributed over almost 360 kbp. In total, the
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genetic interval detected with 2 x 60 accessions was
about 14 times larger than the interval from full data.
Also, the reduction of the number of accessions from
other breeding panels has strongly increased background
noise, also contributing to a much broader peak in the
target region. The sharper peak and shorter interval with
2 x 180 accessions were a result of the higher number of
recombinations introduced with more accessions.
Attention should be paid to the fact that it was not ne-
cessary to generate a read coverage high enough to cap-
ture all individuals in the pools, but only high enough to
get a good representation of the distribution of frequent
variants within the respective pool. A coverage of about
70 fold was sufficient to capture information from 180
accessions (coverage about 0.4 per accession). Since 70-
fold coverage is by far not enough to sequence every
chromosome in the pool, rare variants that occur in only
a few of the accessions are underrepresented in our data
set. By increasing the number of accessions these rare
variants, that are “private” to a single or a very low num-
ber of accessions, get further suppressed. Under these
conditions, such rare variants were not distinguishable
from sequencing errors. This also contributes to a re-
duction of the variance of AFe, lowering what looks like
background noise in our approach, and exposing the
interval of interest. In other words, the coverage we used
introduced an intended bias against rare variants. Due to
the accumulation of historic recombinations in each ac-
cession, the effect of adding more accessions to the
pools is stronger than adding more F2 individuals from
a crossing experiment. Thus, our approach yielded a
really short interval, probably much shorter than from a
MBS approach using a similar number of F2 individuals.

About 30 fold coverage is sufficient for interval detection
To test the effect of increased coverage on interval
detection while keeping the number of accession at
2 x 180, we applied our method to subsets of the data.
Nine subsets of the mapped reads of the two superpools

0.8+

delta 120 Acc rolling mean

— delta 360 Acc rolling mean

delta allele frequency estimate

1 2

position [10 Mb] on chromosome 2

Fig. 7 Delta-AFe plot to compare results from pools of 360 vs. 120 accessions. Sliding windows (2.5 kb window size, 0.5 step size) of delta AFe
values of detected variants were plotted along chromosome 2 from the two different pools studied. Colors as indicated

3 4 5
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were generated, with linearly increasing coverage and an
increment of 1/10 of the total coverage (Table 2). The
resulting mapping data were used to call variations. Puta-
tive intervals were then defined by the algorithm described
above.

With a coverage of about 23 fold, the correct interval
was found, but this interval was about 25 % larger than
the one identified with the full coverage. The correct
interval with the correct length was identified starting at
an average coverage of about 31 fold. However, at this
coverage 19 additional “seeds” were detected but not ex-
tended to putative intervals because the regions around
them stayed shorter than 500 bp (see column “filtered
intervals” in Table 2). Using a coverage of more than
about 54 fold did not yield further improvements of
interval detection. A similar lower limit of mapped read
coverage of 30 fold for variant detection has also been
concluded from a study that compared various SNP and
InDel detection experiments [29].

Another difference between the mapping results from
the different subsets was the portion of the genome cov-
ered adequately with reads. As can be seen in Table 1, a
coverage of 70 fold was sufficient to cover over 90 % of
the genome with at least 15 reads, which we consider
the minimum for reliable variant calling and AFe value
determination. Due to stochastic effects and sequencing
biases in certain regions of the genome, the proportion
of the genome sufficiently covered with mapped reads is
reduced with lower overall coverage. In a MBS experi-
ment where two pools have to be compared, reliable se-
quencing data has to be available in both pools for each
position to compare. This can lead to significant data
loss, if a random distribution of reads is assumed. For
example: if the fraction of adequately covered sequence

Table 2 Intervals detected for subsets of the superpools with
increasing coverage

Coverage®  #intervals ®  Length of intervals ¢ Filtered intervals @
~7.8 7 145391 107
~155 2 59660 77
~233 1 48369 40
~31.1 1 29162 19
~389 1 29162 9
~46.6 1 29162 4
~54.4 1 29162 0
~62.2 1 29162 0
~69.9 1 29162 0
~77.0 1 29162 0

@ Mean number of uniquely mapped reads covering each base of the
reference sequence

® Number of intervals identified

€ Summarized length of identified intervals in base pairs

4 Number of discarded intervals
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in each pool is 60 %, the fraction of the genome available
for reliable comparison of AFe values and interval detec-
tion might be reduced to only 36 % (0.6 x 0.6 =0,36 as
the theoretical extreme). Therefore, it is important to
perform initial calling of variant positions for the com-
bined pools, so that the reads from both pools support
each other for variant detection. With this approach,
which is implemented in the GATK toolkit, the coverage
can virtually be combined, and high quality variations
for both pools can be called for a larger portion than if
the pools were analyzed individually. Still, the proportion
of the genome covered by reads needs to be considered
when planning a MBS experiment and the targeted
coverage.

Conclusions

The NGS technology has improved forward genetics to
an extent that has made the identification of causative
mutations of a phenotype fast and straightforward. Al-
though there are probably still problematic cases, suc-
cess has been shown numerous times [9-13, 30]. In
most of these cases, the schedule applied did require se-
quencing of parental lines, generation of F2 or F3 indi-
viduals, backcrossing of mutant lines, prior knowledge
of the location of the causative mutation or the use of
existing markers. We carried out deep-sequencing of
two phenotypic pools of 180 sugar beet accessions each
from three breeding panels, and performed genome-
wide analyses of differential AFe values between the two
pools. In our proof-of-principle case, a very small genetic
interval of 31 kbp containing the causative gene [24] for
the green hypocotyl mutant phenotype was identified,
and careful examination of the results indicated that
additional evidence like categorization of SNP/InDel ef-
fects might have allowed to predict the correct gene
even if it would have been unknown.

Our approach allowed to identify a causative locus for a
phenotype, in general within a few weeks after plant sam-
ples are harvested. Neither prior knowledge nor additional
sequencing of single offspring genotypes or parental lines
was necessary. Relatively high depth sequencing of the
pools to at least 30 fold coverage was needed to get a reli-
able signal, and an increase of the coverage to 50 or 70
fold reduces the risk that the relevant genome region is
less well covered by chance. Extensive post processing of
sequence data, read mapping, variation calling and exact
determination of AFe values, especially for InDels, was es-
sential for success. The GATK toolkit [27, 31] turned out
to be a flexible and well adaptable tool to perform these
processing steps that we successfully applied for a crop
plant genome.

Obviously, the approach relies on the availability of ap-
propriate material, in our case phenotyped accessions of
diverse genetic origin that share one mutant allele. For
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easy identification of the causal mutation the homozygous
state of the plants in the pools was necessary. However,
modern plant breeding often uses lines that have been
bred to full homozygosity or applies double-haploid (DH)
technology so that useful genotypes for various pheno-
types might be available in breeding panels. The next step
would be to determine how heterozygosity in the pool de-
rived from the dominant phenotype will affect the identifi-
cation and resolution of the genetic confidence interval
for other traits of interest in crop plants.

Methods

Selection of plant material

A total of 360 individual accessions were selected, with
either red or green hypocotyl color, respectively. All ac-
cessions were from the species sugar beet (Beta vulgaris
subsp. vulgaris var. altissima), and all were either DH or
inbred lines. The accessions were phenotyped for the
hypocotyl color trait known to be located on chromo-
some 2. Both phenotypic groups of 180 accessions each
were derived from three separate breeding panels (re-
ferred to as breeding panels 1, 2 and 3), with each of the
breeding panels providing 60 ‘red’ and 60 ‘green’ individ-
uals, in total 120 accessions from each breeding panel.

Plant growth and DNA isolation

Plants were grown in the greenhouse under long day
conditions on soil. Each accession was represented by a
single plant. Equal amounts of leave tissue per plant
were collected from the 3rd and 4th real leaf. Two leave
disks per plant were sliced out by applying a cork driller
with a diameter of 1 cm. The material from accessions
with the same phenotype and from one breeding panel
was combined at harvest. Genomic DNA from six pools
(the ‘red’ and ‘green’ pools from breeding panel 1-3) was
isolated with the Epicenter gDNA Isolation kit according
to the manufacturers instructions. Subsequently, the
DNA obtained was treated with RNAse and quantified
using PicoGreen.

Library preparation and sequencing

Library preparation for all DNA pools was performed
according to the Illumina TruSeq DNA Sample Prepar-
ation v2 Guide. DNA from each pool was fragmented by
nebulization. After end repair and A-tailing, individual
indexed paired end (PE) adapters were ligated to the
DNA fragments which allowed multiplexed PE sequen-
cing. The adapter-ligated fragments were size selected
on a 2 % low melt agarose gel to a size of 500—800 bp.
After enrichment PCR of fragments that carry adapters
on both ends the final libraries were quantified by Pico-
Green. The average fragment size of each library was de-
termined on a BioAnalyzer High Sensitivity DNA chip.
Samples from each of the six libraries were pooled in
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equimolar amounts and sequenced on a HiSeq1500 in
rapid mode as well as in high output mode. Clusters on
the flowcell for rapid runs were generated by on-board
cluster generation using the TruSeq Rapid PE Cluster kit
and sequenced according to the 2x 151 PE scheme
using TruSeq Rapid SBS chemistry. Cluster generation
for high output runs was carried out on a cBot using the
TruSeq PE Cluster kit v3, and sequenced according to
the 2 x 101 scheme using the TruSeq SBS Kit v3. After
completion of the sequencing runs, basecalling, demulti-
plexing and fastq file generation was performed using a
CASAVA-based inhouse script.

Generation of a reference sequence with pseudo-
chromosomes

For mapping of the sequencing reads, a modified version
of the published RefBeetl.2 [GenBank: AYZS00000000.1]
reference sequence [18] was generated. The scaffolds of
each chromosome of the original RefBeet-1.2 reference
sequence were concatenated, and stretches of 50 N’s
were inserted between scaffolds to form pseudo-
chromosomes. Scaffolds that are assigned to a chromo-
some, but not anchored to a fixed position on the given
chromosome, were appended in the same way, resulting
in a random’ pseudo-chromosome part at each down-
stream (bottom according to standard orientation) end
of the chromosomes. Unassigned scaffolds and contigs
were concatenated in the same way, resulting in a
pseudo-chromosome designated ‘Random’. The modi-
fied sequence was named RefBeet-1.2-joined. The py-
thon script “concat_contigs.py” which was used to
generate the sequence from the RefBeetl.2 is available
as Additional file 1, the zipped archive also contains a
ReadMe (concat_contigs. README.txt) which contains
some instructions as well as a parameter file.

Postprocessing and mapping of reads from pools

All operations from postprocessing to variant calling were
performed on the compute cluster of the Bioinformatics
Resource Facility of the CeBiTec. GATK allows for distrib-
uted data processing by default [27]. Parallelization by
using multiple cores or distribution to multiple nodes was
applied when ever possible, allowing the full compute
process to be finished within less than 1 week. An over-
view of the workflow is presented in Fig. 2.

For adapter trimming, quality filtering of reads with
stretches of four consecutive bases with a mean quality
value below 30, and removal of bases at the read heads
and tails with quality values below 25, the tool Trimmo-
matic [32] was applied. After trimming, the data was
quality checked using FastQC [33]. The trimmed reads
were mapped to RefBeetl.2-concat with BWA, using the
MEM algorithm [34] that is adapted for longer reads.
Default parameters were applied. To improve mapping
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speed, the data were split into chunks that were processed
separately on the compute cluster using a divide and
conquer approach. The mapping results were merged into
one file of the .bam format [35] containing all reads. Fi-
nally, mapped reads were filtered for duplicates with
PicardTools [36].

Due to variation of sequencing yield, the coverage of
mapped reads was initially about 20 fold for the ‘red’ and
the ‘green’ pool from breeding panel 1 and 3, and about
30 fold for the pools from breeding panel 2. For com-
parison of results when different numbers of accessions
were used, additional sequencing was performed for
both pools from breeding panel 2 to reach an overall
coverage of mapped reads of about 70 fold.

InDel realignment

Since unprejudiced read mapping tools cannot always
decide how to correctly map a read that begins or ends
in an InDel, realignment of reads at such positions in-
creases the confidence of subsequent processing steps.
The GATK InDel realignment tool [31] from the GATK
toolbox [27, 37] adjusts the aligned reads at ambiguous
sites in a way that the number of mismatching bases of
all reads is minimized. We applied GATKs RealignerTar-
getCreator to identify suspicious intervals and then ap-
plied the IndelRealigner to those intervals, using GATKs
standard parameters.

Base Quality Score Recalibration

The Base Quality Score Recalibration (BQSR) tool of the
GATK optimizes quality scores for the reads in a .bam file.
Quality values are recalibrated to fit closer to the real
probability of mismatching the reference. In addition, ef-
fects of machine cycle and sequence context are taken
into account during recalibration. To separate mismatches
into variations and sequencing errors, the base quality
recalibrator needs a file of real, verified variations. Such a
file was not available for sugar beet. Following GATK’s
best practice recommendations, we created a file of high
confidence polymorphic sites by calling variations with
GATK’s UnifiedGenotyper and hard filtering the results.
Parameters for filtering were selected according to
GATK’s best practice workflow. The newly generated list
of high confidence variants was subsequently used to
recalibrate the quality values of the mapped reads with
BQSR.

Variation calling

Data were processed with standard tools including
SAMtools [35] for format conversion, sorting and index-
ing and PicardTools for manipulation of read groups
and assessing data metrics. The mapped and filtered
reads were further processed using the GATK pipeline.
We found that GATK produced highly reliable variant
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calls, at least for our dataset. The complete best practice
workflow of GATK [27] was applied. Correct AFe (Allele
Frequency estimate) values for InDels were only ob-
tained after application of GATK’s HaplotypeCaller. Var-
iations were called for both pools together with GATK’s
standard parameters for hard filtering. Only reads with a
mapping quality higher than 0 were used for variant call-
ing, thus excluding non-uniquely mapped reads. Multial-
lelic variants were excluded. Finally, two files were
obtained containing high confidence, biallelic SNPs and
InDels, respectively. SNPs and InDels were merged into
one file and only variant positions that were covered in
both pools were considered for further analysis.

Calculation of allele frequencies

AFe values were calculated from the relative amount of
sequence reads supporting either of the two alternative
alleles for any given variant position. An AFe of 0.9 re-
sults if 90 % of all reads covering the addressed variant
position support the alternative allele (on the basis of
the KWS2320 reference sequence), and 10 % the refer-
ence allele. Since the sampling of the reads follows an al-
most random distribution (values cannot be smaller than
0 or larger than 1), the AFe value is an approximation of
the real allele frequency at the studied position. The fit
of AFe values to the real allele frequency, or to the true
proportion of chromosomes in a pool carrying two alter-
native alleles at a given position, becomes more precise
with increasing read coverage. Allele frequencies should
become increasingly more divergent between the two
phenotypically selected pools for positions that are
closer to the causative locus for the phenotype ad-
dressed. At the causative locus itself, the maximal differ-
ence of 1 for a variant with two alleles of which each is
“private” to one of the two pools. To emphasize this, the
delta allele frequency estimate (delta-AFe) was deter-
mined. Delta-AFe was calculated as the absolute differ-
ence between the AFe values from the two pools for a
given variant position.

Generation of an error file for the reference genotype

During data analyses it turned out that some high AFe
values that were detectable in both superpools were
caused by potentially erroneous bases contained in the
sugar beet reference sequence of the genotype KWS2320.
To lower the number of these false positive data points,
we generated a list of these potentially erroneous (or at
least different) base positions in the reference sequence
and removed these positions from the final list of varia-
tions called for the MBS experiment. The reference
sequence is based on a backbone of sequence data gener-
ated by 454 technology [18] but the MBS data in this
study were generated with Illumina technology. We used
[lumina sequence reads from KWS2320, called variations
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using the CLC genomics workbench which yielded about
25,000 potentially questionable positions, and used these
results to prepare the list mentioned above.

Interval identification and prediction of causal variations
For visual inspection of the results, the AFe values of de-
tected variants were plotted along all chromosomes or
for selected regions, usually for both pools into one plot.
To reduce background noise, only variants with a cover-
age between 0.75 and 2.5 times the average coverage of
uniquely mapped reads were plotted. The reasoning for
these limits was that lower coverage contributes to
higher error in the deduced AFe values due to stochastic
effects, and significantly higher than expected coverage
at a given position indicates that the respective region in
the reference sequence might contain collapsed repeti-
tive sequence. To allow easy identification of positions
with differing AFe values, the difference of the AFe
values (delta-AFe) between the two corresponding pools
was plotted for each variant position, using the python
script “VCF2AFAnalysis.py”, which can be found in
Additional file 2. The output allows ad-hoc delineation
of relevant intervals. However, an algorithm for auto-
matic identification has also been implemented.

An interval is defined as a genome region containing a
series of variants with AFe values of 0.1 or lower in the
‘green’ pool. Interruptions of the series are ignored if
they consist of at most 1 variation with an AFe larger
than 0.1, which is flanked on each side by a variant with
AFe values of 0.1 or lower. Interval detection was started
at seed variants with an AFe value close to zero in the
green superpool. The exact, lowest delta-AFe value of
valid seeds (X) was calculated depending on sequencing
error rate and coverage to tolerate a small number of
non-supportive reads. X=(P - 100 * E/C) with pheno-
typic difference of the pools P =1, the coverage of both
pools combined for the variant C, and an estimate for
sequencing errors introduced by the HiSeq1500 E = 0.01.
Intervals shorter than 10 kbp were discarded. We
filtered all variants within the detected intervals for
GenotypeQuality (GQ) values better than 20, and for
displaying a delta-AFe of more than 0.9, thus being
homozygous differences between the two pools. SNPeff
[28] was used to predict the effect of those variants on
genes overlapping the interval.

Calculation of mean allele frequencies for single breeding
panel pools

To calculate the mean allele frequencies for the pools of
each breeding panel separately, we extracted the variants
called for each panel from the variant file deduced from
the superpools. For this, we used GATK’s SelectVariants
tool, and filtered for homozygous and heterozygous vari-
ants of one breeding panel respectively. The selected
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variants were then coverage filtered as described above
(coverage between 0.75 and 2.5 times the mean coverage
of the respective chromosome). Finally, the mean gen-
ome wide allele frequency was calculated.

Comparison of mapping resolution from 360 versus 120
accessions

The variations of the breeding panel specific pools of
120 (2 x 60) accessions were filtered with the same pa-
rameters as described for the superpools of 360 (2 x 180)
accessions. We applied a sliding window with 2.5 kb
window size and 0.5 kb step size to the delta-AFe values
of both experiments. The results were then plotted to-
gether along the pseudo-chromosomes. For coverage fil-
tering, calculation of delta-AFe values, application of the
sliding window and plotting of the data, we used the py-
thon script described above.

Generation and comparison of reduced coverage data
subsets

Randomized subsets of reads from the superpools .bam file
were generated using GATKs PrintReads with the -dfrac
option. The targeted partial coverage was increased
stepwise with an increment of 1/10 of the total coverage,
starting with about 8 fold coverage (see Table 2). The
resulting .bam files were submitted to our analyses pipeline
starting with variant calling. The final, filtered variations
were used for interval detection by applying the algorithm
describe above.

Availability of supporting data
The data set supporting the results of this article is avail-
able from the European Variation Archive (EVA), with the
accession number PRJEB11641 (URL: http://www.ebi.
ac.uk/eva/?eva-study=PRJEB11641).

Additional files

Additional file 1: “concat_contigs.py” script for generation of RefBeet-
1.2joined.fa. The python script “concat_contigs.py” and supporting files
were used to generate the concatenated sequence RefBeet-1.2.joined fa
from RefBeet-1.2.fna [GenBank:AYZS00000000.1] [18]. It was tested on

Unix/Linux systems with at least python version 2.7 installed. (ZIP 2 kb)

Additional file 2: Python package to generate AFe plots and automatic
identification of intervals. The python script "VCF2AFAnalysis.py” was used
to generate AFe plots from vcf files. Usage examples can be found in the
"README" text file contained in the package. (ZIP 18 kb)
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