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Abstract

Background: RNA sequencing (RNA-Seq) measures genome-wide gene expression. RNA-Seq data is count-based
rendering normal distribution models for analysis inappropriate. Normalization of RNA-Seq data to transform the
data has limitations which can adversely impact the analysis. Furthermore, there are a few count-based methods for
analysis of RNA-Seq data but they are essentially for pairwise analysis of treatment groups or multiclasses but not
pattern-based to identify co-expressed genes.

Results: We adapted our extracting patterns and identifying genes methodology for RNA-Seq (EPIG-Seq) count
data. The software uses count-based correlation to measure similarity between genes, quasi-Poisson modelling to
estimate dispersion in the data and a location parameter to indicate magnitude of differential expression. EPIG-Seq
is different than any other software currently available for pattern analysis of RNA-Seq data in that EPIG-Seq 1) uses
count level data and supports cases of inflated zeros, 2) identifies statistically significant clusters of genes that are
co-expressed across experimental conditions, 3) takes into account dispersion in the replicate data and 4) provides
reliable results even with small sample sizes. EPIG-Seq operates in two steps: 1) extract the pattern profiles from
data as seeds for clustering co-expressed genes and 2) cluster the genes to the pattern seeds and compute
statistical significance of the pattern of co-expressed genes. EPIG-Seq provides a table of the genes with
bootstrapped p-values and profile plots of the patterns of co-expressed genes. In addition, EPIG-Seq provides a heat
map and principal component dimension reduction plot of the clustered genes as visual aids. We demonstrate the
utility of EPIG-Seq through the analysis of toxicogenomics and cancer data sets to identify biologically relevant
co-expressed genes. EPIG-Seq is available at: sourceforge.net/projects/epig-seq.

Conclusions: EPIG-Seq is unlike any other software currently available for pattern analysis of RNA-Seq count level data
across experimental groups. Using the EPIG-Seq software to analyze RNA-Seq count data across biological conditions
permits the ability to extract biologically meaningful co-expressed genes associated with coordinated regulation.
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Background
The advantages of RNA-sequencing (RNA-Seq) over
microarray technology to measure gene expression have
been reported recently [1–3]. Methods have been devel-
oped to analyze RNA-Seq data based on normalization

of read counts or using raw count data [4–6]. Advan-
tages of normalization are that it adjusts the data ac-
cording to sequencing library size, accounts for the
length of transcripts and allows for the use of analysis
tools originally designed for microarray data. However,
normalized RNA-Seq data or transformation of count
data has limitations [7–10] which can adversely impact
the analysis. Alternatively, using raw read counts cir-
cumvents the shortcomings of normalization but re-
quires modelling of the data to estimate dispersion,
accounting for library size and filtering to avoid cases of
inflated zeros. In particular, statistical models of count

* Correspondence: bushel@niehs.nih.gov
2Microarray and Genome Informatics Group, National Institute of
Environmental Health Sciences, Research Triangle Park, NC 27709, USA
3Biostatistics and Computational Biology Branch, National Institute of
Environmental Health Sciences, 111 T.W. Alexander Drive, P.O. Box 12233,
Research Triangle Park, NC 27709, USA
Full list of author information is available at the end of the article

© 2016 Li and Bushel. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Li and Bushel BMC Genomics  (2016) 17:255 
DOI 10.1186/s12864-016-2584-7

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-016-2584-7&domain=pdf
mailto:bushel@niehs.nih.gov
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


data based on Poisson, beta- or negative-binomial distri-
butions can be severely impacted by outliers in the data
[11–13]. Unfortunately, there is a paucity of methodolo-
gies that can identify correlated gene expression patterns
from RNA-Seq count data across biological conditions
(i.e., time course, dose response, factorial study designs)
[14]. Such paucity also limits the ability to cross-
examine RNA-Seq and microarray analysis through
comparable statistical measures, which can lead to
discrepancies in data interpretation between these
techniques.
We adapted the extracting patterns and identifying co-

expressed genes (EPIG) methodology [15] for the identi-
fication of co-expressed genes from RNA-Seq data
(EPIG-Seq). In the EPIG-Seq software patterns of gene
expression across experimental groups are determined
using a similarity measure for count data [16] to ascer-
tain correlation between expression profiles, a quasi-
Poisson model [13] to estimate dispersion in the data
and a location parameter as a measure of the magnitude
of difference between experimental conditions and con-
trol/baseline. EPIG-Seq then clusters each gene expres-
sion profile to the pattern for which it has the highest
correlation. EPIG-Seq is different than any other soft-
ware currently available for pattern analysis of RNA-Seq
data in that EPIG-Seq identifies statistically significant
clusters of co-expressed genes using count level data with
or without inflated zeros. Furthermore, EPIG-Seq provides
reliable results by taking into account dispersion in the
data and defaulting to a robust/non-parametric magnitude
of fold change estimator when sample sizes are small. We
demonstrate the utility of EPIG-Seq by analyzing publicly
available RNA-Seq data sets from the SEquence Quality
Control (SEQC) toxicogenomics [1] arm of the Micro-
Array Quality Control (MAQC) consortium and from
The Cancer Genome Atlas (TCGA) [17] breast cancer
data portal. Using EPIG-Seq we identify several co-
expressed genes related to modes of action (MOAs) of the
chemical agents in the toxicogenomics data set and we
also extract co-expressed genes that are being explored as
molecular targets for breast cancer. Finally, EPIG-Seq has
a user-friendly interface, it is also platform independent
and provides a heat map, pattern profile plots and a prin-
cipal component analysis dimension reduction plot of the
clustered co-expressed genes as visual aids.

Implementation
Correlation
A compiled RNA-Seq gene expression data set consists
of a 2-dimensional matrix where each row represents a
gene expression profile and each column represents a
sample. We denote xij as the count of reads from sample
j mapped to gene i and xkj as the count of reads from
sample j mapped to gene k. To measure the count level

correlation between two gene profiles, EPIG-Seq uses
the CYs similarity measure for count data previously de-
fined as:

CY sik ¼ 1−
observed CYdik

maximum CYdik

where

observed CYdik ¼
Xa
j¼1

xij þ xkj
� �

log xijþxkj
2

� �
−xij logxkj−xkj logxij

xij þ xkj

0
@

1
A;

a is the total number of samples with read counts
mapped to either profile and log is the natural logarithm.
As such, CY sik ¼ 0 when two profiles are totally different
and CY sik ¼ 1 when the two are identical. The CYs simi-
larity measure is similar to other distance or similarity
metric (i.e., Horn’s index [18]) and was originally used
for assessing variation in species abundance in ecological
and environmental monitoring. Its nomenclature origi-
nates from initials of the lead author introducing its use
and is shown to outperform other similarity measures
on species abundance count data [16, 19]. CYs works
better than the Spearman rank correlation coefficient
when the expression of the genes within all the groups is
relatively the same except in the control/baseline/refer-
ence. The Spearman rank correlation coefficient treats
these as ties and hence does not allow responsive but in-
variant patterns across treatment groups to be extracted.
Further details of the computation of the CYs correlation
including the maximization of CYd (the dissimilarity
measure) are available in the Additional file 1.

Magnitude of change
In EPIG-Seq, the strength of a gene expression profile’s
signal is defined according to the value of the test-
statistic location parameter obtained from a Wilcoxon
rank sum non-parametric test [20] measuring the differ-
ence between the ranks of the expression of the genes in
sample X vs those in sample Y. Here, sample X is the
biological replicates from the treated, perturbed or dis-
eased group and sample Y is the biological replicates
from the controls. When the sample size for each group
is small, the approximated Z-statistic from the Wilcoxon
rank sum test can be spurious. In such a case, EPIG-Seq
defaults to measure the strength of the gth gene’s differ-
ential expression according to the value of the Hodges-

Lehmann location parameter estimator Δ̂g for the differ-
ence between two groups of independent samples [20].
See the Additional file 1 for further details of the magni-
tude of change.
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Dispersion
For each gth gene expression profile, EPIG-Seq estimates
the dispersion parameter θ using a quasi-Poisson regres-
sion to model the data. The quasi-Poisson likelihood
model is commonly used for overdispersed count data
as it incorporates θ into the Poisson model such that
that V(Yg) = μgθg [21]. Further details of the dispersion
and count data modelling are available in the Additional
file 1.

Clustering of gene expression profiles to patterns
EPIG-Seq runs in two steps. The first step (pattern pro-
file determination) involves pairwise correlations of all
the genes and tallying those which have a CYs correl-
ation > = Rt1 and at least Mt-1 highly correlated genes.
The genes that meet these criteria are further filtered ac-
cording to those with a magnitude of change ≤ St1 and
dispersion < or > 5 % in each tail of the distribution. The
remaining genes are defined as the pattern profiles for
co-expression clustering. In step two (clustering of the
genes to the pattern profiles), genes are clustered to the
patterns using initialization and recursion strategies that
are typical in standard clustering methodologies [22, 23].
The CY sik measure is used to correlate the ith gene to
the kth pattern profile. The gene is assigned to the pat-
tern to which it has the highest similarity to (i.e. a CYs
correlation > = Rt2). Once all the genes are assigned, a
representative gene for each pattern is determined by a
pattern correlation score (PCS) and the clustering con-
tinues recursively until there are no more movement of
genes or the # of moves = 100. See the Additional file 1
for further details of the PCS, the clustering of gene ex-
pression profiles to patterns and the EPIG-Seq algorithm
pseudo code.

Assessing the significance of the clustering
To assess the significance of the clustering of the co-
expressed genes to the extracted patterns, we performed
B number of bootstrapped assignments of P random
gene profiles to a pattern and compute the PCS each
time to compare to the observed PCS for that pattern.
Briefly, for B times and for a given pattern containing P
gene profiles, we randomly select P number of gene pro-
files from the data set. Then, for the selected P random
profiles, we compute the bootstrapped PCS. The p-value
for a pattern is computed as the number (n) of times
one of these bootstrapped scores is greater than the ob-
served score. Thus, p-value = n/B. Statistical significance
of each co-expressed gene is determined by the p-value
from the generalized linear model of the count data. The
resulting patterns represent statistically significant clus-
ters of genes that are biologically meaningful due to
their shared co-expression across the treatment groups/

biological conditions. In other words, the genes respond
similarly. See the Additional file 1 for further details of
the count data modelling of RNA-Seq data.

Publicly available data
TCGA breast cancer RNA-Seq data
The Cancer Genome Atlas (TCGA) provides open ac-
cess to genomic data acquired from various forms of
cancer. Institutional review boards at each tissue source
site reviewed protocols and consent documentation and
approved submission of cases to TCGA. Cases were
staged according to the American Joint Committee on
Cancer (AJCC) staging system. To evaluate EPIG-Seq’s
ability to extract biologically relevant patterns of gene
expression, we downloaded count-level breast ductal
carcinoma RNA-Seq data [17] produced on the Illumina
GAII sequencer and processed as described in the
Additional file 1. The RNA-Seq data was obtained
from the specimens of patients with appropriate in-
formed consent pre-existing with the TCGA reposi-
tory. The breast tumor samples were classified by the
mRNA subtypes [24–26]. We only used data from the
following four subtypes: luminal A, luminal B, Her2-
enriched and basal-like. The latter subtype is often
consider aggressive and to have a poorer prognosis.
Patterns extracted with co-expressed genes exhibiting
varied expression within the basal-like subtype apart
from the other subtypes would be of interest for mo-
lecular profiling of the tumor. To generate 4 separate
“sampled” data sets of reasonable size (n = 50), for each
one, we randomly selected 10 lanes from each tumor sub-
type plus 10 lanes from normal breast tissue.

Toxicogenomics RNA-Seq data
The cascade of biochemical and molecular initiating
events (MIEs; i.e., the biological targets of a chemical)
following a toxicological exposure is referred to as the
MOA. RNA-Seq data from the MAQC phase III SEQC
crowd source toxicogenomics (TGxSEQC) effort [1] was
acquired from the livers of male Sprague-Dawley rats ex-
posed to chemicals that share a MOA and is available in
the National Center for Biotechnology Information Se-
quence Read Archive (SRA) [27] under accession num-
ber SRP039021 and the Gene Expression Omnibus
under accession number GSE55347 . We used the train-
ing data set containing RNA-Seq data from 15 chemicals
or vehicle and route matched controls. Animals were
handled in accordance with United States Department of
Agriculture and Code of Federal Regulations Animal Wel-
fare Act (9 CFR Parts 1, 2, and 3). Sets of three chemicals
share one of five MOAs. Three MOAs are associated with
well-defined receptor-mediated processes—peroxisome
proliferator-activated receptor alpha (PPARA), orphan
nuclear hormone receptors (CAR/PXR) and aryl
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hydrocarbon receptor (AhR). The other two are non-
receptor-mediated—DNA damage (DNA_Damage) or
cytotoxicity (Cytotoxic). Patterns extracted with genes
exhibiting varied co-expression in one or more MOAs
may elucidate MIEs shared between chemicals. Specific
details of the study design and sample collection are
available in the TGxSEQC publication. Further details of
the alignment of the RNA-Seq reads and bioinformatics
pipeline are available in the Additional file 1.

Software usability
Using EPIG-Seq to identify patterns of gene expression
and to identify co-expressed gene is straight forward and
simple using the graphical user interface (GUI). The data
format for analysis requires a tab-delimited text file with
the 1st row containing the labels of the groups (n > 3)
that the samples belong to (one group must be of sam-
ples that are controls/baseline/background) and the 2nd
row containing the total mapped reads for each sample.
The latter is used for visualization of the results as log
base 2 ratio reads per million (RPM) data. The 1st column
must contain unique gene IDs and the data in the
remaining cells the read counts (as integers) per gene.
EPIG-Seq analysis proceeds in two steps (pattern identi-

fication and gene clustering), both of which have param-
eter setting for correlation of the genes and magnitude of
differential gene expression change (in at least one group
compared to the baseline/controls/background samples).
Correlation is based on the CYs measure with a higher
value denoting more correlation. Magnitude of differential
change is according to the Z-statistics from the Wilcoxon
rank sum non-parametric tests of each comparator
group to the baseline/controls/background group.
Thus, the magnitude of change resembles the devi-
ation from a standard normal distribution. For in-
stance, a Z-statistic = 2 translates to an approximate
probability of 0.05 that the gene expression is statistically
different in the comparator group than the baseline/con-
trols/background group. Since the CYs measure doesn’t
account for direct or anticorrelation, in EPIG-Seq the
signs of the Z-statistics are used to constrain the direc-
tionality of the correlation.
Step 1 (pattern identification) has three additional

user-defined parameters: 1) minimum number of gene
profiles to make a pattern, 2) the correlation setting to
weed out redundant patterns and 3) the number of
central processing units (CPUs) to use for processing.
Increasing the first two parameters will reduce the num-
ber of patterns extracted. Increasing the number of
CPUs will substantially decrease the processing time as
parallel computing is utilized. Lastly, step 1 has a gene
dispersion threshold setting to discard gene profiles from
pattern consideration if their dispersions are < or > 5 %
in each tail of the distribution.

Step 2 (gene clustering) has an additional user-defined
parameter for the number of bootstraps needed to com-
pute the non-parametric p-value in determining signifi-
cance of the patterns. Increasing the number of bootstraps
will increase the reliability of the estimated p-value with a
cost of a longer processing time. Finally, step 2 has a clus-
tering iteration threshold equal to either a < 0.0001 differ-
ence between two successive recursive clusterings of the
genes to the patterns or the clustering recursion proceeded
for 100 iterations.
The main steps in the EPIG-Seq analysis proceeds as

follows:

� Compute Z-statistics for each gene profile
� Perform pairwise correlations between gene profiles
� Extract patterns based on Step 1 parameters
� Remove redundant patterns
� Use the gene profiles with the top PCS from each

unique pattern as the seeds for the gene profile
clustering

� Compute the p-value for each gene profile
� Terminate clustering of profiles to patterns
� Compute p-values for the patterns
� Present the results in output files, figures and a

table of co-expressed genes

Results
Development of EPIG-Seq
We patterned the development of EPIG-Seq to resemble
the steps and components that comprise EPIG [15] for
analyzing gene expression patterns from microarray
data. As shown in Table 1, EPIG-Seq uses a CYs meas-
ure, the magnitude of a Wilcoxon rank sum statistic and
variance to mean ratio (VMR) for RNA-Seq count data.
These provide several advantages of EPIG-Seq on the
analysis of RNA-Seq data. First, it supports cases where
the read count is zero. Second, since correlation across
samples is used, EPIG-Seq is not affected by differences
in total read count per sample/lane of RNA-Seq. Third,
it supports the discrete Poisson distribution typical of
RNA-Seq count data and uses a quasi-Poisson model to
account for dispersion in the data. Finally, when within
group sample sizes are small, it uses the robust and non-
parametric Hodges-Lehmann estimator as the location
parameter for the magnitude of gene expression change.

Table 1 EPIG-Seq configuration

Data type Count level

Distribution assumption Poisson

Correlation measurement CYs

Spread of the data Dispersion

Magnitude of change Wilcoxon test Z-Statistic

Dynamic range Variance-to-mean ratio (VMR)
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As shown in Fig. 1, the 1st step in EPIG-Seq is to find
all patterns in the data. Once the patterns are identified,
in step 2, the gene expression profiles are clustered to
the patterns to group co-expressed genes. Clustering is
performed iteratively until the patterns with the co-
expressed genes stabilize. The gene is assigned to the

pattern to which it has the highest similarity to. Once all
the genes are assigned, a representative gene for each of
the patterns is determined by the PCS which is the high-
est median correlation to the other genes in the pattern.
Figure 2 shows the GUI for EPIG-Seq. Default values

for the parameters are preassigned for pattern extraction

Fig. 1 EPIG-Seq workflow. The workflow depicts the main steps of EPIG-Seq. The parameters are used in steps 1 and 2 to extract the patterns
and cluster the genes respectively. The output is the statistically significant patterns with co-expressed genes

Fig. 2 EPIG-Seq GUI. The EPIG-Seq GUI contains a main panel which allows users to define parameters for steps 1 and 2 of the analysis process.
A dialog box displays the processing status and a command window displays the dependent processes running in the background
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Fig. 3 EPIG-Seq analysis of the toxicogenomics MOA data. a Thumbnail plots of the gene expression profiles that are the representatives (those
with the highest PCS) of each of the extracted patterns from the toxicogenomics MOA data. The title of each thumbnail plot indicates the
number of the pattern extracted and the gene symbol. MOA groups are color-coded as follows: Control (green), AhR 2 (red), CAR/PXR (yellow),
Cytotox (light blue), DNA Damage (blue) and PPARA (pink), with 9 samples (groups of 3 biological replicates per chemical) in each. The y-axis is
the log base 2 ratio of each sample data RPM relative to the average of the control. b The heat map representation of the genes clustered to the
four extracted patterns from the EPIG-Seq analysis of the toxicogenomics MOA data. The symbols of the genes are shown to the left of the heat
map with the 4 colors indicative of the pattern number assigned to. The columns indicate the chemicals within each of the MOA groups. The
color scale represents the log base 2 ratio of each sample data relative to the average of the control. c PCA of the toxicogenomics MOA data
using the CYs correlation measures of the genes clustered to the patterns by EPIG-Seq. The groups are color-coded as denoted in the legend.
The x-axis is PC1, the y-axis is PC2 and the z-axis is PC3
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(step 1) and gene clustering (step 2) but can be changed
to suit the analysis stringency (see Additional file 2: Figure
S1A and B for optimization of parameters for EPIG-Seq
steps 1 and 2 respectively using simulated data). The five
patterns extracted from the simulated data illustrate the
utility of EPIG-Seq to extract only the real responsive pat-
terns (not the noisy one), identify co-expressed genes and
group the samples (Additional file 3: Figure S2A, B and C
respectively). Increasing the correlation will result in fewer
patterns extracted and fewer genes clustered. Increasing
the magnitude will require larger fold change responses
cross the treatment groups. Increasing the weed out cor-
relation will result in fewer redundant patterns extracted.
The status of the EPIG-Seq processing of the data is moni-
tored through a dialog box.

EPIG-Seq co-expression analysis
To demonstrate the utility of EPIG-Seq, we analyzed
real RNA-Seq data. EPIG-Seq analysis of the MAQC
Toxicogenomics data set (samples of RNA from the
livers of rats exposed to chemicals that share a com-
mon mode of action) extracted four patterns of co-
expressed genes when using CYs and St for steps 1
and 2 equal to 0.8 and 1 respectively and percentile
(PCT) = 5 % as parameter settings (Fig. 3a). The pat-
tern representatives (genes used as seeds) are shown
(Aco1, Pon3, Surf4 and Elovl5). The more impacting treat-
ments in terms of gene regulation were seen from the
exposure to PPARA chemicals (Fig. 3b). This biased co-
expression of genes is expected as the chemicals with the
PPARA MOA (Bezafibrate, Nafenopin and Pirinixic acid)
were shown to have about 59 % more differential expres-
sion (~6,500 on average) than the chemicals in the other

Table 2 Co-expressed genes from EPIG-Seq analysis of the
MOA RNA-Seq data

Pattern # Genebank Acc. # Symbol Description

1 NM_001040019 Acaa1b Acetyl-Coenzyme A
acyltransferase 1B

1 NM_001108181 Acad11 Acyl-CoA dehydrogenase
family, member 11

1 NM_001137643 Gstt3 Glutathione S-transferase,
theta 3

1 NM_012600 Me1 Malic enzyme 1, NADP(+)-
dependent, cytosolic

1 NM_017321 Aco1 Aconitase 1, soluble

1 NM_031559 Cpt1a Carnitine palmitoyltransferase
1a, liver

1 NM_057197 Decr1 2,4-dienoyl CoA reductase 1,
mitochondrial

1 NM_130826 Hadha Hydroxyacyl-CoA
dehydrogenase/3-ketoacyl-CoA
thiolase/enoyl-CoA hydratase
(trifunctional protein), alpha
subunit

1 NM_175837 Cyp4a1 Cytochrome P450, family 4,
subfamily a, polypeptide 1

2 NM_001004086 Pon3 Paraoxonase 3

2 NM_001025720 Dhtkd1 Dehydrogenase E1 and
transketolase domain
containing 1

2 NM_001037180 Fkbp8 FK506 binding protein 8

2 NM_001105965 Dpt Dermatopontin

2 NM_001109604 Tmem86b Transmembrane protein 86B

2 NM_053995 Bdh1 3-hydroxybutyrate
dehydrogenase, type 1

2 NM_139102 Dmgdh Dimethylglycine dehydrogenase

2 XM_002728268 NA NA

2 XM_002728512 NA NA

2 XM_002728876 NA NA

3 NM_001004271 Ugt2b15 UDP glucuronosyltransferase 2
family, polypeptide B15

3 NM_001007701 Tram1 Translocation associated
membrane protein 1

3 NM_001013110 Tf Transferrin

3 NM_001033868 Surf4 Surfeit 4

3 NM_012738 Apoa1 Apolipoprotein A-I

3 NM_012998 P4hb Prolyl 4-hydroxylase,
beta polypeptide

3 NM_017013 Gsta2 Glutathione S-transferase
alpha 2

3 NM_021766 Pgrmc1 Progesterone receptor
membrane component 1

3 NM_138547 Akr1c14 Aldo-keto reductase family 1,
member C14

3 NM_175843 NA NA

4 NM_022521 Oat Ornithine aminotransferase

Table 2 Co-expressed genes from EPIG-Seq analysis of the
MOA RNA-Seq data (Continued)

4 NM_031332 Slc22a8 Solute carrier family 22
(organic anion transporter),
member 8

4 NM_134382 Elovl5 ELOVL fatty acid elongase 5

4 NM_173305 Hsd17b6 Hydroxysteroid (17-beta)
dehydrogenase 6

Table 3 GO biological processes of MOA clustered genes

Pattern # # of Genes Top GOBP p-value FDR

1 9 GO:0006631 - Fatty acid
metabolic process

3.8E-06 4.4E-03

2 10 GO:0055114 - Oxidation
reduction process

2.3E-02 2.1E + 01

3 10 GO:0042592 - Homeostatic
process

6.0E-02 5.5E + 01

4 4 - - -

GOBP Gene Ontology biological processes filtered to remove very broad
GO terms
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MOAs (~4,100 on average) [1]. In other words, the
PPARA MOA chemicals elicit a stronger transcriptional
response than the other MOA chemicals. Also, despite the
heterogeneity in the data and the three chemicals per
MOA, EPIG-Seq was still able to extract discernable pat-
terns. In pattern 1, the genes were upregulated by PPARA
chemical treatments and unchanged by the other treat-
ments. Pattern 2 depicts the converse. Pattern 3 shows a
down-regulation by PPARA chemicals but a slight up-
regulation of genes by CAR/PXR, cytotoxic agents and
DNA damage toxicants. Pattern 4 illustrates the down-
regulation of all the MOA chemicals except for AhR.
There were 33 genes clustered in total (Table 2). Gene
ontology biological processes enrichment of the genes re-
veals regulation of fatty acid metabolism, oxidation/reduc-
tion and homeostatic processes impacted by co-expressed
genes in patterns 1, 2 and 3 respectively (Table 3). PCA of
the 33 genes confirms that the treatments by the PPARA
chemicals support the notion that the treated samples
from the treatment of chemicals in this MOA are very
different from the others (Fig. 3c).
As another example of EPIG-Seq’s utility, we analyzed

TCGA breast cancer RNA-seq data derived from 10 ran-
domly selected lanes from each “subtype” to construct bal-
anced data sets of the four breast cancer subtypes plus
normal breast tissue as a control. Using CYs and St for steps
1 and 2 equal to 0.8 and 2 respectively and PCT= 5 % as
parameter settings, EPIG-seq extracted four or six patterns
from either of the TCGA sampled data with between 192
and 344 genes in total per sampled set (Table 4 and Add-
itional file 4: Tables S1-S4). The general silhouette of the
genes reveals that the patterns are relatively cohesive and
separated well. Since the data sets were randomly selected
from the pool, there is stochastic variation in the data that
introduces variability in the results. From the clustering
comparison (Table 5), good adjusted mutual information
(AMI) agreement was observed, although comparisons be-
tween data set 1 and data sets 3 and 4 yielded low scores of
0.524 and 0.452 respectively. This points to the possibility
that sampled data set 1 is somewhat of an outlier.

Discussion
RNA-Seq has its advantages over microarray gene ex-
pression analysis. Tools for analysis of RNA-Seq data

primarily test pair-wise comparisons or are analysis of
variance (ANOVA)-like but they compute on the count
data. We developed a version of our EPIG tool for
microarray gene expression to support RNA-Seq count
data (EPIG-Seq). An advantage of EPIG-Seq is that gene
expression profiles from the RNA-Seq data are analyzed
across a set of treatment conditions or series of per-
turbations. In addition, EPIG-Seq supports data with
inflated zeros and that is overdispersed. Using count-
based correlation to measure similarity between gene
expression profiles, quasi-Poisson modelling to esti-
mate dispersion in the data and a location parameter
to indicate the strength of differential expression,
EPIG-Seq clustered genes to the statistically signifi-
cant patterns that they correlate with across condi-
tions. Other tools for analysis of RNA-Seq count data
are not directly comparable to EPIG-Seq since they
don’t correlate gene expression across the treatment
[4, 11, 12, 28].
Analysis of EPIG-Seq on real data yielded biologically

meaningful results about the co-regulation of genes. For
example, analysis of the MAQC Toxicogenomics data set

Table 4 EPIG-Seq clustering cohesiveness of patterns extracted
from the TCGA breast cancer sampled data

Sample # GS MS # of Patterns # of Genes

1 0.31 0.54 6 192

2 0.37 0.51 4 169

3 0.21 0.52 6 344

4 0.41 0.59 4 197

GS general silhouette, MS Maximal silhouette

Table 5 Agreement of clusters extracted from the TCGA breast
cancer sampled data

Samples compared Agreement

1 vs 2 0.770

1 vs 3 0.524

1 vs 4 0.452

2 vs 3 0.691

2 vs 4 0.751

3 vs 4 0.500

All comparisons based on AMI except for those with sample 2 where concordance
was used

Table 6 Pathway enrichment of breast cancer co-expressed genes

Pattern # # of
Genes

Enriched Pathways (example
of co-expressed genes)

p-value FDR

1 45 GO:0006260 - DNA replication
(PCNA, TOP2A, S100A14)

1.10E-05 1.70E-02

2 182 GO:0006886 - Intracellular protein
transport (ERBB3, PTMS, SLC25A5,
SLC9A3R1, SOX4, STAT1)

1.1E-06 1.8E-03

3 9 BST2, C17orf37, CEACAM6, IFI27,
IFI6, MX1, OAS3, RAB31, TPX2

- -

4 40 KEGG:03320 - Peroxisome proliferator-
activated receptor signaling pathway
(TRIM29, PDK4, FOSB, CD36)

1.0E-04 9.1E-02

5 41 GO:0010033 - Response to organic
substance (ANXA1, CD34, EGR1, FOS,
TGFBR2)

1.3E-04 2.0E-01

6 27 GO:0006414 - Translation elongation
(CD59, ITGB1, ribosomal protein genes)

2.80E-05 3.90E-02

Li and Bushel BMC Genomics  (2016) 17:255 Page 8 of 11



with RNA samples of livers from rats exposed to chemicals
that share a MOA, EPIG-Seq identified genes in patterns
that are key toxicological processes in metabolism and oxi-
dation/reduction (Table 3). For instance, in pattern 1
where the genes are up-regulated by the PPARA MOA
chemicals and essentially unchanged in the other treat-
ments (Fig. 3a and b), Cytochrome P450, Family 4,

Subfamily A, Polypeptide 1 (Cyp4a1 -PPARA inducible) is
one of the hallmark PPARA responsive genes co-
expressed [29]. In the rat liver, Cyp4a1 is induced by
binding of peroxisome proliferator ligands to the
PPARA receptor [30]. Furthermore, motif analysis
[31] of the −1000 to +1000 DNA sequence region of
the nine genes in pattern 4 uncovered an enriched

Fig. 4 PCNA expression. a Gene expression of PCNA in TCGA normal and breast cancer samples. The x-axis denotes the breast cancer tumor
subtype. The y-axis is the average of the log base 2 ratio of PCNA in each tumor subtype relative to the average of the normal samples. Standard
error bars are shown for each data point. b PCNA protein immunohistochemistry staining of normal breast tissue with benign adenomas from a
female age 23 (ID: 2773) and using the HPA030522 antibody. c PCNA protein immunohistochemistry staining of breast cancer tissue (ductal carcinoma)
from a female age 55 (ID: 2773) and using the HPA030522 antibody
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transcription factor binding site (TATAACA) as over-
represented with a p-value = 4.17×10−4.
Analysis of the TCGA breast cancer data sample #3

produced DNA replication, intracellular protein trans-
port, PPAR signaling, response to organic substances
and translation elongation biological pathways as over-
represented categories (Table 6) commonly associated
with breast cancer progression and metastasis [32, 33].
In particular, pattern #1 contains the up-regulation of
proliferating cell nuclear antigen (PCNA) (Fig. 4a), topo-
isomerase (DNA) II (TOP2A) and S100 calcium binding
protein A14 (S100A14) genes. In fact, PCNA, TOP2A
and other genes in the patterns have been targets for
breast cancer therapy [34, 35]. Interestingly, the Human
Protein Atlas [36] contains immunohistochemistry stain-
ing of the PCNA protein (antibody HPA030522) in nor-
mal breast tissue (Fig. 4b) versus the overexpression in
breast cancer ductal carcinoma (Fig. 4c) implicating the
abundance of the protein in breast cancer tissue as a
potential biomarker [37].

Conclusions
EPIG-Seq is unlike any other software currently available
for pattern analysis of RNA-Seq count level data across
experimental groups. EPIG-Seq analysis of RNA-Seq
count data across biological conditions permits the abil-
ity to extract biologically meaningful co-expressed genes
associated with coordinated regulation. The approach
leverages a count based correlation to identify patterns
of expression across samples, accounts for the dispersion
in the data and uses a location parameter to indicate
magnitude of differential expression whether the sample
size is large or small. EPIG-Seq analysis of TCGA human
breast cancer RNA-Seq data extracts genes regulated
across the various subtypes including PCNA, one of the
key marker genes. EPIG-Seq analysis of a rat liver toxi-
cogenomics RNA-Seq data set reveals genes that co-
expressed across MOAs containing chemicals with simi-
lar MIEs such as PPAR antagonists and the Cyp4a1
PPAR-α inducible gene. Thus, using the EPIG-Seq soft-
ware to analyze RNA-Seq count data across biological
conditions permits the ability to extract biologically
meaningful co-expressed genes associated with coordi-
nated regulation.

Availability and requirements
Project name: EPIG-Seq
Project home page: e.g. http://sourceforge.net/projects/

epig-seq
Operating system(s): Windows and Linux
CPU architecture: Multicores recommended
Programming language: e.g. C and Java currently, R in

future implementations

Other requirements: R version ≥ 3.1.2 and CRAN R
package stats version 3.1.2 to fit a generalized linear
model (glm)
License: GNU GPL-2 | GPL-3
Any restrictions to use by non-academics: License

needed to distribute the programs containing code from
R and for the Matlab MCRInstaller from MathWorks.

Additional files

Additional file 1: Supplemental methods are more detailed descriptions
of some of the computational methods used in EPIG-Seq. (DOCX 97 kb)

Additional file 2: Figure S1. A and B are tiff image files of the plots
illustrating the optimization of parameters for EPIG-Seq steps 1 and 2
respectively using simulated data. (TIF 19517 kb)

Additional file 3: Figure S2. EPIG-Seq analysis of the simulated data. A)
Thumbnail plots of the simulated gene profiles that are the
representatives (those with the highest pattern correlation score) of each
of the extracted patterns. B) Heat map representation of the patterns
extracted and the simulated gene profiles clustered to each. C) PCA of
the simulated gene profiles clustered to the patterns by EPIG-Seq using
the CYs correlation measures. (JPG 3477 kb)

Additional file 4: Tables S1-S4. Are Excel spreadsheets containing the
EPIG-Seq clustered genes from the TCGA data samples 1 – 4 respectively.
(XLSX 665 kb)

Abbreviations
AhR: aryl hydrocarbon receptor; AMI: adjusted mutual information;
ANOVA: analysis of variance; ARI: adjusted Rand Index; CAR/PXR: Constitutive
Androstane Receptor/Pregnane X Receptor; CPUs: central processing units;
Cyp4a1: Cytochrome P450, Family 4, Subfamily A, Polypeptide 1;
CYs: correlation for count data; Cytotoxic: cytotoxicity; DNA_Damage: DNA
damage; EPIG: extracting patterns and identifying co-expressed genes;
EPIG-Seq: extracting patterns and identifying co-expressed genes from
RNA-Seq data; GUI: graphical user interface; MAQC: MicroArray Quality
Control; MI: mutual information; MIE: molecular initiating event; MOA: mode
of action; Mt: number of profiles to form candidate patterns in EPIG-Seq step
1; NB: negative binomial; NCI: National Cancer Institute; PCA: principal
component analysis; PCNA: proliferating cell nuclear antigen; PCS: pattern
correlation score; PCT: percentile; PPARA: peroxisome proliferator-activated
receptor alpha; RNA-Seq: RNA sequencing; RPM: reads per million; Rt1: CYs
correlation for EPIG-Seq step 1; Rt2: CYs correlation for EPIG-Seq step 2;
SEQC: SEquence Quality Control; SNR: signal to noise ratio; SRA: sequence
read archive; St1: magnitude of fold change for EPIG-Seq step 1;
St2: magnitude of fold change for EPIG-Seq step 2; TCGA: The Cancer
Genome Atlas; TGxSEQC: Toxicogenomics SEQC; TOP2A: Topoisomerase
(DNA) II; VMR: variance to mean ratio.
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