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Abstract

Background: Improving fiber quality is a major challenge in cotton breeding, since the molecular basis of fiber
quality traits is poorly understood. Fine mapping and candidate gene prediction of quantitative trait loci (QTL)
controlling cotton fiber quality traits can help to elucidate the molecular basis of fiber quality. In our previous
studies, one major QTL controlling multiple fiber quality traits was identified near the T, locus on chromosome 6 in
Upland cotton.

Results: To finely map this major QTL, the F, population with 6975 individuals was established from a cross
between Yumian 1 and a recombinant inbred line (RIL118) selected from a recombinant inbred line population
(T586 x Yumian 1). The QTL was mapped to a 0.28-cM interval between markers HAU2119 and SWU2302. The
QTL explained 54.7 % (LOD =222.3), 40.5 % (LOD = 145.0), 50.0 % (LOD =194.3) and 30.1 % (LOD =1004) of
phenotypic variation with additive effects of 2.78, —0.43, 2.92 and 1.90 units for fiber length, micronaire,
strength and uniformity, respectively. The QTL region corresponded to a 2.7-Mb interval on chromosome 10
in the G. raimondii genome sequence and a 5.3-Mb interval on chromosome AO6 in G. hirsutum. The fiber of
Yumian 1 was much longer than that of RIL118 from 3 DPA to 7 DPA. RNA-Seq of ovules at 0 DPA and
fibers at 5 DPA from Yumian 1 and RIL118 showed four genes in the QTL region of the G. raimondii genome
to be extremely differentially expressed. RT-PCR analysis showed three genes in the QTL region of the G.
hirsutum genome to behave similarly.

Conclusions: This study mapped a major QTL influencing four fiber quality traits to a 0.28-cM interval and
identified three candidate genes by RNA-Seq and RT-PCR analysis. Integration of fine mapping and RNA-Seq is
a powerful strategy to uncover candidates for QTL in large genomes.
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Background

Cotton is the world’s leading natural fiber and second
most valuable oil crop [1]. The cotton fiber, a seed borne
epidermal trichome, is a model system for the study of
cell elongation and cell wall and cellulose biosynthesis
[2]. On the day of anthesis, cells of the ovular epidermis
have already been determined to become trichomes, and
subsequently undergo elongation, secondary cell wall
synthesis and maturation, which are overlapping steps in
a complex developmental process [2]. Although many
studies have focused on identification of key genes con-
trolling fiber development at different developmental
phases [3-5], the molecular mechanisms of fiber devel-
opment are still not fully understood.

DNA markers provide a powerful tool to study molecular
mechanisms underlying complex traits, and facilitate an ef-
fective strategy for crop improvement marker-assisted se-
lection (MAS). Over the last decade, at least 1,075
quantitative trait loci (QTL) from 58 studies of intraspecific
G. hirsutum and 1,059 QTL from 30 studies of G. hirsu-
tum x G. barbadense populations have been published, for
yield, fiber and seed quality, and biotic and abiotic stress
tolerance [6]. However, these QTL are localized to large
genomic regions that provide only coarse resolution for
MAS in cotton breeding, and may include hundreds or
even thousands of genes. To precisely select for target
genes with a minimum of ‘linkage drag’ from nearby un-
desirable alleles requires fine-mapping of QTL, and pref-
erably identification of candidate genes.

Due to the complexity of the tetraploid cotton genome,
few studies of QTL fine mapping have been reported [7-9].
Cotton genome sequencing [10-14] has provided a rich
source of DNA markers for fine mapping, and made it rou-
tine to predict QTL candidate genes.

Besides DNA marker technology, technological develop-
ments in high-throughput sequencing also offer new
opportunities to elucidate mechanisms underlying complex
traits. Considerable research has been conducted on the
global molecular and biochemical processes underlying
fiber development through expressed sequence tag (EST)
analysis [3, 15], macro- or microarray gene expression pro-
filing [16, 17] and transcriptome analysis [18, 19]. These
studies have highlighted the stage-specific transcription of
genes involved in fiber initiation, elongation and secondary
cell wall formation. For example, GhMYB25 [20],
GhMYB25-like [21], GhSusAl [22], GbPDFI [23], GhHD-1
[5], GhFLA1 [24] and GhVINI [25] have been demon-
strated to have definite roles in cotton fiber initiation, and
Sus [26], ACTINI [27), GhSusAl [22], GhPIP2 [28],
WLIMIla [29], GhFLAI [24], GhHOX3 [30], GhCaM?7 [31]
and GhPAGI [32] play roles in controlling cotton fiber
elongation.

Rich information about cotton QTL and expanded scope
for fine mapping, together with a growing body of
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developmental and transcriptomic information, sets the
stage for unraveling relationships between specific genes
and empirically-measured fiber quality traits such as fiber
length, strength, fineness, and elongation. Many studies
showed that the integration of quantitative genetics and
transcriptomic data was very helpful to propose short lists
of candidate genes in plants, for example in Populus spp,
Glycine max L. and Triticum aestivum L. [33-35].

In our previous studies, one QTL affecting cotton lint
percentage, fiber length, uniformity, strength and micro-
naire was identified near the T; locus on chromosome 6
affecting leaf pubescence [36]. The QTL was Iinitially
identified using an F, population (T586 x Yumian 1) in
upland cotton and confirmed in a recombinant inbred
line population (T586 x Yumian 1) in multiple environ-
ments [36, 37]. The T, allele was associated with short
and coarse fibers, increased micronaire and high trich-
ome density on the vegetative parts of plants [38—41]. A
recent study linked the absence of stem trichomes of G.
barbadense to a copia-like retrotransposon insertion in a
homeodomain leucine zipper gene (HD-I), which was
found to co-segregate with T; on chromosome 6 [42].
Silencing of GhHD-1 reduced trichome formation and
delayed the timing of fiber initiation. Over expression of
GhHD-1 increased the number of fibers initiating on the
seed and thereby increased fuzz percentage, but did not
affect fiber quality traits [5]. These results suggested that
the gene/s for the QTL near the T; locus and the gene
for T itself might not be the same.

In the present study, a large segregating population was
established from a cross between Yumian 1 and a recom-
binant inbred line (RIL118) with trichomes and short
coarse fiber selected from a recombinant inbred line popu-
lation (T586 x Yumian 1). SSR markers were designed from
the G. raimondii genome [10] for fine mapping the QTL
controlling multiple fiber quality traits in the T; locus
region. Digital gene expression profiling was used to iden-
tify candidate genes for the QTL controlling fiber quality
traits.

Methods

Mapping population development and fiber quality
measurement

Based on its genotype and the location of the QTL mapped
in the recombinant inbred line population (T586 x Yumian
1) [37, 43], one recombinant line, RIL118, with trichomes
and short and coarse fiber, was selected to cross with
Yumian 1 in the summer of 2010 at the Teaching and Ex-
periment Farm of Southwest University (SWU), Beibei,
Chong qing, China. Chromosome 6 of RIL118 was homo-
zygous for T586 alleles, and the other chromosomes with
loci affecting fiber quality (like Ny, Lc; and Lg) are homozy-
gous for Yumian 1 alleles. F; plants were self-pollinated in
the winter of 2010 in Sanya, Hainan, China. A total of
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Fig. 1 Phenotypeof trichome and fiber traits in G. hirsutum RIL118 and
Yumian 1. a,c, e and g indicate plant, stem, leaf and fiber of RIL118;

b, d, f and h indicate plant, stem, leaf and fiber of Yumian 1. Scale
bars:1 mm (b-e)

6975 F, individuals, including 1434 plants in 2011 and
5541 plants in 2012, were planted at SWU. For the 1434 in-
dividuals planted in 2011, all naturally-opened bolls were
hand-harvested to gin fiber for fiber quality measurement,
including fiber length (FL, mm), fiber micronaire reading
(EM), fiber strength (FS, cN/tex), fiber elongation (FE), and
uniformity ratio (FU). For the 5541 individuals planted in
2012, only the recombinants were sampled for fiber quality
measurement. Fiber samples were measured using HVI
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(High Volume Instrument) at the Supervision Inspection
and Testing Cotton Quality Center, Anyang, China. The
correlation coefficient among fiber quality traits was deter-
mined using Statistical Analysis Software (SAS, Cary, NC).

Trichome phenotypes

Trichome phenotypes were determined qualitatively by
viewing young leaves and stems. The trichome phenotypes
for RIL118 and Yumian 1 are shown on Fig. 1. Plants from
segregating populations grown in the field were classified
into three categories i.e., pilose (TT), semi-hairy (Tt) or
glabrous (tt), on the basis of mean trichome density, com-
pared with homozygotes for the parental types.

Fiber development observation

Yumian 1 and RIL118 were grown in 2014 at SWU.
Flowers were tied up the day before anthesis to ensure
self-pollination. Young bolls were harvested at 0, 1, 3, 5,
and 7 DPA. For scanning electron microscopy, samples (0
and 1 DPA) were prepared as described [44]. The develop-
ing cotton ovules were examined and photographed with
a Hitachi S-3000 N scanning electron microscope. To
monitor the process of fiber elongation for the two par-
ents, an anatomy microscope (Leica, Germany) was used
to observe fiber length at 3, 5 and 7 DPA in 95 °C water
for 5 min.

Genetic map construction
Cotton genomic DNA was extracted from young leaves
using a modified CTAB method [45].

To enrich markers within the QTL region, three hundred
SSR markers were developed from a G. raimondii genome
sequence [10]. Primers were synthesized by Shanghai Invi-
trogen, mapped on chromosome 6 [43], and those with
clear polymorphism between Yumian 1 and RIL118 were
used to genotype the mapping population. JoinMap4.0 was
used to construct the genetic map of the T, region. The
interval mapping method of MapQTL6.0 was used to iden-
tify QTL for the five fiber quality traits. A threshold of log
of odds ratio (LOD) >3.0 was used to declare QTL. Map-
Chart 2.2 was used to create the linkage group and QTL.
QTL were named starting with ‘q; followed by a trait abbre-
viation (e.g., FL for fiber length).

Total RNA isolation

Total RNA was extracted from ovules at 0 DPA and fibers
at 5 DPA. RNA degradation and contamination was moni-
tored on 1 % agarose gels. RNA purity was checked with
the Nano Photometer spectrophotometer (IMPLEN, West-
lake Village, CA, USA). RNA concentration was measured
with the Qubit RNA Assay Kit in a Qubit 2.0
Fluorometer (Life Technologies, Carlsbad, CA, USA).
RNA integrity was assessed with the RNA Nano 6000
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Assay Kit of the Bioanalyzer 2100 system (Agilent
Technologies, Santa Clara, CA, USA).

Library construction and sequencing

At least 3 g of total RNA per sample was used for RNA
sample preparation. Sequencing libraries were generated
using Illumina TruSeq™ RNA Sample Preparation Kits
(lumina, San Diego, CA, USA) in accordance with the
manufacturer’s recommendations. Transcriptome sequen-
cing was carried out on an Illumina HiSeq 2000 platform
that produced 100 bp paired-end (PE) raw reads (Novo-
gene Bioinformatics Technology Co.Ltd).

The raw sequence data (from Ilumina HiSeqTM2000/
MiSeq) which consisted of raw pictures were first trans-
formed to Sequenced Reads which contained read se-
quences and corresponding base quality (in FASTQ
format) through Base Calling. Raw data (raw reads) was fil-
tered as follows:(1) remove reads with adapter, (2) remove
reads containing N >10 %, (3) remove reads with sQ<5
base percentage >50 %. Q20, Q30 and GC content were
calculated. All downstream analyses were based on clean
data with high quality.

Mapping clean reads to the reference genome

The clean sequence tags were mapped to the G. raimondii
reference genome [10]. Gene model annotation files came
from Phytozome (https://phytozome.jgi.doe.gov/pz/por-
talhtml). An index of the reference genome was built
using Bowtie v2.0.6 and PE clean reads were aligned to
the reference genome using TopHat v2.0.9.

Quantification and pathway in differential expression
analysis of transcripts

Gene expression levels were measured by transcript abun-
dance. In our RNA-seq analysis, the gene expression level
was estimated by counting the reads that mapped to genes
or exons. To make gene expression data comparable across
different genes and experiments, the parameter FPKM
(Fragments Per Kilo base of exon per Million fragments
mapped) was used. HTSeq software was used to analyze
gene expression levels, using the ‘union’ model. The result
files present the number of genes with different expression
levels and the expression levels of single genes.

Because there were no biological replicates, for each se-
quenced library the read counts were adjusted by the
Edger package through one scaling normalized factor. Dif-
ferential expression analysis of two conditions was per-
formed using the DEGSeq R packagev 1.12.0. DEGSeq
provides statistical routines to determine differential ex-
pression in digital gene expression data using a model
based on the negative binomial distribution. P-values were
adjusted using the Benjamini and Hochberg method. The
g-values of 0.05 and log2 (Fold_change) with no
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limitations were served as the threshold of significance for
differential expression.

Kyoto Encyclopedia of Genes and Genomes (KEGG) is
a database resource used to facilitate understanding of
the high-level functions and uses of the biological system
(http://www.genome.jp/kegg/). Here, KOBAS software
was used to test the statistical enrichment of differential
expression genes in KEGG pathways.

Validation of candidate genes by real-time quantitative
RT-PCR

Total RNA was extracted from ovules at 0 DPA and fibers
at 5, 10,15,20 and 25 DPA of Yumian 1 and RIL118. RNA
degradation and contamination was monitored on 1 %
agarose gels. First strand cDNA was synthesized from total
RNA by priming with oligodT primer using Thermoscript
Reverse Transcriptase (Invitrogen, Carlsbad, CA) at 50 °C.
RT-PCR was carried out inareaction volume of 20 ml con-
taining 10 ml iTaq"™ SYBR°Green Super mix with ROX
(Bio-Rad Laboratories), 1 mM forward and reverse primers,
and 0.1 mM cDNA template in a quantitative real-time
PCR kit (Bio-Rad). PCR reactions were performed accord-
ing to the manufacturer’s instructions. Cotton HISTONE3
(AF024716) was used as a loading control to normalize
samples. Additional file 1 lists the primer sequences of the
four candidate genes based on the Gossypium hirsutum L.
reference genome [14].

Results

Phenotypic analysis of fiber quality traits

Phenotypic variation for five fiber quality traits was sum-
marized in Additional files 2 and 3. The two parents dif-
fered remarkably in these traits, and their F, population
of 1434 individuals displayed continuous variation. The
average values of fiber quality traits for groups of pro-
geny with different trichome phenotypes are shown in
Additional file 4. The fiber quality traits of the T;T,
genotype were almost exactly the same as RIL118, and
those of the t;t; genotype were similar to Yumian 1.
Additional file 5 showed correlation coefficients for the
five fiber traits among 1434 F, plants. All traits had sig-
nificant correlation with each other. FM had significant
negative correlation with FU, FL and FS, whereas signifi-
cant positive correlations existed among the other traits.

QTL mapping

Based on the genetic map and the QTL region for fiber
quality traits [37, 43], thirteen newly developed SSR
markers from G. raimondii reference genome [10] showed
polymorphism between Yumian 1 and RIL118 (Additional
file 6). The newly identified SSR markers and SSR markers
previously mapped on chromosome 6 were used to geno-
type 360 F, individuals randomly selected from the
2011 F, population, with a total of 116 loci (115 SSR and
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T;) mapped on chromosome 6. The genetic map covered
133.1 ¢cM (Fig. 2). The QTL controlling four fiber quality
traits was located in the confidence interval between
MUCS114 and MUSS099, and 19 markers co-segregated
with T; (Fig. 2 and Table. 1). The QTL explained 59.3 %
(LOD =62.6), 45.7 % (LOD =42.6), 36.4 % (LOD =31.6)
and 53.8 % (LOD =52.43) of phenotypic variation, with
additive effects of 2.78, -0.43, 1.90 and 2.92 for FL, FM,
FU and FS, respectively.

High-resolution mapping

To further define the QTL controlling fiber quality traits,
all 26 markers in the confidence interval between
MUCS114 and MUSBO0165 were employed to genotype the
1434 F, plants in 2011. The confidence interval for the pos-
ition of the QTL from the peak LOD to less than 1, the
QTL controlling fiber quality traits was mapped within
a 0.35-cM interval between MUCS114 and SWU2302,
and co-segregated with T; and 17 SSR markers (Fig. 3 and
Table 2). The QTL explained 54.7 % (LOD =222.3),
40.5 % (LOD =145.0), 30.1 % (LOD =100.4), and 50.0 %
(LOD = 194.3) of total phenotypic variation, with additive
effects of 2.65, -0.41, 1.83 and 2.91 for FL, FM, FU and
ES, respectively.

To assess and facilitate genetic mapping, all SSR
markers on the genetic map were used to do Blastn
searches against G. raimondii and G. hirsutum genome
sequences [10, 14]. All markers could be aligned to the
reference genomes, as shown in Fig. 4c, 4d and Additional
file 7. The 0.28-cM genetic interval corresponded to a 2.7-
Mb physical distance on chromosome 10 in the G.
raimondii genome and a 4.4-Mb physical distance on
chromosome A06 in the G. hirsutum genome. Compared
to the genome-wide averages of 0.33 Mb per cM for G.
raimondii and 0.6 Mb per cM for G. hirsutum [10, 46],
this result suggested that recombination suppression oc-
curred in the region where the QTL located.

QTL substitution mapping

For further dissection of the QTL controlling fiber qual-
ity traits, another 5535 plants were planted in 2012. The
two SSR markers MUCS114 and SWU2302 were chosen
to screen the recombinants in the QTL region from the
5535 plants. However, no recombination event was

Table 1 Biometrical parameters for QTL controlling fiber quality
based on coarse mapping

Trait LOD A D PV (%)
gFL 62.6 2.78 -0.10 593
gFM 426 -043 0.27 45.7
qFU 316 1.90 0.28 364
ol 524 2.92 -033 538

A is additive effect of the Yumian 1 allele, D is dominant effect of the Yumian
1 allele, PV is percentage of total phenotypic variance explained by the QTL
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detected between T; and the 16 SSR markers, including
SWU2436, SWU2442, SWU2454, SWU1779, NBRI0277,
SWU1781, PGML3033 SWU2138, MUSS122, NAU1218,
CGR5355, NAU0874, SWU06-77, SWU1794, SWU2098
and SWU2282 (Fig. 3). A total of 51 recombinants repre-
senting different recombination events between MUCS114
and SWU2302 in the 6975 plants were grouped into 14
classes, and the genotypes of recombinant classes are
shown in Fig. 4d. The recombinant groups in the first cat-
egory included recombinant classes 2, 3, 6 and 14, which
placed the QTL downstream of SWU2494. The recombin-
ant groups in the second category included recombinant
classes 1, 5, 9, 12 and 13,which placed the QTL down-
stream of HAU2119. The recombinant groups in the third
category included recombinant classes 4, 7, 8,10 and 11,
which placed the QTL up stream of SWU2302. Therefore,
the QTL controlling fiber quality traits was mapped into a
0.28-cM interval between HAU2119 and SWU2302.

Comparison of fiber development
To examine fiber cell differentiation in Yumian 1 and
RIL118, scanning electron microscopy was used to

Table 2 Biometrical parameters for QTL controlling fiber quality
based on fine mapping

Trait LOD A PV (%)
gFL 2223 265 54.7
gFM 145.0 -041 40.5
qgFU 1004 1.83 30.1
gFs 1943 291 50.0

A is additive effect of the Yumian 1 allele, PV is percentage of total phenotypic
variance explained by the QTL

observe the development of fiber cell initials in the ovu-
lar surface at 1 DPA, and anatomy microscopy was used
to observe progress in fiber cell elongation at 3 DPA, 5
DPA and 7 DPA. The fiber length of Yumian 1 was
much longer than that of RIL118 from 3 to 7 DPA
(Fig. 5). This result showed that fiber development at an
early stage has a positive effect on final fiber quality.

Identification of QTL candidate genes
To better understand the molecular basis of early fiber
development, RNA extracted from 0 DPA ovules and 5
DPA fibers was sequenced using an Illumina Hiseq 2500
platform. An overview of the sequencing and assembly
was outlined in Table 3. With the removal of low quality
tags, a total of 10 million and 14 million high-quality clean
reads were obtained from 0 DPA ovules and 5 DPA fibers
mRNA libraries, respectively. Ninety-four percent of the
clean reads had Phred-like quality scores at the Q30 level
(an error probability of 0.01). Approximately 80 %—83 %
of the distinct tags (83—87 % of the total tags) could be
mapped uniquely to the G. raimondii reference sequence
[10], while small proportions (3.5-3.9 %) were mapped to
multiple loci in the reference genome (Additional file 8).
The total number of mapped reads for all identified
transcripts was used for differential expression analysis in
DESeq with |log2 (Fold Change)| > 1 and q value < 0.005.
There were 1262 genes with significantly different expres-
sion levels between Yumian 1 and RIL118 at 0 DPA
ovules, among which 1006 were up-regulated and 256
were down-regulated in Yumian 1 (Fig. 6a). There were
4436 genes with significantly different expression levels be-
tween Yumian 1 and RIL118 at 5 DPA fibers, among
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which 2315 were up-regulated and 2121 were down-
regulated in Yumian 1 (Fig. 6b). Combining the two time-
points of cotton fiber development, 457 significantly differ-
entially expressed genes were observed with a consistent
high-or-low variation between 0 DPA ovules and 5 DPA fi-
bers (Fig. 6¢c). KEGG pathway-based analysis facilitated
systematical study on complicated metabolic pathways and
biological behaviors of functional molecules. Among dif-
ferentially expressed genes comparing RIL118 and
Yumianl, there were 107 and 122 pathways determined at

the 0 DPA ovule and 5 DPA fiber, respectively. The most
20 pathways significantly enriched genes at two stages
were showed in Additional file 9.

Among the transcripts aligned to the G. raimondii
genome, four extremely differentially expressed genes
were found within the QTL region between HAU2119
and SWU2302 on chromosome 10 (corresponding to
chromosomes 6 and 25 of tetraploid cotton) (Fig. 4b).
These genes are Gorai.010G174800, Gorai.010G177300,
Gorai.010G180100 and Gorai.010G181500 in G.
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RIL118

Scale bars: 200 um (a); Scale bars: 1 mm (b); Scale bars: 2.5 mm (c, d)

Fig. 5 Phenotype valuation during early fiber development. a: Scanning electron microscope mages of the +1 DPA ovule; b, ¢ and d: Anatomy
microscope images of the +3, +5, +7 DPA fiber. Scanning electron microscope images were taken at a similar position in the middle of ovules.

Yumianl

raimondii (Table 4c), which are putative homologues of
GhA06G1256, GhA06G1277, GhA06G1301, GhAO6
G1313 in the corresponding G. hirsutum region (Fig. 4d
and Additional file 7).

To confirm whether the digital gene expression results
were reliable, and to investigate the activation of four differ-
entially expressed genes in the QTL region, we further

Table 3 Summary of sequence assembly after lllumina sequencing

tested the four genes using qRT-PCR in young leaf and fiber
tissues across six time-points, designing primers from the
A-subgenome of G.hirsutum [14]. The qRT-PCR analysis
demonstrated that three of the four genes were expressed in
a manner consistent with the RNA-Seq results (Fig. 7).
Among them, GhA06G1256, homologous to Gorai.010G174
800, exhibited a dramatic increase in 5 DPA fiber of RIL118.

Sample name Raw reads Clean reads Clean bases Error rate (%) Q20 (%) Q30 (%) GC content (%)
R118_0 10144830 9985483 0.5G 0.01 97.94 94.16 4374
Yumian 1_0 11213370 11081107 0.55G 0.01 98.01 94.35 43.77
R118_5 14141978 14104947 071G 0.01 99.03 96.58 4401
Yumian 1_5 14027353 13969205 0.7G 0.01 98.99 96.49 43.94

Raw reads: Statistical data for the original sequences. Clean reads: Calculation method is the same as for raw reads, but the statistics file is the filtered data. Clean bases:sequence
number*sequence length (transformed into G bases). Q20. Q30:Percentage of the number of bases of Phred score greater than 20, 30 respectively. GC content:Percentage of G
and C bases among the total base number
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RIL118_0 Yumian_0 RIL118_S

29780 1262 29315 28421

a

points (P-value < 0.05 and fold change > 1)

4436

b

Fig. 6 Venn diagram showing the number of differentially expressed genes in ovules and fibers. a b Differentially expressed genes between
RIL118 and Yuan 1 on 0 DPA ovule and 5DPA fiber; ¢ The expression of regulated genes were significantly different between two joint time

Yumian_S RIL118_OvsYumian] 0 RIL118_SvsYumian] 5

28965

457 4436

C

GhA06G1277, homologous to Gorai.010G177300 was up-
regulated in Yumian 1. GhA06G1301, homologous to Gor-
ai.010G180100, had higher transcript levels in Yumian 1
than inRIL118. However, the qRT-PCR result for GhA06G1
313, homologous to GhA06G1313 homologous to Gor
ai.010G181500, was not entirely consistent with RNA-Seq.
The RNA-Seq data for this gene at different fiber develop-
ment points was not supported well by qRT-PCR analysis.
RNA-Seq data analysis based on the G. raimondii genome
may reflect expression of both A and D subgenome-derived
loci in G. hirsutum, and qRT-PCR data may only reflect the
expression of A subgenome genes of G. hirsutum.

Discussion

Major QTL affecting fiber quality traits at T, locus

T, imparts heavy pubescence on the vegetative parts of
cotton and is associated with short, coarse fibers [38].

Several workers [47, 48] have backcrossed t;t; into T,T;
lines, and none have broken the short and coarse fiber in
T, T, plants without selection. In order to further under-
stand the relationship between T; and fiber traits, Kloth
found that the T; marker accounted for 10-75 % of the
phenotypic variation associated with seven fiber traits, and
suggested that the T; locus is linked to (or pleiotropic
with) numerous loci that influence fiber traits.

Based on a RFLP map of QTLs affecting density of leaf
and stem trichomes, Wright et al. first mapped the T,
locus on chromosome 6, and Lacape et al. and Guo et
al. [49] later reported pubescence to map to the same re-
gion. QTL for leaf and stem pubescence [50], and QTL
for FL, FM, FE, and FU [51-53] have also been mapped
to the T; region on chromosome 6 in tetraploid cotton.
Our previous studies mapped T; and the QTL for fiber-
related traits between marker BNL3650 and BNL4108

1.5+
s 2 ~ 2
3¢ 53 L
g8 RF
S o S ®
<32 z 2 0.5
S &5
14 @
0.0 D l
A A A A A
L LR
FIFFSS Y <2
3 =
Y -
5 6- 8 >
—
2 o8
08, 284
[=%
g3 33
<22 T2,
3 = 24
68 62
@1 &
0 04
Lol SN SN S S Lol SN SN SN SN
Q R ¥ L L K K KL
R IR O € &L P Y
Fig. 7 RT-PCR expression of the differentially expressed genes in leaf and during fiber development of RIL118 and Yumian1. All data were normalized
to the expression level of actin. Error bars indicate standard deviation of three biological replicates
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Table 4 Differentially expressed genes within the interval between SWU2302 and HAU2119

Gene ID FPKM log,FC_0 log,FC_5 Gene annotation
R118_0 Yumian1_0 R118_5 Yumian1_5

Gorai.010G174800 2989 1103 20834 74.0 14 48 AL7B4

Gorai.010G177300 1.49 199 4.1 24.5 -3.8 -26 XTH_8

Gorai.010G180100 68.6 1524 69.0 1382 -12 -10 UGPI6

Gorai.010G181500 42.1 106.80 496 106.2 -13 =11 GCST

FPKM fragments per kilo base of exon per million fragments mapped, FC fold changes

on chromosome 6 [36, 37, 45]. The present study
mapped T; and the QTL controlling fiber quality traits
to a 0.28-cM interval. These results suggested that a
major QTL affecting fiber quality traits exists at, or very
near, the T, locus.

Recombination suppression

In the present study, T; and the QTL controlling fiber
qualities were mapped into a 0.28-cM interval between
HAU2119 and SWU2302 on chromosome 6 from a F,
population with 6975 individuals. The 0.28-cM interval
corresponded to a 2.7-Mb physical distance on chromo-
some 10 in the G. raimondii genome [10], and a 5.3-Mb
physical distance on chromosome A06 in the G. hirsutum
genome [14]. The average ratio of physical-to-genetic dis-
tance is about 600 kb/cM in tetraploid cotton [46]. This re-
sult indicated that substantial recombination suppression
occurred in the region where the QTL was located. The re-
combination suppression might come from the origin and
position of the T; region. T; region might come from Ha-
waiian wild tetraploid cotton (G. tomentosum) [54, 55, and
also might be adjacent to the centromere. The centrome
reregion is often associated with depression of meiotic re-
combination [56]. Recombination suppression was also
found on chromosome 24 with a major QTL controlling
fiber qualities from the population with line 7235 as one
mapping parent, whose chromosome 24 might come from
G. barbadense or G. anomalum [57-59]. The suppressed
recombination in these regions suggests that positional
cloning of the QTL causal gene may be very challenging.

Identification of candidate genes for QTL controlling fiber
quality traits

Our study showed that fiber length of Yumianl was
much longer than that of RIL118 at early development
stages (from 1 to 7 DPA). RNA-Seq and qRT-PCR ana-
lysis showed that only three genes GhA06GI1256,
GhA06GI1277 and GhA06G1301 in the QTL region were
differentially expressed in the fiber of Yumian 1 and
RIL118. GhA06G1256 encodes a superfamily of aldehydede-
hydrogenases (ALDH), which can oxidize many endogen-
ous aromatic and aliphatic aldehydes, creating carboxylic
acids [60]. Family 7 aldehydedehydrogenase genes were

essential for responsiveness to osmotic stress in leaves and
seeds. Fiber development seemed to be concerned with
changes in cell turgor pressure [61] and achieved expansion
through the influx of water driven by a relatively high con-
centration of osmoticum within a cell [62]. Our result was
consistent with the report that the expression of
GhA06G1256 decreased gradually in the fiber of wild type
cotton but is just the opposite in a fuzzless mutant during
early development [63]. GhA06GI1277 codes a xyloglu-
can endotransglycosylase/hydrolase (XTH), an enzyme that
catalyzes the cleavage of donor xyloglucan chains and the
reconnection of their reducing ends to non-reducing ends
of other xyloglucan molecules. Some XTH genes have been
reported to loosen cell walls and lead cell expansion and
elongation [64]. The relationship of XTH activity and cell
elongation has been reported in elongating fiber [65, 66]. It
was also observed that XTH activity of wild-type fiber was
higher than that of the Li; mutant and the xyloglucan con-
tent was lower in wild-type [67]. OsXTH8 was highly
expressed in vascular bundles of leaf sheath and young nodal
roots where the cells are actively undergoing elongation and
differentiation [68]. GhA06G1301 encodes a plant-specific
glycosylphosphatidylinositol (GPI)-anchored protein, and
have been found to play roles in primary cell walls and sec-
ondary cell walls cellulose biosynthesis. GPI-anchored pro-
teins have various impacts on plant growth including root
hair development [69, 70], plant height [71], and pollen de-
velopment [72]. In further studies, we will clone these candi-
date genes from the genome and cDNA and investigate the
relationship between candidate genes and fiber quality traits
through transgenic technology.

Genetic dissection of complex traits through fine
mapping and RNA-Seq

The elucidation of gene and phenotype relationships re-
mains a major challenge in biology. Fine mapping of inter-
esting traits is an important basis for gene or QTL
cloning, but experimental approaches are labor-intensive,
time-consuming and expensive [73]. In order to reduce
the number of candidate genes, here it was possible to
form a bridge between the approaches of QTL mapping
and transcriptomics [34]. Gilbert et al. [74] and Thyssen
et al. [75] mapped candidate genes for the mutants Li;
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and Li, by the use of genomic and genetic data. In the
present study, a QTL controlling fiber quality traits was
mapped using a large population (6975 plants), to a 0.28-
cM interval corresponding to a 2.7-Mb physical distance
on chromosome 10 in the G. raimondii genome [10] and
a 5.3-Mb physical distance on chromosome A06 in the G.
hirsutum genome [14]. Although many markers existed in
the region, the resolution of QTL mapping could not be
improved due to recombination suppression in the region.
However, based on expression profiling, four candidate
genes were mapped to the QTL region. These studies
showed that the combination of fine mapping and RNA-
Seq is a powerful strategy to identify candidate genes for
QTL controlling complex traits. RNA-seq technology has
superior advantages on comparison with gene expression
arrays, however, it contains significant blind spots on the
gene structure alterations with the same expression level.
For the next work, we will clone all the genes and confirm
which one is the major QTL controlling fiber quality.

Fiber quality determined during early fiber development
Through comparing different cotton genotypes or species,
insights are emerging about the time in development at
which cotton fiber quality is established. Seagull et al. [76]
reported that the fibers of G. barbadense started out much
finer than those of G. hirsutum and fiber fineness was
mainly determined by their initial diameter. Global gene ex-
pression profiling between G. hirsutum and G. barbadense
showed that few meaningful differences were found at the
fiber thickening stage, whereas the most significant differ-
ences were found at earlier stages of development, which
suggested that their different final fiber quality properties
may be established at earlier stages of fiber development
[77]. Another study showed that targeted expression of the
IAA biosynthetic gene iaaM in the epidermis of cotton
ovules at the fiber initiation stage had increased fiber fine-
ness [78]. Our study showed that fiber length and genes
(ALDH, XTH and GPI-anchored protein) related to fiber
elongation were significantly different between long fiber
cultivar Yumian 1 and short fiber line RIL118 at the early
development stage. These results support the hypothesis
that final fiber quality might be determined during early
fiber development.

Conclusion

In summary, a major QTL controlling four fiber quality
traits is finely mapped to a 0.28-cM interval at T; region,
which correspondes to a 2.7-Mb physical distance on the
chromosome 10 in G. raimondii genome and a 4.4-Mb
physical distance on chromosome A06 in G. hirsutum gen-
ome. This finding indicates that substantial recombination
suppression occurring in the region where the QTL is lo-
cated. Fiber length of Yumian 1 was much longer than that
of RIL118 on 3 DPA and later. RNA-sequencing and RT-
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PCR analysis showed that three genes are largely expressed
between the two parents in the fiber development. These
three genes may be candidate genes within the major QTL
controlling fiber quality traits.

Availability of supporting data

The RNA-seq data discussed in this publication have
been deposited in the Sequence Read Archive of NCBI
under the accession number SRP070870. The data sets
supporting the results of this article are included within
the article and its additional files.
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