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Abstract

Background: Vascular wilt caused by Fusarium oxysporum is the most important disease in cape gooseberry
(Physalis peruviana L.) in Colombia. The development of resistant cultivars is considered one of the most cost-
effective means to reduce the impact of this disease. In order to do so, it is necessary to provide breeders with
molecular markers and promising germplasm for introgression of different resistance loci as part of breeding
schemes. Here we described an association mapping study in cape gooseberry with the goal to: (i) select promising
materials for use in plant breeding and (ii) identify SNPs associated with the cape gooseberry resistance response to
the F. oxysporum pathogen under greenhouse conditions, as potential markers for cape gooseberry breeding.

Results: We found a total of 21 accessions with different resistance responses within a diversity panel of 100 cape
gooseberry accessions. A total of 60,663 SNPs were also identified within the same panel by means of GBS
(Genotyping By Sequencing). Model-based population structure and neighbor-joining analyses showed three
populations comprising the cape gooseberry panel. After correction for population structure and kinship, we
identified SNPs markers associated with the resistance response against F. oxysporum. The identification of markers
was based on common tags using the reference genomes of tomato and potato as well as the root/stem
transcriptome of cape gooseberry. By comparing their location with the tomato genome, 16 SNPs were found in
genes involved in defense/resistance response to pathogens, likewise when compared with the genome of potato,
12 markers were related.

Conclusions: The work presented herein provides the first association mapping study in cape gooseberry showing
both the identification of promising accessions with resistance response phenotypes and the identification of a set
of SNP markers mapped to defense/resistance response genes of reference genomes. Thus, the work also provides
new knowledge on candidate genes involved in the P. peruviana – F. oxysporum pathosystem as a foundation for
further validation in marker-assisted selection. The results have important implications for conservation and
breeding strategies in cape gooseberry.
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Background
The cape gooseberry (Physalis peruviana L.) is a species
within the Solanaceae family widely used for medicinal
and commercial purposes. It is native in the Andean re-
gion, primarily Colombia, Peru and Ecuador [1]. It is the
second most important exported fruit in Colombia, which
is the world’s top producer, with total sales of $ 27.6 mil-
lion for 2013 [2]. The cape gooseberry production has suf-
fered a major decline in Colombia, from 1087 ha with a
yield of 17.8 t in 2009, to 749 ha with a yield of 15 t in
2013 [2, 3]. One of the major causes for this decline is the
vascular wilt disease caused by the soil-borne fungus
Fusarium oxysporum, which is an important phytosanitary
problem that is still unmanageable [4].
The fungus F. oxysporum is the causal agent of vascular

wilt in several species of plants, such as the cucumber
(Cucumis sativus L.), carnation (Dianthus caryophyllus
L.), tomato (Solanum lycopersicum L.) and potato (Sola-
num tuberosum L.) causing yield losses between 20 and
70 % [5, 6]. The management of this disease is hampered
by the pathogen adaptation including resistance to the
commercial fungicides, and its long term survival in the
soil due to production of resistant structures called chla-
mydospores [7].
Several disease control methods have been attempted

to reduce the incidence of vascular wilt. Crop rotation
does not offer an effective solution because of the pres-
ence of chlamydospores in the soil. Another option is
soil fumigation; however, it is not a long-term solution
because recolonization frequently occurs. Finally, soil
treatments with compost or enriched compost using se-
lected microorganisms represent a possible management
alternative [8, 9]. However, the development of resistant
cultivars is one of the most promising alternatives for re-
ducing the negative impact of Fusarium infection. This
alternative will reduce the dependency on chemical pro-
tection, resulting in safer, more affordable and less envir-
onmentally detrimental cultivation of these crops [10].
Successful cases of the development of resistant varieties
to F. oxysporum have been reported in various species
including lettuce [11], cucumber [12], tomato [13],
among others.
The development of resistant cultivars can-be-

accelerated by using markers associated with resistance/
defense Quantitative Trait Loci (QTLs). The continuing
advances in QTL identification including Association
Mapping (AM) studies are accelerating the identification
of genes related with disease resistance, like the loci I-1,
I-2 and I-3 in chromosomes 11 and 7 from tomato
which confer resistance to F. oxysporum f. sp. lycopersici
[13, 14]. More recently, Genome-wide Association Stud-
ies (GWAS) in conjunction with Genomic Selection
(GS) has shown to provide an effective tool for increas-
ing the efficiency of crop breeding [15].

Single Nucleotide Polymorphisms (SNPs) are usually
the markers of choice for QTL identification as well as
for studies of genetic diversity and population structure
required for association studies [16]. Genotyping By
Sequencing (GBS), a highly multiplexed method based
on reducing genome complexity through methylation-
sensitive restriction enzymes, uses next generation se-
quencing technologies to identify large sets of SNPs [17].
GBS can be suitable for species with high diversity and
large genomes even without the need of a reference gen-
ome [18]. The latter suggests that GBS can be appropri-
ate for orphan species such as cape gooseberry. This
approach has been successfully used, for example, in a
study conducted by Lambel et al. [19], where a major
QTL associated with resistance to F. oxysporum f. sp
niveum race 1 on chromosome 1 of the watermelon gen-
etic map was identified. In addition, a minor QTLs were
identified on chromosomes 1, 3, 4, 9 and 10.
The present study aims to: 1) assess the resistance

phenotype of a diversity panel of 100 cape gooseberry
accessions to F. oxysporum in greenhouse conditions;
2) identify marker-trait associations for the resistance
response to F. oxysporum based on GBS as a founda-
tion for future GWAS/GS studies in cape gooseberry.
The SNPs associated with resistance/defense regions
will increase the knowledge of mechanisms underlying
disease resistance, providing tools for Marker-Assisted
Selection (MAS) or other new molecular selection
methods to accumulate desirable genes in breeding
programs.

Methods
Mapping population
The cape gooseberry association mapping population
used in this study comprised a diversity panel of 100
accessions from the germplasm collection managed by
the Colombian Corporation for Agricultural Research
(CORPOICA) (Additional file 1: Table S1). This popu-
lation was composed of wild or cultivated accessions
that were selected based on the following criteria: a)
presence of passport data, b) representativeness of the
main producing geographic areas in Colombia, c)
wide geographic distribution, d) genetic diversity
based on molecular markers [20], (e) different resist-
ance and susceptibility responses against F. oxysporum
under greenhouse conditions based on an initial
screening conducted by Enciso-Rodríguez et al. [21].
We selected some of these accessions with the aim of
covering the extremes of the distribution of the
phenotypic variance. In addition, nine accessions
obtained as double haploids (DH) derived from culti-
vated germplasm used for breeding purposes [22],
were also included within the panel group.
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Pathogen isolation and inoculum preparation
The highly virulent monosporic strain of F. oxysporum
(Map5) isolated from P. peruviana plants in field [21]
and preserved in filter paper at −20 °C was used for in-
oculum preparation. The Map5 isolate was reactivated
in Potato Dextrose Agar (PDA) medium for 10 days. A
piece of 1 cm2 of agar with mycelium growth were cut
and was grown in liquid Potato Dextrose Broth (PDB)
for 8 days at 27 °C in constant shaking and then adjusted
to a final concentration of 1×106 conidia/ml according
to Namiki et al. [23]. A volume of 100 mL of conidia
suspension per each 900 g of soil was adjusted according
with the methodology described by Moreno et al. [24],
to inoculated by aspersion of the substrate (soil : peat :
rice husk) mixed in a proportion 3: 1: 1.

Evaluation of Fusarium oxysporum resistance
The plantlets of P. peruviana accessions were clonally
multiplied in vitro from node cuttings. Once a pair of
true leaves appeared and plantlets were 5 to 7 cm tall
(3 months old), eight plants per accession were trans-
planted individually into plastic pots with 600 g of inoc-
ulated substrate and two plants were mock-inoculated as
negative control. The screening for resistance to the
pathogen was carried out in a greenhouse at 26 + 2 °C,
with light/dark photoperiods of 12/12 h, with a relative
humidity of 70–80 % in the Corpoica’s facilities in Mos-
quera, Colombia. The symptoms were scored 3 times a
week over 47 days using a nine-grade severity scale, with
0 denoting high tolerance and nine high susceptibility.
This scale was described by Enciso-Rodríguez et al. [21],
using 15 genotypes from P. peruviana and related taxa
inoculated with the Map5 F. oxysporum pathogenic
strain. The percentage of incidence was calculated as the
number of new cases of disease during specified period
divided by size of population at start of period. The Area
Under the Disease Progress Curve (AUDPC) based on
the severity scale was calculated using the formula pro-
posed by Shanner and Finner [25]. Accessions that dis-
played potential resistance response after the initial
screening, were re-transplanted and re-inoculated, using
the same procedure described above.

Statistic analysis of phenotypic data
The phenotypic data were statistically analyzed through
Shapiro-Wilks normality test using the software package
SAS v9.1.3 (SAS Institute, Cary NC) [26] and normalized
by implementing the Box-Cox transformation with the
software STATISTICA v12.0 (Statsoft Inc., Tulsa, USA).
In addition, a Ward algorithm conglomerate analysis
from Principal Component Analysis (PCA), applying the
PRINCOMP procedure in SAS v9.1.3, was used to ob-
tain a dendrogram.

Genotyping
Total DNA was isolated from young leaves collected
from each accession using DNeasy Plant Mini Kit (QIA-
GEN, Germany) according to manufacturer’s instruc-
tions. The final elution volume was adjusted to 70 μl
with TE solution buffer. Total DNA was quantified using
λ HindIII size/mass (Invitrogen) and the quality was
inspected using restriction enzyme digestions with
HindIII enzyme, and visualized by electrophoresis using
2 % agarose gels. The GBS libraries were constructed at
Cornell Genomic Diversity Facility (USA), library dupli-
cates were used as technical replicates in 95-plex using
the restriction enzyme ApekI (GCWGC) and barcoded
adapters were ligated to individual samples. Genotyping
was performed following the GBS protocol by Elshire et
al. [17] and multiplexing on a single lane of Illumina
HiSeq 2000.

SNP discovery and data processing
FASTQ files obtained from sequencing were processed
using the GBS pipeline implemented on TASSEL standa-
lone v4.3.5 [27, 28]. The pipeline’s first step is the multi-
plexing using the barcode adapter “key file”. Then,
identical aligned reads were clustered into tags (reads
consisting of a cut site remnant and additional sequence
of 64 bp), and then the reads were aligned using BOW-
TIE2 [29] to the tomato and potato reference genomes
[30, 31], as well as to the cape gooseberry root/stem
transcriptome (NCBI Bioproject ID No. PRJNA67621),
separately. The tags that were aligned to each one of the
reference genomes/transcriptome, and were filtered into
common tags between the two references genomes and
the reference transcriptome. The parameters used for
high quality SNP detection for common tags were: mini-
mum allele frequency of 0.01 (overall), minimum locus
coverage1 (mnLCov) of 0.9, minimum site coverage2

(mnScov) of 0.7, minimum taxon coverage3 (mnTCov)
of 0.5. A filter of high linkage disequilibrium (hLD), was
also used to filter the SNPs with significant threshold of
r2 ≥ 0.1.

Genetic diversity
Population estimates of genetic diversity were analyzed
using the SNPs of cape gooseberry transcriptome and
then separately for common tags. The program
POWERMARKER v3.25 [32] was used to calculate allele
frequencies, observed heterozygosity (Ho), expected
heterozygosity (He) and Polymorphism Information
Content (PIC).

Population structure
Distance matrix based on Identity By State (IBS) similar-
ity, defined as the probability that alleles drawn at ran-
dom from two individuals at the same locus are the
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same, was calculated from HapMap files using TASSEL
v4.3.5 and the resulting matrix was clustered by the
Neighbor-Joining algorithm, and visualized by FIGTREE
v1.4.0 [33]. The SNP marker matrix used for PCA ana-
lysis was obtained from the Variant Call Format (VCF)
files generated by TASSEL v4.3.5, using gdsfmt and
SNPRelate [34] packages implemented on the statistical
software R [35].
In order to estimate the number of sub-populations in

the sampled plant accessions, a bayesian model cluster-
ing analysis was carried out on the best set of SNPs for
optimizing the run, applying the admixture model for
the ancestry of individuals using the software STRUC-
TURE v2.3.4 [36] with the following parameters: number
of populations (K) set from 1 to 10, repeated 10 times,
with a burn-in period of 50,000 iterations and 100,000
Markov Chain Monte Carlo (MCMC) repeats. The soft-
ware CLUMPP v1.1.1 [37] was used to line up the clus-
ter labels across runs and to estimate the degree of
congruence between independent runs. Visualization of
the results was done with DISTRUCT v1.1 [38]. The K
optimum was evaluated by approaches described by
Pritchard [36] and by Evanno et al. [39], using STRUC-
TURE HARVESTER [40].

Linkage disequilibrium
The linkage disequilibrium (LD) between two SNPs was
measured and visualized using r2 (p-value of ≤ 0.005)
across each one of the reference genomes using the soft-
ware TASSEL v4.3.5 with a sliding windows of 50
markers for exploring variation patterns of LD.

Association analysis
The analysis was conducted using the Genome Associ-
ation and Prediction Integrated Tool GAPIT [41], an R
package [35]. Associations between polymorphisms and
phenotypes were evaluated using the Mixed Linear
Model (MLM) by incorporating phenotypic and geno-
typic data, population structure (Q) and kinship matrix
(K), using the following formula: y = Xa +Qb + Zu + e;
where y is vector for phenotypes; a is the vector of
marker fixed effects, b is a vector of fixed effects, u is
the vector of random effects (the kinship matrix), and e
is the vector of residuals. X denotes the genotypes at the
marker; Q is the Q-matrix and Z is an identity matrix
[42]. The software STRUCTURE v2.3.4 had been used
previously to determine the population structure of the
diversity panel and the kinship matrix was calculated as
described by Loiselle [43], and the False Discovery Rate
(FDR), using the method proposed by Benjamini and
Hochberg [44], was used for correcting spurious associa-
tions. The quantile-quantile plots (Q-Q plots) were con-
structed by ranking the sets of best association p-values

and plotting them against the expected values, under the
null hypothesis of no association.
The HapMap archives were used to infer the poten-

tial molecular function and the possible underlying
biological process of the associated markers, using the
Sol Genomics Network (SGN) (https://solgenomics.net/
jbrowse/current/). For tomato (Solanum lycopersicum),
the genomic annotation v2.3 realized by ITAG from
SL2.40 genome construction was used. Additionally, for
the potato genome (Solanum tuberosum group Phureja)
the genomic annotation v3.4 realized by PGSC from
DM3.40 genome construction was used.

Results and discussion
Evaluation of Fusarium oxysporum resistance
The first phenotypic response symptoms within the
mapping population were observed at 14 days after in-
oculation. The mean of the susceptibility/resistance scale
to measure vascular wilt, was six at 47 days after inocu-
lation, with an incidence of 76 % (Additional file 2:
Figure S1). AUDPC values ranged from 4.7 to 139.3 indi-
cating a phenotypic variation for the disease severity
within the mapping population. According to Simko &
Piepho [45], the AUDPC value is effective for determin-
ing the progress of the disease, it gathers different obser-
vations during the epidemic and summarize all the
values in a single one that reflects the severity of disease.
Based on conglomerate analysis using the Ward algo-

rithm [46] (Fig. 1), the cape gooseberry’s accessions can
be divided into four main groups. The first group (I)
consisted of 13 wild accessions collected from five
Colombian geographic departments (Antioquia, Boyacá,
Cundinamarca, Norte de Santander, Valle del Cauca)
and three accessions (09U288-7, 09U140-5 and 09U138-
2) from the international repository of the USDA Plant
Germplasm System. The second group (II) comprised 38
accessions collected mainly from six Colombian
departments (Nariño, Antioquia, Cundinamarca,
Boyacá, Santander, Valle del Cauca) as well as two
accessions from international repositories. The third
group (III) consisted of 24 cultivated accessions from
four Colombian departments (Boyacá, Cundinamarca,
Nariño, Boyacá). The fourth group (IV) consisted of
22 accessions, comprised mostly by DH accessions
originating from in vitro culture of anthers [22].
The four groups reveal phenotypic variation for the

resistance trait showing different levels of susceptibility/
resistance responses to F. oxysporum that made the
population suitable for association mapping. The first
and the second group presented the highest values for
resistance response with mean disease severity scales of
3.138 (ranged from 1.571 to 5) and of 5.725 (ranged
from 3.571 to 7.200), respectively (Table 1). This result
is consistent with the fact that these two groups are
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made up of wild-type germplasm. As reported by
Chrispeels & Sadava [47] and Jiao et al. [48], wild type
plant populations serves as a source of disease resist-
ance traits; besides, study this populations to identify-
ing SNPs associated with genes and predicting their

function contribute to the breeding programs. One of
the best-known cases is tomato, where race-specific R
genes for resistance to F. oxysporum have been genetic-
ally mapped and introgressed into commercial cultivars
from wild tomato species [49]. The third group had

Fig. 1 Ward algorithm conglomerate analysis of phenotypic data. Obtained from principal component analysis of severity and AUDPC variables
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mean severity scales of 6.450 (ranged from 5.375 to
7.286, Table 1). This group was mainly represented by
cultivated accessions used by farmers or commercial
producers who usually select plants with good quality
and yield. Cultivated germplasm do not necessarily
have good resistance to pathogens [47]. The fourth
group consisted of accessions highly susceptible to the
pathogen (7.553 ranged from 5.750 to 9.0, Table 1).
This group was represented by DH germplasm which
may possess advantages to speed-up breeding processes
towards fixing desirable alleles but at the same time
can generate more susceptible homozygous materials
which may accumulate deleterious recessive alleles, oc-
curring in a process similar to inbreeding depression,
possibly causing more susceptibility to pathogens [50].
Whether inbreeding depression occurs in cape goose-
berry awaits further investigation.
The Shapiro-Wilks test resulted in W-values of 0.946

(p-value = 0.0004) for severity with a negative tendency
(−0.753) and 0.974 (p-value = 0.045) for AUDPC with a
positive tendency (0.556), leading to rejection of the null
hypothesis of normal distribution of the data. According
to Mauricio [51], there is an implicit assumption that
the trait values are normally distributed in quantitative
trait loci (QTL) analysis. Violation of this assumption
can severely affect the power of the analysis, increment-
ing the type I error. To resolve this difficulty, the data
variance was stabilized using a Box-Cox transformation
ensuring a normal distribution required for the associ-
ation analysis and therefore improving the p-values of
associated markers (Additional file 3: Figure S2).

SNP discovery
GBS can be used for de novo discovery of SNPs, making
it particularly powerful in germplasm collections and
uncharacterized species [18]. GBS was used to genotype
100 accessions of the crop species P. peruviana using
the ApekI restriction enzyme. This frequent-cutting en-
zyme has been used efficiently to produce high quality
libraries in heterozygous species such as maize (Zea

mays) because it generates large number of fragments
necessary to cover a maximum number of recombin-
ation events [17]. Similarly, studies of GBS in soybean
(Glycine max L.) validated ApeKI restriction enzyme as
appropriate for plants because constructed libraries were
rich in gene regions [52].
A total of 453,005,454 good quality reads were ob-

tained from 505,347,672 raw reads that were generated
from two Illumina HiSeq lanes. The TASSEL-GBS pipe-
line [28] clustered reads into 48,304,291 locus-specific
tags with a mean depth per individual of 6.3 and a mean
reads per accession of 2,359,883. Mapped tags per refer-
ence genome were 469,212 (1 % of the total tags) tags
for tomato, 470,210 (1 % of the total tags) for potato and
416,989 (0,8 % of the total tags) for cape gooseberry and
the common tags shared between three reference ge-
nomes were 120,124.
A set of 60,663 (19 % missing data) SNPs was identi-

fied using cape gooseberry root/stem transcriptome as
reference using the default parameter filter implemented
in the TASSEL-GBS pipeline. Other pipelines to discover
SNPs in species without a reference genome have found
88,217 SNPs in switchgrass [53] and 45,117 SNPs in oat
[54]. Those studies used the UNEAK pipeline or a com-
bination of UNEAK and TASSEL. According to Glaubitz
et al. [28], the TASSEL-GBS pipeline was designed for
species with a reference genome; however, it is possible
to use incomplete genome assemblies consisting of nu-
merous contigs as a pseudo-reference. For tomato,
potato and cape gooseberry as reference genomes/tran-
scriptome we identified 1,739, 1,965 and 1,699 SNPs
after filtering (2 % missing data) respectively using com-
mon tags. This approach was used in order to locate
homologous sites between the cape gooseberry se-
quences and each one of the reference genomes, which
represent the two closest high-quality sequenced and an-
notated genomes [30, 31]. Thus, we infer their putative
relationship to genes related to pathogen resistance re-
sponse, based on conservation of sequences and gene
content in the Solanaceae family [55].

Table 1 Statistics from ward algorithm clustering obtained from phenotypic data

Group Variable Mean Minimum value Maximum value Coefficient of variation

1 Severity 3.138 1.571 5.000 29.697

AUDPC 15.436 4.688 25.500 46.768

2 Severity 5.735 3.571 7.200 14.526

AUDPC 38.205 16.800 66.812 27.253

3 Severity 6.450 5.375 7.286 7.747

AUDPC 59.958 38.625 82.000 18.181

4 Severity 7.553 5.750 9.000 10.190

AUDPC 83.932 63.500 139.312 21.406

AUDPC area under the disease progress curve
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The percentage of missing data from GBS may be a
serious problem, especially for association analysis. Bet-
ter coverage can be achieved by two approaches: 1) re-
peated sequencing runs of the samples, although this
solution increases costs, and quickly reaches a point
where there is little reduction in missing data; and 2) im-
putation procedures based on identifying the most simi-
lar haplotype that can be used to supply some of those
missing data [56]. The second approach is not possible
with cape gooseberry because of the lack of a reference
genome. In our case we reduced the missing from 19 to
2 % when each individual sample was sequenced by du-
plication. Therefore, the first approach was carried out
for cape gooseberry in the present study.

Genetic diversity, population structure, and linkage
disequilibrium
The genetic analysis shows that the cape gooseberry popu-
lation used in the present study have a high level of gen-
etic diversity with a mean value of He = 0.655, Ho = 0.431
and PIC = 0.344 using as reference the two Solanaceae ge-
nomes or the cape gooseberry root/stem transcriptome
(Table 2). Our results contrast with the studies conducted
by Bonilla et al. [57], where RAM markers were used in
43 cape gooseberry accessions reporting lower values of
observed heterozygosity (Ho = 0.255), possibly due to the
lower sample size and number of markers and their dom-
inant nature as well as the different origin of accessions
used. Our study is more consistent with the recently pub-
lished report by Garzón et al. [20] on cape gooseberry di-
versity using 47 accessions analyzed by COSII and IRG
markers, where they found a mean value of He = 0.30,
Ho = 0.48, and PIC = 0.24. Considering that several ac-
cessions shared the same origin of the ones used in this
study; the subtle differences in values may be due to
differences in sample size, number and type of markers
used. Our results indicate that the cape gooseberry is a
heterozygous species consistent with the 54 % rate of
cross-pollination previously reported [58].
The NJ and PCA analysis were carried out using SNPs

obtained after alignment against the two reference
genomes and the cape gooseberry transcriptome for
confirmation of groups or sub-populations with the two
analyses (Additional file 4: Figure S3, Additional file 5:

Figure S4). The NJ-based dendrogram with cape goose-
berry SNPs (Fig. 2) shows the collection clustered into
three subgroups. Sub-population I comprised accessions
from the Colombian geographic departments of Boyacá,
Nariño and Cundinamarca, the main cape gooseberry
producing areas in the country and DH derived mate-
rials. Sub-population II comprising mostly cultivated
(commercial) accessions and Sub-population III con-
sisted of a mixture mostly of land-races, cultivated and
DHs. Inside population I there was a defined group con-
formed by the wild-type accessions.
The PCA analysis (Table 3) showed that the first three

components explained approximate to 21.3 % of the
total variation within the population for the two refer-
ences genomes and the transcriptome. Zhao et al. [59]
suggested that the matrices of PCA are helpful for use
as a relationship matrix (Q) in association analysis, since
this type of analysis is fast, has no assumptions about
the population structure and gives equivalent results to
those derived from computationally intensive software’s
such as Structure. However, the results from this analysis
showed that the matrix of PCA is not suitable for associ-
ation analysis since a low percentage of the variation
was captured in the first three components. According
to Myles et al. [60], the problem with the estimation of
Q matrices using the PCA approach, is that individuals
can only vary along a few axes of differentiation that
may or may not be well captured by the PCA model.
Since the present study showed that there was no clear
cluster structure in the first three principal components
by PCA and one sub-population differed from the 3 sub-
populations obtained by NJ analysis, we performed
further structure analyses.
Since the values of genetic diversity and clustering

algorithms were similar using the two genomes and the
transcriptome as reference, we chose the tomato refer-
ence genome to reduce computationally intensive ana-
lyses. Then, we selected the 1,739 polymorphic SNP
markers from common tags, between tomato and cape
gooseberry transcriptome, to correct for population
structure to avoid spurious marker–trait associations. To
find the number of sub-populations of cape gooseberry,
the value based on the logarithm of probability of data
likelihoods (lnP(D)) approach fluctuated continuously

Table 2 Summary statistics of genetic diversity calculated for cape gooseberry. reference transcriptome and tomato and potato
reference genomes

Reference transcriptome/genome SNPs without common
tags filter

Common tags SNPs with filter Proportion of heterozygous
sites

Ho He PIC

Cape gooseberry 60,663 120,124 1,699 0.639 0.430 0.647 0.343

Tomato 1,739 0.662 0.434 0.662 0.346

Potato 1,695 0.652 0.430 0.657 0.342

Mean 0.431 0.655 0.344
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and never reached a plateau (data not shown). In con-
trast, the ΔK analysis provided by the Evanno method
[39] suggested a population structure comprising of
three subgroups (K = 3) (Fig. 3) with a considerably
high mean Fst value of 0.351 indicating high popula-
tion structure. These results were similar with the NJ
analysis, showing three sub-populations, from which
the most differentiated one was comprised of wild-
type accessions (Fig. 4). These wild-type accessions
provide a genetic potential for breeding programs as
shown by the phenotypic severity and AUDPC values
indicating potential sources of resistance responses
(Table 1).

Fig. 2 Neighbor-Joining tree based on Nei’s genetic distance of cape gooseberry SNPs. NJ-based dendrogram with cape gooseberry SNPs
clustered into three subgroups. Colors correspond to each sub-population which consisted of: mostly commercial germplasm (I), mostly
cultivated (II), mix of cultivated, land-races and DHs (III). Most of the wild-type accessions conform a subgroup (green) inside the sub-population I

Table 3 Summary of the principal component analysis results
using the cape gooseberry reference transcriptome and the
tomato and potato reference genomes

Species SNPs
with filter

Components (%)

1st 2nd 3rd Total

Cape gooseberry 1,699 8.8 7.3 4.5 20.6

Tomato 1,739 9.9 7.3 4.8 22.0

Potato 1,695 9.2 7.1 5.0 21.3

Fig. 3 ΔK plots obtained from Evanno method derived from the
SNP data. Graph of delta K values (y-axe) against assumed sub-
populations (x-axe) showing the ideal number of groups present in
the cape gooseberry population after use of 1,739 polymorphic
SNPs. Note the highest peak for K = 3
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It was not possible to conduct an analysis of decay of
LD across genetic distance in cape gooseberry because
no reference genome is available. For this reason, LD
was estimated using the square allele frequency correla-
tions (r2) from pairs of all SNPs markers without a LD
filter using the cape gooseberry transcriptome as a refer-
ence. About 4 % of total comparisons were significantly
in LD with P ≤ 0.01 with an average r2 of 0.040 and a
maximum value of 0.69. Similar results were found when
we estimated r2 using tomato and potato as reference
genomes (Table 4). Heat maps produced for each of the
two genomes and the transcriptome showed one strong
region in LD limited to chromosome 6 (Fig. 5). It would
be necessary to sequence the genome of cape gooseberry
in order to study thoroughly the decay of linkage dis-
equilibrium, to more accurately identify regions of inter-
est, and to identify recombination hot spots [61]. The
whole genome sequence will be of great utility for plant
breeding.

Association analysis
The association analysis was conducted by the MLM ap-
proach with Q and K matrices fitted in the model to
control spurious associations due to population struc-
ture and relatedness, respectively [42]. Using a threshold
of -Log10 (P) ≥ 3, with phenotypic data from the
AUDPCs and severity scales as well as high quality SNP
data obtained when using the two reference genomes we
did not identify any significant association after the FDR
correction. This could be the result of the reduced sam-
ple size of the association mapping population along
with its large heterozygosity, as it has been reported in a
study conducted by Kahn et al. [62] in Malus genus. Be-
sides, It is well known that a rapid LD decay occurs in
cross-pollinated species needing large sample and
marker density for association studies [61]. As men-
tioned by Zhu et al. [63], large populations are desirable

for association mapping in order to obtain a high power
to detect genetic effects of moderate size, but the cost of
genotyping and particularly of phenotyping can be
extremely elevated. However, several studies in related
species as tomato [64] and unrelated species such as bar-
ley [65], demonstrates that using small population sizes
(approximately 90 genotypes) with high diversity or ge-
notypes from different origins, as we did, was adequate
to identify molecular markers associated with traits of
interest.
Besides sample size and heterozygosity, it is also pos-

sible that the resistance response phenotype of cape
gooseberry against F. oxysporum is not influenced by
large effect QTLs or oligogenic trait variables that can
be detected when using small sample sizes, which has
been demonstrated for some traits in other species [66].
Nonetheless the present study represents the first ap-
proximation to association analysis in cape gooseberry.
Further and deeper GWAS analyses would need to take
into account the above-mentioned considerations as well
as its genome size, that represents up to 8,12 pg of nu-
clear DNA, being nine times larger than the tomato and
potato genomes [67].
Considering the aspects mentioned, we reduced the

stringency threshold and analyzed Q-Q plots that sup-
ported the evidence of SNP association to the resistance
response trait with lower but still significant p-values
(p ≤ 0.005) before the FDR correction. In the Q-Q plots,
observed p-values for each SNP are plotted against the
values expected under the null hypothesis of no SNP as-
sociated with the trait, thus, deviations from the diag-
onal line suggest the SNPs markers contains values
arising by a true association. Besides, the early separation
of the expected p-values from the observed, it is due to
population stratification [68] (Fig. 6). Accordingly, the
MLM is performing well for accounting the population
structure and familial relatedness for correcting spurious

Fig. 4 Inferred population structure of the cape gooseberry panel using the tomato SNPs matrix. STRUCTURE bar plot for K = 3 grouped by state
of cultivation. Subpopulation I = Commercial germplasm, II = Cultivated, III = Mix of cultivated, land-races and DHs

Table 4 Summary of the linkage disequilibrium analysis for this study

Species SNPs without LD filter Total comparisons Mean r2 value Comparisons in LD Comparisons (p ≤ 0.01)

Cape gooseberry 60,663 1,388,575 0.040 1,316,228 54,612

Tomato 9,136 452,076 0.044 429,592 21,536

Potato 9,067 455,526 0.041 430,859 20,962
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associations, as reported in association studies of
tomato populations [64]. In order to reduce the
amount of false-positives, we only focused the highly
significant associations detected by the MLM. Using a
fewer threshold, we found 28 SNPs marker of the
severity and AUDPC variables which mapped to a

total of 20 tomato and potato genes, with p-values ≤ 0.005
(Tables 5 and 6). Manhattan plots for the two traits
based on the two reference genomes are shown in
Fig. 7.
For the severity trait, one of the SNPs was mapped to

the tomato gene Solyc08g081990.2 that is related to

Tomato Potato

Cape gooseberry

Fig. 5 Analysis of linkage disequilibrium. Heat maps showing one region in the cape gooseberry root/stem transcriptome and a region for
chromosome 6 in tomato and potato reference genomes
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Fig. 6 Association analysis Q-Q Plot for severity and AUDPC variables. Q-Q plots showing the ratio of the observed p-values (black dots) compared
to the expected p-value distribution (red lines) for each genome for (a) severity, and (b) AUDPC

Table 5 Summary of association analysis for the severity variable

Species SNP Gene where SNP is located Chromosome Position MAF Before Box-cox
transformation

After Box-cox
transformation

p-value FDR Adjusted p-value FDR Adjusted

p-value p-value

Tomato S8_62073300a Solyc08g081990.2 8 62,073,300 0.4643 0.0016 0.7129 0.0020 0.7631

S12_46594754 Solyc12g049500.1 12 46,594,754 0.0408 0.0021 0.7129 0.0034 0.7631

S5_61444687 Solyc05g051900.2 5 61,444,687 0.2347 0.0028 0.7129 0.0035 0.7631

S2_42554381 Solyc02g084920.2 2 42,554,381 0.2143 0.0036 0.7129 0.0037 0.7631

S2_42554396 42,554,396 0.2143 0.0036 0.7129 0.0037 0.7631

S2_42554398 42,554,398 0.2143 0.0036 0.7129 0.0037 0.7631

S5_63359509 Solyc05g054260.2 5 63,359,509 0.0663 0.0024 0.7129 0.0041 0.7631

S7_869940 Solyc07g006030.2 7 869,940 0.4694 0.0048 0.7129 0.0046 0.7631

S7_869967 869,967 0.4694 0.0048 0.7129 0.0046 0.7631

S9_65753970 Solyc09g091070.1 9 65,753,970 0.2347 0.0051 0.7129 0.0052 0.7631

S2_14016967 Solyc02g021620.2 2 14,016,967 0.0867 0.0039 0.7129 0.0053 0.7631

Potato S5_1237068 PGSC0003DMG400007522 5 1,237,068 0.0455 0.0008 0.8937 0.0023 0.9484

S5_58756015 PGSC0003DMG400023316 58,756,015 0.0657 0.0012 0.8937 0.0027 0.9484

S8_42535013 PGSC0003DMG400005498 8 42,535,013 0.4646 0.0021 0.8937 0.0029 0.9484

S8_42534983 42,534,983 0.4646 0.0021 0.8937 0.0029 0.9484

S9_49247242 PGSC0003DMG400037435 9 49,247,242 0.2323 0.0052 0.9096 0.0049 0.9484

S9_49247281 49,247,281 0.2323 0.0052 0.9096 0.0049 0.9484
aSignificant associated SNP marker showed for severity and AUDPC analyses
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WD-40 repeats which are involved in protein–protein
interactions and with functional roles in signal transduc-
tion, regulation of transcription to cell cycle control and
hypersensitive response in the defense of plants against
pathogen attack [69]. The second SNP mapped to the
gene Solyc12g049500.1 that possesses the legume lectin
beta domain, probably involved in the protection against
pathogens by producing lipoxygenase (LOX) that cata-
lyzes dioxygenation reactions of polyunsaturated fatty
acids (PUFAs) and the secondary conversion of hydro-
peroxy lipids according to Roopashree et al. [70]. LOX
proteins also contribute to plant growth and develop-
ment, maturation, senescence and trigger metabolic

response to pathogen attack [71, 72]. The third SNP
mapped to Solyc05g051900.2 gene located on chromo-
some 5 that is related with proteins of the Major Facili-
tator Superfamily (MFS). This superfamily of proteins
represents the largest known group of active secondary
carriers transporting a diverse range of small solutes
across membranes and obtaining the energy by chemios-
motic gradients. According to Peng et al. [73], the trans-
porters related to MFS play critical roles in plant defense
against pathogen infection by exporting toxins outside
the cell to reduce their accumulation. Three additional
SNP markers were located on chromosome 2 on
Solyc02g084920.2 gene that is related with a proteasome

Table 6 Summary of association analysis for the AUDPC variable

Species SNP Gene where SNP is located Chromosome Position MAF Before box-cox
transformation

After box-cox
transformation

p-value FDR adjusted p-value FDR adjusted

p-value p-value

Tomato S9_65685191 Solyc09g090940.2 9 65,685,191 0.4898 0.0011 0.9616 0.0015 0.9977

S12_35821264 Solyc12g038490.1 12 35,821,264 0.4541 0.0059 0.9616 0.0024 0.9977

S8_62073300a Solyc08g081990.2 8 62,073,300 0.4643 0.0096 0.9616 0.0058 0.9977

S8_45545340 Solyc08g061260.2 8 45,545,340 0.3878 0.0101 0.9616 0.0079 0.9977

S9_67526887 Solyc09g098450.2 9 67,526,887 0.3929 0.0066 0.9616 0.0090 0.9977

S11_51389456 Solyc11g069690.1 11 51,389,456 0.0561 0.0056 0.9616 0.0097 0.9977

Potato S9_49077916 PGSC0003DMG400046263 9 49,077,916 0.4899 0.0011 0.9493 0.0015 0.9498

S12_35550547 Not near know genes 12 35,550,547 0.4546 0.0063 0.9493 0.0026 0.9498

S3_37927302 3 37,927,302 0.3030 0.0058 0.9493 0.0032 0.9498

S8_42535013 PGSC0003DMG400005498 8 42,535,013 0.4647 0.0091 0.9493 0.0055 0.9498

S8_42534983 8 42,534,983 0.4647 0.0091 0.9493 0.0055 0.9498

S2_52227231 PGSC0003DMG400042623 2 52,227,231 0.0202 0.0028 0.9493 0.0056 0.9498
aSignificant associated SNP marker showed for severity and AUDPC analyses
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Fig. 7 Manhattan plots of marker-trait associations for F. oxysporum resistance response. All -Log10 (P) > 2, observed for a data set were pooled
over a GWA plot. a Seventeen SNPs on nine chromosomes were observed for the severity variable for both reference genomes. b Twelve SNPs
were observed for AUDPC on 9 chromosomes for both reference genomes. The SNP markers after the FDR correction are shown by red arrows
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subunit beta type. Suty et al. [74] suggest that plant
defense genes are related to proteasome subunits which
translate elicitor signals that lead to the establishment of
a Systemic Acquired Resistance (SAR) against pathogen
attack. More recently García-Cano et al. [75], shows that
specifically, in plants, the ubiquitin/26S proteasome sys-
tem (UPS) regulates protein degradation and contributes
significantly to development of a wide range of pro-
cesses, including immune response, development and
programmed cell death.
The remaining five SNPs were not specifically related

to pathogen defense/resistance genes that may suggest
new roles in defense for homologous gene regions in
cape gooseberry or no roles in defense/resistance at all.
One mapped on chromosome 5 at the Solyc05g054260.2
gene which has a kinesin motor activity, responsible for
transport into the cell [76]. Two mapped to chromo-
some 7 at the gene Solyc07g006030.2 that is related with
the protein TIF31 responsible for protein-protein inter-
actions [77]. However, an study conducted by Panthee,
2010 [13], reported that several genes related to disease
resistance to F. oxysporum f. sp lycopersici are located on
chromosomes 7 and 11 of the tomato genome. Another
SNP marker mapped to the Solyc09g091070.1 gene on
chromosome 9, that has a function in malate dehydro-
genase processes involved in plant photosynthesis and
C3 and C4 in the Calvin cycle [78]; finally, one marker
mapped to the Solyc02g021620.2 gene located in the
chromosome 2 which is related to the transporter super-
family of Na/K/Cl that facilitates the transport of so-
dium, potassium and chloride ions from the extracellular
space into the interior cell [79].
Using the potato genome as reference, six SNPs associ-

ated to the severity variable with p-value ≤ 0.005 (Table 5)
mapped to three chromosomes. One SNP marker was lo-
cated within the gene PGSC0003DMG400007522 on
chromosome 5 involved in defense/resistance to patho-
gens; this gene is related to the F-box proteins that have a
critical role in the control of the degradation of cellular
proteins [80]. Several F-box genes have been characterized
and regulate crucially important and diverse physiological
processes, such as hormonal response, embryogenesis,
seed germination, seedling development, floral organogen-
esis, lateral root formation, leaf senescence, pathogen
resistance, and abiotic stress responses [81]. One of the
proteins of this family known as COI1 is involved in regu-
lating jasmonate, hormone used by plants as a signal for
pathogen defense processes and is also part of the E3 ubi-
quitin ligase enzyme, whose function is to make a label to
send signals to the proteasome to induce the degradation
of the ubiquitin protein, important for defense mecha-
nisms processes [82, 83], while SON1 and CPR30 play key
roles as negative regulators in plant defense responses to
pathogens [84, 85].

The remaining five SNPs were mapped to regions not
specifically related to pathogen defense/resistance genes.
One of the SNPs mapped to a region on chromosome 5
very close to the gene PGSC0003DMG400023316 re-
ported as a conserved gene but with unknown function.
Other associated markers were not within any candidate
gene identified so far, although they were near genes
PGSC0003DMG400005498 and PGSC0003DMG400037
435 of chromosomes 8 and 9 respectively, with unknown
function.
For the AUDPC variable which is related with the time

to the onset of disease symptoms, six SNPs were associ-
ated with a p-value ≤ 0.01 (Table 6) and mapped to four
tomato chromosomes at genes involved in defense/re-
sistance against pathogens. One of the SNPs was located
at the position 62073300 of chromosome 8 within the
gene Solyc08g081990.2, and was also associated with the
severity variable. This gene was related to the WD-40 re-
peats important in resistance to pathogens as explained
above. This result suggests that there is a possible pleio-
tropic effect of this marker associated with the two re-
sponse variables evaluated for resistance to F. oxysporum.
The second marker was located at the position 45545340
of chromosome 8 at the gene Solyc08g061260.2 which is
related to a large family of transmembrane receptor pro-
teins called G protein-coupled receptors (GPCRs) in fungi
and metazoans, which receive the signal and are translated
through heterotrimeric G proteins. According to Liu et al.
[86], the presence of GPCRs in plants is yet to be studied
thoroughly; however, heterotrimeric G proteins are in-
volved in biological processes including immunity in
plants and Gβ subunits of G proteins (β- Arabidopsis G
protein subunity1 AGβ1) and Gγs (γ-sununity1 Arabidop-
sis G protein AGG1, AGG2, AGG3) are associated with
resistance to necrotrophic pathogens such as F. oxy-
sporum, Botrytis cinerea and Alternaria brassicicola [87].
A recent review by Nitta et al. [88] shows the importance
of G proteins in plant defense and responses to environ-
mental stresses.
The third SNP was located at the gene Solyc09g098450.2

of chromosome 9 related to lipase class 3 family protein
involved in plant stress responses. The alpha/beta hydro-
lase family contains domains of lipase class 3 and has
three proteins (PAD4, EDS1 and SAG101) forming a sys-
temic signal that functions as the main barrier against
pathogens [89–91]. The fourth marker was located at
position 51389456 on chromosome 11 in the gene
Solyc11g069690.1 that relates to proteins called thioredox-
ins, which act as antioxidants, facilitating the reduction of
other proteins through thiol-disulfide exchange cysteine;
also maintaining the redox homeostasis. According to
Vieira Dos Santos & King [92], thioredoxin plays an im-
portant role in oxidative stress tolerance in plants. They
are involved in oxidative damage avoidance by reducing
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the power of reductases detoxifying lipid hydroperoxides
or repairing oxidized proteins. It is also believed that
thioredoxin is involved in defense mechanisms for the
Tobacco mosaic virus and the Cucumber mosaic virus.
Sun et al. [93], determined that a protein based on thiore-
doxin (NtTRXh3) is overexpressed, reduces multiplication
and pathogenicity in plants. Also the overexpression of the
protein enhanced the resistance to oxidative stress [93].
The remaining two SNPs were related specifically to

defense/resistance genes in tomato. The first of them is
located at the Solyc09g090940.2 gene on chromosome 9
whose function is to encode the nuclear transport factor
2 (NTF2). The last marker was located on chromosome
11 at the gene Solyc11g069690.1 with unknown function.
Using the potato genome as reference, six SNPs were
found associated with p-value ≤ 0.006 based on the
AUDPC variable (Table 6) and mapped to five different
chromosomes; however, none was within or next to
genes with known function.
Further research is focusing on verifying the differential

expression of these candidate genes by quantitative PCR
in cape gooseberry. Subsequently, the genes that correlate
with the resistance response by qPCR analysis will be used
to create functional variants using genetic transformation
or gene silencing to validate if these genes confer resist-
ance to vascular wilt disease in cape gooseberry.

Conclusions
The present work represents the first association mapping
study in cape gooseberry. We found high heterozygosity
and population structure in the diversity panel used for as-
sociation and identified promising accessions to use in
breeding for resistance against F. oxysporum. We also iden-
tified several SNPs associated with two resistance response
phenotype variables that mapped to genes directly or indir-
ectly related to pathogen resistance/defense responses
involved in protein–protein interactions, signaling path-
ways, oxidative stress tolerance and hypersensitive response
to pathogen attack. Additionally, some SNPs were found on
chromosomes 7 and 11 of tomato, where QTLs associated
with disease resistance have been reported previously, thus,
these QTLs need validation of the homologous regions in
the cape gooseberry genome. The work provides new
knowledge on candidate genes involved in the P. peruviana
– F. oxysporum pathosystem as a foundation for further
validation in marker-assisted selection for breeding.
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