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Abstract

Background: Hepatitis C virus (HCV) is a rapidly evolving RNA virus that has been classified into seven genotypes.
All HCV genotypes cause chronic hepatitis, which ultimately leads to liver diseases such as cirrhosis. The genotypes
are unevenly distributed across the globe, with genotypes 1 and 3 being the most prevalent. Until recently,
molecular epidemiological studies of HCV evolution within the host and at the population level have been limited
to the analyses of partial viral genome segments, as it has been technically challenging to amplify and sequence
the full-length of the 9.6 kb HCV genome. Although recent improvements have been made in full genome
sequencing methodologies, these protocols are still either limited to a specific genotype or cost-inefficient.

Results: In this study we describe a genotype-specific protocol for the amplification and sequencing of the near-
full length genome of all six major HCV genotypes. We applied this protocol to 122 HCV positive clinical samples,
and had a successful genome amplification rate of 90 %, when the viral load was greater than 15,000 IU/ml. The
assay was shown to have a detection limit of 1-3 cDNA copies per reaction. The method was tested with both
[llumina and PacBio single molecule, real-time (SMRT) sequencing technologies. lllumina sequencing resulted in
deep coverage and allowed detection of rare variants as well as HCV co-infection with multiple genotypes. The
application of the method with PacBio RS resulted in sequence reads greater than 9 kb that covered the near full-
length HCV amplicon in a single read and enabled analysis of the near full-length quasispecies.

Conclusions: The protocol described herein can be utilised for rapid amplification and sequencing of the near-full
length HCV genome in a cost efficient manner suitable for a wide range of applications.

Background

Hepatitis C virus (HCV) is a significant human pathogen
affecting nearly 3 % of the world’s population, and is a
leading cause of chronic liver diseases including cirrhosis
and hepatocellular carcinoma [1]. HCV is a member of
the Flaviviridae family and has a single stranded RNA
genome that is 9.6 kb in length with positive polarity.
The genome contains a single open-reading frame and
encodes a precursor polyprotein of approximately 3010
amino acid residues. Within an infected cell, this poly-
protein is processed by cellular and host proteases to
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yield ten structural (core, E1 and E2) and non-structural
(p7, NS2, NS3, NS4A, NS4B, NS5A and NS5B) proteins
[2]. The viral RNA-dependent RNA polymerase, or
NS5B, is a key enzyme in the HCV replication complex
within an infected cell, and is responsible for the pro-
duction of nascent genomes for packaging into new
virions. The polymerase is highly error-prone [3], a fea-
ture common to many RNA viruses, and as a result
HCV exists as seven distinct genotypes (GT1-7), which
differ by up to 35 % at the nucleotide level [4]. Within
each genotype, viruses have been further classified into
subtypes (1a, 1b, 1c, etc.) with about 20 % inter-subtype
nucleotide divergence [5]. The genotypes are unevenly
distributed across the globe, with genotypes 1 and 3
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being the most prevalent [6], and genotype 7 being the
rarest having only been detected once in Canada from a
Central African immigrant [7].

With the advent of direct-acting antivirals (DAA) for
the treatment of HCV infections, there is a need to
monitor the emergence of resistance-associated variants
before and after treatment. While testing specific regions
of the HCV genome using both consensus and next gen-
eration sequencing (NGS) has enabled such monitoring
in DAA therapies, including agents targeting NS3, NS5A
and NS5B [8, 9], the emerging DAA combination regi-
mens emphasise the necessity to simultaneously screen
multiple genes of the viral genome in a simple, cost-
effective manner. Furthermore, there is a need to detect
whether individual viral variants carry multiple polymor-
phisms conferring resistance against all DAAs in a com-
bination regimen, therefore increasing the chances of
viral persistence against such therapies. In the past, such
analysis was possible only by cloning and consensus se-
quencing. However, as the NGS technologies continue
to improve read length (20 kb with PacBio RS and
300 bp paired-end for Illumina) the range for covariant
studies continues to increase.

In addition to monitoring viral variants associated with
drug resistance, methods for the molecular amplification
and sequencing of HCV RNA have also been instrumental
in characterising HCV infections, including studies seek-
ing to understand virus transmission and within-host evo-
lution [10-12]. Previously, these methods focused on
specific regions of the HCV genome, or analysed the en-
tire genome in separate fragments, which is laborious,
cost-prohibitive and leads to analysis issues, including un-
even coverage due to amplicon pooling, artificial recombi-
nants during genome assemby and multiple PCR primer
bias. Therefore, there is a need for sensitive methods that
can amplify the entire viral genome from all GTs in clin-
ical samples. A few reports have described the amplifica-
tion of near full-length HCV genomes, however these
were either limited by the sensitivity of the methodology
or coverage of all major genotypes [13-15]. Recently,
RNA sequencing technology has been applied to sequence
HCYV in a non-specific manner [15]. While these methods
offer the advantage of reduced primer bias and reduced
upstream labour, they require increased labour in data
analysis, have reduced sensitivity and increased overall
cost per sample [15].

Here, we describe a simple method which allows sensi-
tive amplification of near full-length HCV genomes from
GT 1 to 6. Using this method, 90 % (1 =121) of a set of
HCV-infected clinical samples were successfully ampli-
fied and sequenced using an NGS approach. As a proof
of principle, the method was also applied to amplify and
sequence near full-length HCV genomes from two sub-
jects co-infected with multiple genotypes. The ability to
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generate near full-length quasispecies sequence was
tested with one amplicon using the PacBio RS II
platform.

Methods

Cohort

Stored plasma samples positive for HCV GT1, 2, 3 and
6 were made available from the Hepatitis C Incidence
and Transmission Study in prisons and community co-
hort (HITS), which is a prospective cohort of HCV sero-
negative and HCV RNA negative subjects in New South
Wales, Australia [16]. Stored plasma samples positive for
HCV GT 4 and 5 were from Academisch Medisch Cen-
trum (AMC) patients identified with HCV infection. In
all subjects, HCV infection was confirmed by detection
of HCV-specific antibody and RNA. In the HITS cohort,
HCYV antibody testing was performed using the qualita-
tive Abbott ARCHITECT anti-HCV chemiluminescent
microparticle immunoassay (Abbott Diagnostics, Abbott
Park, IL, USA). For the AMC patients HCV antibody
testing was performed using the AxSYM HCV 3.0 ser-
ology test (Abbott Laboratories, Abbott Park, IL, USA).
For all subjects quantitative HCV RNA detection was
performed with the COBAS AmpliPrep/COBAS Tagq-
Man HCV assay (Roche, Branchburg, NJ, USA; lower
limit of detection 15 IU/ml).

Ethics statement

For the HITS samples ethical approvals were obtained
from Human Research Ethics Committees of Justice
Health (reference number GEN 31/05), New South
Woales Department of Corrective Services (reference
number 05/0884), and the University of New South
Wales (reference numbers 05094, 08081), all located in
Sydney, Australia. Written informed consent was ob-
tained from the participants. For the Dutch samples, the
study was performed according to the Dutch FEDERA
code of conduct for responsible use of human tissue and
medical research 2011.

Genotyping and detection of multiple infection

Genotype determination and detection of multiple HCV
genotype infection was performed on a region of the
core as previously described [17].

Primer design

Full-length genome sequences representing each of the
six HCV genotypes were downloaded from GenBank
and used for primer design. This included 116, 28, 50,
66, 11 and 7 different strains for GTs 1-6 respectively.
To choose primer binding sites we manually scanned
the 3" end of the genome for regions >20 bp with a
minimum of 90 % identity. To improve sequence iden-
tity of the primer with the viral variants, degenerates
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bases were inserted where needed. To improve binding
efficiency degenerate bases were not added to the last 3
nucleotides at the 3" end of the primer and where pos-
sible primers had C’s or G’s at the 3" base.

JFH-1 RNA T7 transcripts

T7 RNA transcripts for full-length cell culture derived
HCYV genotype 2a variant, JFH-1, were generated as pre-
viously described [18].

RNA concentration by ultracentrifugation

For concentration of HCV from plasma samples, 0.5
1 ml of plasma was thawed and centrifuged at 1,500 g
for 10 min at 4 °C. Supernatants were transferred and
centrifuged at 120,000 g for 1.5 h at 4 °C after which the
pellet was re-suspended in 140 ul of 1x PBS. Viral RNA
was then extracted from the sample as outlined below.

RNA extraction

Viral RNA was extracted from 140 upl of plasma using
the QIAmp Viral RNA kit according to manufacturers’
instructions (Qiagen, Chadstone Centre, Vic, Australia),
with the following modifications: Ambion® linear
acrylamide (5 pg/extraction, Life Technologies) was used
instead of the carrier RNA provided in the kit; sample
lysis was performed by inverting tubes instead of vortex-
ing; and the speed of centrifugation was reduced to
3,421 g for all steps except the final wash which was car-
ried out at 6,082 g. Finally, RNA was eluted in 50 pl of
RNA Storage Solution (1 mM sodium citrate pH 6.4,
Life Technologies) and stored at —80 °C.

Reverse transcription

Near full-length HCV ¢DNA was synthesized from viral
RNA using the SuperScript III (SIII) First-Strand Synthesis

Table 1 Primers for near full-length HCV amplification
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System (Life Technologies) and a pan-genotype primer
(oligo dA,; Table 1). Before commencing reverse-
transcription (RT), 7 pl of RNA, 1 pl of 10 pM primer and
1 ul of 10 mM dNTPs (Promega, Alexandria, NSW,
Australia) were mixed and incubated in a thermocycler
(T100™ BioRad, Gladesville, NSW, Australia) at 65 °C for
5 mins and then placed immediately on ice for 1 min. RT
was then initiated with the addition of RT reaction mix to
a 20 pl final volume at a final concentration 1x RT buffer,
5 mM MgCl,, 1 M Betaine (Sigma, Sydney, NSW,
Australia), 1 pl of RNAseOUT (Life Technologies) and 9
U of SIII RT. Cycling conditions were 49 °C for 65 min,
followed by 85 °C for 5 min. Two units of RNaseH (Life
Technologies) were then added to each reaction before a
final incubation at 37 °C for 20 mins. cDNA samples were
held at 12 °C before proceeding to the PCR reaction.

For optimisation experiments, the yield of near full-
length amplicons was compared between two different
SuperScript enzymes II and III (as above) (Invitrogen).
For the SII enzyme the RT reaction was performed as
described above, except the SuperScript II buffer and
SuperScript II enzyme was substituted into the assay.
JFH-1 RNA was used as template.

Comparison of different polymerase enzymes for efficient
near full-length HCV amplification

Using full-length JFH-1 cDNA as template, transcribed
as described above, two different polymerase combina-
tions were tested for their efficiency in amplifying near
full-length genome and a 4 kb fragment from the 5’ end
of the HCV genome in a single round. Primers KY80
and vird5a (Table 1) were used for near full-length amp-
lification, while vir45a was replaced by hep344 [11] for
the 4 kb fragment. The two enzymes tested in parallel
were KlenTaq LA (Clontech) and KlenTaq DNA

Region Round  Sense  GT Primer name  Sequence (5'-3')° Genome binding positionb Published
3'UTR RT - All vir7 AAAAAAAAAAAAAAAAAAAA 9418-9486 [13]
5'UTR-NS5B  Outer  + All KY80 GCAGAAAGCGTCTAGCCATGGCGT 68-91 (28]

- 1 Vir45a CCAGCGGGGYCGGGCVYGAGACA 9262-9314 Unpublished

- 2 hep323 GGAGTGTASCTARTGTGTGCCGCT 9378-9401 [11]

- 3 hep234b TGGAGTGTTATCYTACCAGC 9378-9397 (1]

- 4 GEN4.R1 TCGGGCAYGRGACAYGCTGTGATAAATG 9278-9305 (1]

- 5 GEN5R1 TCGGGCACGGGACATGCTGTGATAAATG 9278-9305 Unpublished

- 6 Vir65 CGRGCCYGGGACACGCTGTG 9285-9304 Unpublished
5'UTR-NS5B  Inner + All hep21b GAGTGTYGTRCAGCCTCCAGG 98-118 [20]

- 1236  hep29%6 CGGGCAYGAGACASGCTGTGATAWATGTC  9276-9304 [11]

- 4 GEN4.R2 TCTCCCCCGCCRGCGCCYACCGTRAACC 9250-9277 Unpublished

- 5 GEN5.R2 TCCCCCCCGCCRGCGCCAACGGTRAACC 9250-9277 Unpublished

For degenerate primers,B=CorGorT,H=AorCorT,M=Aor( N=AorCorGorT,R=AorG,S=CorG,W=AorT,V=AorCorG D=AorGorT,Y=CorT
PGenome binding position with reference to HCV GT1a strain, H77, GenBank accession AF009606
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polymerase (AB Peptides, St. Louis, MO) that was used
at a ratio of 2 to 1 with pfu DNA polymerase (Strata-
gene, La Jolle, CA). The reaction conditions of the Klen-
Taq LA are detailed in the next paragraph. The reaction
conditions for the KlenTaq/pfu mix were performed as
described by Zhang et al. [13] with the exception that
the PCR cycling conditions were the same as those per-
formed with the KlenTaq LA reaction, as described
below.

PCR of near full-length HCV genome

First round PCR was performed using 5 pl of cDNA in a
50 pl PCR reaction containing 1x KlenTaq LA buffer
(Clontech), 1.2 M betaine, 200 uM of each dNTP,
0.2 uM of the forward primer KY80, 0.2 uM of the geno-
type specific reverse primer (Table 1) and 1U of KlenTaq
LA enzyme. PCR was performed at 94 °C for 2 min,
10 cycles at 94 °C for 30 s, 55 °C for 20 s, and 68 °C for
11 min, followed by an additional 20-25 cycles at 94 °C
for 30 s, 57 °C for 20 s, and 68 °C for 10:30 min (+20 s/
cycle), with a final extension for 5 min at 68 °C.

The nested round of PCR was performed with 5 pl of
first round product in a 50 pl reaction as described for
the first round, except 0.2 puM of hep2lb was used as
the forward primer and 0.2 pM of a nested genotype-
specific reverse primer (Table 1). PCR was performed at
94 °C for 2 min, 10 cycles at 94 °C for 30 s, 58 °C for
20 s, and 68 °C for 10:30 min, followed by an additional
20-25 cycles at 94 °C for 30 s, 60 °C for 20 s, and 68 °C
for 10:30 min (+20 s/cycle), and then followed by a final
extension for 5 min at 68 °C.

Following positive identification of a band of the correct
size, which was approximately 9206 bp (according to
HCV GTla strain H77, GenBank accession AF009606)
(Additional file 1: Figure S1), the products were purified
using the Agencourt AMPure XP beads (Beckman
Coulter, Lane Cove, NSW, Australia) according to the
manufacturers instructions, eluted in nuclease-free water
and stored at -80C.

Real-time nested PCR

HCV RNA was quantified by real-time PCR using a Bio-
Rad MyiQ Single-Color real-time PCR detection system
(Bio-Rad, CA) as described previously [19] with the ex-
ception that primers hep21b (Table 1) and hep22 were
used [20] and near full-length ¢cDNA generated as de-
scribed above, was used as template. PCR band inten-
sities were also quantified by densitometry using Image]
(version 1.46r).

lllumina sequencing

Libraries were prepared from the amplicon using either
the Nextera XT or TruSeq Nano DNA Library Prep Kits
(Ilumina) before sequencing using a MiSeq Benchtop
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Sequencer generating 2 x 300 bp length paired-end reads
(v3 kit). NGS reads were aligned using Bowtie 2 [21] im-
plemented in Geneious package version 8 [22]. Reads
were aligned against a panel of full-length reference ge-
nomes that were obtained from GenBank to represent
GTs 1-7 (Fig. 1), and consensus sequences were gener-
ated from the aligned contigs. Mixed infection was iden-
tified by the generation of multiple contigs against two
or more reference genomes. In these situations, a con-
sensus genome sequence was generated for each contig.

PacBio sequencing

One of the full-length amplicons, RIMM, was selected
for generating >9 kb sequence reads with PacBio SMRT
sequencing. Unique PacBio barcodes were ligated to the
amplicon and approximately 0.8 fmoles of the product
was then sequenced via 240-min movies on one SMRT
Cell using P6-C4 chemistry on a PacBio RS II sequencer
(Menlo Park, Pacific Biosciences, California, USA). Gen-
ome filtering, assembly and reassembly were performed
using tools within SMRT Analysis v2.3. SMRTbell adapter
sequences were removed and circular consensus sequence
(CCS) reads with a minimum of 2 full passes of the full
amplicon (ie. >18 kb) were selected for further analysis.
These reads were de novo assembled using VICUNA [23].

Haplotype reconstruction of near full-length HCV quasis-
pecies using PacBio SMRT sequencing

PacBio RS II reads were analysed using haplotype recon-
struction analysis, as previously performed [11]. Briefly,
haplotype analysis was performed to correct for random
technical errors using the software ShoRAH [24]. Only
unique haplotypes and their estimated frequency of oc-
currence within the quasispecies population were re-
ported. Indels identified in homopolymeric regions were
manually replaced with the consensus sequence.

Phylogenetic analysis

The 39 Illumina generated consensus genomes from the
37 clinical samples and the cell culture derived test sam-
ple JFH-1 were aligned against representative subtypes
from the GT1 to 7 reference genomes with the align-
ment tool MUSCLE, implemented in Geneious package
version 8 [22]. Bootstrapped trees (500 data sets) were
constructed using the Neighbour-joining method, also
implemented in Geneious package version 8 [22]. Phylo-
genetic analysis with the PacBio generated haplotypes
was performed as described above.

Results and discussion

Primer design

Full-length genome alignments representing all six HCV
GTs were used to assess previously published and novel
primer sites for pan-genotypic potential. The previously
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Fig. 1 Phylogenetic analysis of the near full-length HCV genomes from 37 clinical samples. The phylogenetic tree was generated using
the Neighbour-Joining method implemented in Geneious package version 8 [22]. Reference genomes are italicised with their subtype listed first,
followed by their GenBank accession number. Sequences that belonged to clinical samples with known mixed infections are underlined (GT1a/3a in
HITP300345, and GT1a/2b in HITP300315). Branches are colored according to HCV genotype. The branch lengths are proportional to the evolutionary
distance between sequences and the distance scale, in nucleotide substitutions per position, is shown

published oligo dA, primer was selected for the RT step  outer (KY80) and nested (hep21b) primers, but
due to its pan-genotypic quality [13]. It was possible to  genotype-specific primers were designed for the reverse
identify pan-genotypic primers for both the forward primer pairs, outer and nested (Table 1).
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RNA extraction optimisation

For the RNA extraction, the QIAmp viral RNA mini
kit was used but several modifications were made to
the manufacturer’s protocol. These modifications are
outlined in detail in the methods section. In brief,
the carrier RNA was substituted with 5 pg of linear
acrylamide, as previously recommended for other
RNA viruses, HIV, RSV and WNV [25]. Elution of
purified RNA in RNA Storage Solution was essential
for optimal results, particularly after long-term stor-
age and repeated freeze-thaw cycles. Successful amp-
lification of near full-length genomes from stored
RNA samples was reproducible six months after ini-
tial extraction. The centrifugation speeds were also
reduced as this was shown to reduce shearing of
RNA. Also as successful amplification of the full gen-
ome requires intact genomes, mixing of sample by
pipetting and vortexing was limited.

cDNA optimisation

As part of the optimisation process for cDNA gener-
ation, RT enzymes, reaction conditions and thermocy-
cling conditions were examined using JFH-1 RNA as
template and near full-length amplicon yield as a meas-
ure of success. For the RT enzyme analysis, two RT en-
zymes, SuperScript II and III were compared, with the
SIII enzyme generating a 2.6-fold higher yield. For the
RT reaction conditions, it has been previously shown
that the addition of Betaine at 1 M concentration is opti-
mal in similar assay conditions [26]. Therefore, we tested
the effect of Betaine at a final concentration of 1 M on
amplicon yield. The cDNA reactions containing 1 M
Betaine generated an amplicon with a 9.5-fold increase
in yield compared to ¢cDNA conditions with no Betaine
(data not shown). In regard to thermocycling conditions,
previous reports had indicated optimal cDNA generation
of full-length HCV with an extension time of 2.5 h with
varying extension temperatures [13]. In our study, opti-
mal results were obtained with a constant extension
temperature of 49 °C for 65 mins. It was also noted that
more consistent results were obtained when the PCR
proceeded immediately after the RT step had finished.
Storage of cDNA at either 20 °C or -80 °C greatly re-
duced the success rate in generating near full-length
amplicons.

PCR optimisation

For PCR optimisation, two different KlenTaq mixes were
compared. The polymerase combination of KlenTaq and
Pfis at a ratio of 2 to 1, as outlined by Zhang et al. [13],
was compared using either the thermocyling conditions
published by Zhang et al. or as recommended for the other
commercial KlenTaq mix, KlenTaqg LA (see Methods).
Both of these conditions were used for the KlenTaq/Pfu
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mix and compared directly to the commercial polymerase
mix of KlenTaq LA (Clontech) that only used the condi-
tions recommended by Clontech. The three different en-
zyme/assay conditions were tested for amplification
efficiency using primer sets that would either generate a
9 kb or 4 kb fragment. No amplicons for either the 4 or
9 kb amplicon were generated following the reaction and
cycling conditions nominated by Zhang et al. [13]. For the
remaining two enzyme/assay conditions, the yield of the
~9 kb fragment was increased by 5.5-fold with the com-
mercial mix, KlenTaq LA compared to the KlenTaq/Pfu
mix run with the same cycling conditions (data not
shown). A 4 kb region covering the 5" end of the genome
was also amplified with both polymerase mixes using
Clontech’s conditions and only a slight increase, 1.3-fold,
in amplicon yield of the 4 kb fragment was observed for
the KlenTaq LA polymerase mix. Overall, these results
demonstrated the superior performance of the KlenTaq
LA mix for the near full-length amplicon, and the kit was
adopted for further optimisation.

Generally, the protocol provided with the KlenTaq LA
enzyme from Clontech was found to be optimal with the
only modification being the addition of Betaine. After
the addition of 5 pl of cDNA to the PCR assay the final
Betaine concentration was 1.3 M, which is the recom-
mended concentration for the KlenTaq enzyme.

The efficiency of amplicon generation, in terms of
yield of amplicon and reduced non-specific amplification
was improved if the RT and PCR primers were aliquoted
into small batches with no subsequent freeze/thaw cycles
before use. Freeze/thaw rounds of dNTPs did not appear
to affect the generation of amplicons.

Detection limit

To determine the detection limit of the nested PCR
assay, a representative cDNA sample for GT1, 2 and 3
was generated. The copy number of near full-length
c¢DNA transcripts was determined by real-time PCR tar-
geting the 5'UTR of the genome. The ¢cDNA samples
were then serially diluted and the limit of detection
assessed. The assay had a detection limit of 1-3 copies
of HCV near full-length ¢cDNA per reaction. For this
assay, we calculated the detection limit using near full-
length ¢cDNA transcripts. This was chosen as there are
many independent variables that impact the generation
of full-length ¢cDNA transcripts from a HCV positive
plasma sample [27]. For instance, plasma collection pro-
tocols, date of collection and storage conditions - par-
ticularly in regards to time delays post collection and
freeze/thaw occurrence can result in RNA degradation,
and subsequently impact the generation of full-length
¢DNA transcripts. Traditionally, methods used to deter-
mine viral RNA genome copies target a small region of
the genome and are resilient to RNA degradation and
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therefore not a good indicator of the integrity of full
length viral RNA genomes.

Robustness of near full-length amplification

To test the robustness of the assay on clinical samples,
122 HCV samples with known genotypes were tested for
near full-length nested RT-PCR amplification. The viral
loads ranged from 317 to 1.59 x 107 IU/ml. The lowest
viral load that was able to generate a near full-length
amplicon was 14,853 IU/ml. All 27 samples with a viral
load below 14,800 IU/ml failed to amplify (Fig. 2). An-
other 9 samples with viral loads above 15,000 IU/ml also
failed to amplify. Therefore, sensitivity testing indicated
that the PCR was robust with 90.5 % of the samples being
successfully amplified with a viral load >14,800 IU/ml
(equivalent to 39,960 copies/ml) (Fig. 2). Analysis of the
data stratified by genotype, revealed that GT2b had the
lowest success rate of 75.0 %, followed by GT3 and GT1
at 87.1 % and 90.9 %, respectively (Table 2). All remaining
genotype samples amplified with a 100 % success rate, al-
though it should be noted that due to these other geno-
types being less common in our cohorts their
representation in the sample set was lower (Table 2). A
representative set of amplicons (n = 37) for each genotype
were sequenced on the Illumina MiSeq platform. Phylo-
genetic analysis was used to confirm the success of the
assay in amplifying GTs 1-6 (Fig. 1).

Ultracentrifugation

For samples with low viral loads (less than 15,000 IU/ml)
sensitivity of detection could be improved by concentrat-
ing the virus from the plasma by ultracentrifugation. In

10%y
i °
107.' 00O
3 %000, 0000
E oo A
T 6] A
g 10°
5 E
T 10%
S 3
© 1-
§ 104! 14,800 1U/ml
10°§

1 2,
v T T
& &
Full Genome Amplification

Fig. 2 Sensitivity of the near full-length assay tested on HCV positive
clinical samples. The success rate of amplifying near-full length genomes
in relation to viral load is shown for 122 samples. Eighty-six of the 95
HCV positive samples with a viral load greater than 14,800 IU/ml were
successfully amplified (90.5 % success rate). All 27 samples with a viral
load below 14,800 IU/ml failed to amplify, however, 10 of these samples
were retested following concentration by ultracentrifugation, of which
three (30 %) were successfully amplified (hollow circles)
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Table 2 Near-full genome amplification success rate by genotype

HCV GT Number of samples tested (%)°
Successful Failed
Ta 30 (90.9) 3.0
b 6 (100) 0(0)
2a° 1(100) 0(0)
2b 6 (75) 2(25)
3a 27 (87.1) 4(229)
4a3,dm 11 (100) 0 (0)
5a 4 (100) 0(0)
6a 3 (100) 0(0)

?Only includes samples with viral loads greater than 14,800 IU/ml
PThis was cell cultured derived JFH-1 and was not included in the success rate

this study we selected 10 samples that had detectable
RNA with the real-time PCR assay that targeted a 175 bp
region in the 5'UTR, but could not initially be amplified
with the near full-length assay. For these samples, RNA
was extracted from 1 ml of plasma after ultracentrifu-
gation. Upon retesting, a near full-length amplicon
was generated for 3 of the 10 samples that had previ-
ously failed. While ultracentrifugation of larger sample
volumes improved the sensitivity of near full-length
amplification, we observed that simply increasing the
plasma volume from which virus was extracted with-
out ultracentrifugation did not. We speculate that ei-
ther the additional spin duration, total extraction time
or additional PCR inhibitors from the increased
plasma volume may account for the reduced RNA ex-
traction efficiency when the plasma volume extracted
through the QIAmp column is increased.

Near full-length sequencing on PacBio

To test whether near full-length sequence reads could
be generated from the HCV amplicon, the sample
RIMM was selected for sequencing on the PacBio RS IL
A total of 2,664 reads had a minimum of two full passes
of the 9.2 kb amplicon (>18 kb in length) and were used
for further analysis. The near-full length PacBio reads
were then error corrected via haplotype reconstruction
analysis [11]. This analysis showed 45 distinct variants
with the most common having a frequency of occur-
rence of 11 % (HAP1_0.11, Fig. 3), which was identical
to the consensus genome sequence generated from the
[lumina data.

The sensitivity of PacBio to detect low frequency
mutations was compared to the data generated by Illu-
mina from the same amplicon. Both sequencing plat-
forms detected all 11 SNPs with a frequency greater
than 7 % (data not shown). The PacBio reads after clean-
ing with ShoRAH only detected 4.2 % (3 of a total of 71)
of the SNPs detected with the [llumina platform with a
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Fig. 3 Analysis of the HCV quasispecies utilising near full-length reads with the PacBio RS platform. Individual sequences reads greater than 9 kb
were generated and aligned for an HCV infected individual, RIMM. Panel (a). Highlighter plot (www.hiv.lanl.gov/content/sequence/HIGHLIGHT/
highlighter.html) representing 45 unique haplotypes that were detected from sequence reads. The name of each haplotype shows the frequency
of occurrence within the population (e.g. HAP_0.11). The master sequence on the top of the plot is the consensus genome sequence obtained from the
lllumina sequences. Panel (b). Phylogenetic tree showing the genetic relationship between near-full length quasispecies obtained from PacBio reads

frequency below 7 %. However, it should be noted that
the genome sequence coverage generated by Illumina
was about five-fold higher, with a mean coverage of
11,363 reads/site, respectively and likely accounts for the
discrepancy in calling low frequency events.

Phylogenetic analysis of the near-full length haplotypes
was performed to understand the relationship of the
quasispecies in the acutely infected HCV subject. The
analysis depicted the presence of two distinct sub-
populations that carry most of their diversity in the
structural region of the genome (position 114-2505,
Fig. 3a). This analysis confirms the applicability of this
approach to perform near-full genome quasispecies
analysis.

Multiple infection

Due to the transmission dynamics of HCV, multiple infec-
tions can occur concurrently producing a “co-infection”
with two or more HCV genotypes present at a single time

point. In the cohort used in this study the multiple infec-
tion rate has been previously reported to be as high as
25 % [17]. We therefore selected two known multiple in-
fection samples, a GTla/3a and a GTla/2b sample
(HITP300345 and HITP300315, respectively). We multi-
plexed the reverse primers at equimolar concentrations to
test if both genotypes could be simultaneously amplified
in the same nRT-PCR reaction. To confirm that this was
successful the single amplicon was sequenced on the
[lumina platform and the sequence data aligned against
both the GT reference sequences (Fig. 4). Sequence reads
were successfully mapped to both genotypes from the
same sample. The data for subject HITP300345 is shown
in Fig. 4, where 29.6 % and 70.4 % of sequence reads align-
ing to GT1a and 3a, respectively. Consensus sequences for
both genotypes identified in each of the two subjects,
HITP300345 and HITP300315 were generated and were
clearly shown by phylogenetic analysis to belong to two
separate genotypes (Fig. 1). The potential of this assay to
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Fig. 4 Subject HITSP300345_160412 was identified as being infected with two HCV genotypes (GT), GT1a and GT3a. The HCV near fullHlength amplification
protocol was adapted to amplify both subtypes in the same reaction and the amplicon was submitted for next generation sequencing with the
MiSeq 2 x 300 PE chemistry. Analysis of the aligned reads identified two populations, a GT1a and a GT3a population. The presence of two HCV viral
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be used to quantify mixed infection was not assessed. We
believe that differences in genotype-specific PCR efficiency
due to PCR primer bias and differences in secondary RNA
structure would likely result in a semi-quantitative output.
In order to quantify co-infections, a RT-PCR targeting a
smaller region and with higher sensitivity would be more
reliable [17]. The advantage of this assay is that it de-
scribes a pipeline for a cost efficient method to obtain full-
genome sequences for phylogenetic and SNP analysis
without the need to duplicate PCR assays for multiple ge-
notypes in a single infection.

Conclusions

In this study we have described a robust assay that can
amplify the near full-length genome from all six major
HCV GTs. The method can also be simply adapted to
detect and sequence multiple infection. The ability to
amplify the full genome in a single amplicon as opposed
to multiple fragments reduces upstream cost and labour
for multiple PCR reactions. Furthermore this method
can be easily applied to sequence via multiple platforms,
including Sanger sequencing, single genome amplifica-
tion, short read deep sequencing such as the Illumina
and Roche platforms, or the long read platforms, such as
PacBio. As the sequence read technology continues to
improve, the near-full length sequence data will improve
analyses across an array of virological interests, includ-
ing the ability to perform in-depth within-host evolu-
tionary analysis and also to look at linkage between
emerging antiviral resistant sites.

Availability of supporting data

The GenBank accession numbers for the near-full length
genome Illumina generated consensus nucleotide se-
quences of the samples in Fig. 1 are as follows:

KU871276 to KUS871311,
KJ437342.

KJ437295, KJ437300 and

Additional file

Additional file 1: Figure S1. Successful amplification of near full-length
HCV genomes from multiple genotypes. Amplicons (~9.2 kb) were run
on an agarose gel (0.8 %) and visualized on a Gel Doc molecular imager
(Bio-Rad); M represents the DNA marker HyperLadder 1 (Bioline). Lanes 1
to 8 represent GT1a amplicons. Lanes 9 to 11 represent GT1b amplicons.
Lanes 12 to 16 represent GT3a amplicons. All amplicons were purified
and successfully sequenced on the lllumina platform, including the faintly
visible band in lane 7. (PDF 2448 kb)
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