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Abstract

Background: Foxtail millet [Setaria italica (L.) P. Beauv.], a crop of historical importance in China, has been adopted
as a model crop for studying C-4 photosynthesis, stress biology and biofuel traits. Construction of a high density
genetic map and identification of stable quantitative trait loci (QTL) lay the foundation for marker-assisted selection

for agronomic traits and yield improvement.

Result: A total of 10598 SSR markers were developed according to the reference genome sequence of foxtail millet
cultivar "Yugu'. A total of 1013 SSR markers showing polymorphism between Yugul and Longgu? were used to
genotype 167 individuals from a Yugul x Longgu? F, population, and a high density genetic map was constructed.
The genetic map contained 1035 loci and spanned 1318.8 cM with an average distance of 1.27 cM between
adjacent markers. Based on agronomic and yield traits identified in 2 years, 29 QTL were identified for 11 traits with
combined analysis and single environment analysis. These QTL explained from 7.0 to 14.3 % of phenotypic
variation. Favorable QTL alleles for peduncle length originated from Longgu?7 whereas favorable alleles for the other

traits originated from Yugul except for qLMS6.1.

Conclusions: New SSR markers, a high density genetic map and QTL identified for agronomic and yield traits lay
the ground work for functional gene mapping, map-based cloning and marker-assisted selection in foxtail millet.
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Background

Foxtail millet (Setaria italica L.) has a long history of
cultivation in China. Archaeological evidence indicated
that foxtail millet was cultivated in some sites near the
Yellow River before ca. 5000-6000 BC [1]. Because
grains of foxtail millet are enriched for various amino
acids and nutritive minerals and the crop possesses some
advantageous traits, e.g. high photosynthetic efficiency
and drought tolerance, foxtail millet is still a very im-
portant crop in arid and semiarid regions of northern
China [2].
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Foxtail millet has a short generation time (depending
on the accession, approximately 5-8 weeks from plant-
ing to flowering, 8-15 weeks from planting to seed
maturity) and can produce hundreds of seeds per inflor-
escence [3]. Seeds of foxtail millet are generally not dor-
mant and can easily be cultivated at density of up to 100
plants/m” in the glasshouse or in the field in temperate
or tropical regions [3]. Because of its small genome
(~515 Mb) with a small number of chromosomes (2n =
2x = 18) and inbreeding nature, foxtail millet is a valu-
able model for investigating plant architecture, drought
tolerance and C, photosynthesis of grain and bioenergy
crops [3—-6]. Therefore, development of high yielding,
high quality, and stress resistant foxtail millet cultivars is
an important goal for foxtail millet scientists.

A high-contiguity “reference” genome sequence pro-
vides a natural platform for unifying information from a
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range of sequence-tagged DNA marker systems, toward
the efficient application of new approaches to build
upon knowledge of the biology of an organism [7]. Most
major crops now have a reference genome sequence,
and some have projected that within a few years all of
the ~200 widely used domesticates will have such a
resource [8]. Zhang et al. [9] produced a draft genome
(~423 Mb) for foxtail millet (S. italica) that was anchored
onto nine chromosomes and included 38,801 annotated
genes. Bennetzen et al. [10] generated a high-quality refer-
ence genome sequence, and the ~400-Mb assembly cov-
ered ~80 % of the genome and >95 % of the gene space.
Genome information for foxtail millet provides an
important resource for crop improvement. Based on the
reference genome (https://phytozome.jgi.doe.gov/pz/por-
tal.html), Pandey et al. [11] designed 21,294 microsatellite
primer pairs, and a total of 15,573 markers were physically
mapped on 9 chromosomes of foxtail millet. Jia et al. [12]
identified 2.58 million SNPs and used 0.8 million common
SNPs to construct a haplotype map of the foxtail millet
genome. Zhang et al. [13] isolated 5020 highly repetitive
microsatellite motifs and designed 733 SSR primer pairs,
which could produce reproducible amplicons and were
polymorphic among 28 Setaria genotypes. Yadav et al.
[14] identified a total of 30.706 TEs and developed 20,278
TE-based markers.

Genetic mapping is an essential prerequisite for activ-
ities such as marker-assisted selection, gene/quantitative
trait loci (QTL) cloning, genome sequence assembly, as-
sociation mapping, and evolutionary studies [15]. For
foxtail millet (S. italica L.), the first available genetic
linkage map was constructed from a cross between culti-
vars Longgu 25 and Pagoda Flower Green, and the map
included 160 RFLP markers spanning 964 cM [16]. Jia et
al. [2] constructed an integrated map with 81 SSR and
20 RFLP markers using an F, population from a cross
between S. italica acc. B100 and S. viridis acc. AlO0.
Zhang et al. [9] constructed a genetic map including 751
markers using a Zhanggu x A2 F, population with 480
individuals. Bennetzen et al. [10] constructed an inter-
specific genetic map including 992 SNP markers and
covering 1416 cM.

Virtually all yield component traits and most agro-
nomic traits of foxtail millet are quantitative inheritance,
so it takes much time to increase yield and improve
quality through traditional genetic improvement
methods. Based on QTL identified for quantitative traits,
molecular marker-assisted selection can rapidly increase
yield and improve quality of foxtail millet cultivars.
Doust et al. [17] located 25 QTL for vegetative branch-
ing and inflorescence architecture and identified candi-
date genes for control of branching from a cross
between S. italica acc. B100 and S. viridis acc. AlO.
Wang et al. [18] detected two QTL related to plant
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height, one related to panicle length, one related to pan-
icle and one related to grain weight using a Shen3 x
Jinggu20 F, population. Sato et al. [19] mapped stbl
more precisely on chromosome 2. Mauro-Herrera et al.
[20] identified 16 flowering time QTL. Additional, Gupta
et al. [21] identified eight SSR markers on different chro-
mosomes showing significant association with nine agro-
nomic traits through association mapping.

To date, a large number of foxtail millet SSR markers
have been developed, but SSRs used to construct a gen-
etic map are limited. Furthermore, the available foxtail
millet genetic maps have a limited number of markers,
and the QTL identified are far from the linked
makers. Therefore, it is urgent to explore more SSR
markers to construct high-density linkage maps and
identify many more QTL for marker-assisted selection
in foxtail millet.

In the present study, two foxtail millet cultivars Yugul
and Longgu7 were crossed to establish an F, population.
SSR markers developed from the foxtail millet genome
sequence were applied to construct genetic map and ex-
plore favorable QTL alleles from either parent to in-
crease yield and optimize agronomic traits. The results
will be valuable for future research on improvement of
foxtail millet yield and agronomic traits.

Result

Phenotypic analysis of agronomic and yield traits
Phenotypic analysis of agronomic traits was summarized
in Additional file 1: Table S1. All 11 agronomic and yield
traits showed a wide range of variation in 2013 and 2014
(Additional file 2: Figure S1). Skewness and kurtosis tests
showed that these traits had approximately normal dis-
tributions. Complex significant correlations exist among
agronomic traits (Additional file 3: Table S2). Period of
duration from sprout to mature was significantly nega-
tively correlated with other traits, except 1000-grain
weight, in 2013. In contrast, period of duration was posi-
tively correlated with other traits, except peduncle
length and main panicle length, in 2014. The other traits
have positive correlations with one another in 2013 and
2014, except that main panicle diameter had a non-
significantly negative correlation with 1000-grain weight,
and peduncle length was negatively correlated with
diameter of main stem, node number of main stem, and
main panicle diameter in 2014.

Physical mapping of SSR markers in the foxtail millet
genome

A total of 10598 SSR markers were developed from the
“Yugul’ reference genomic sequence (Additional file 4:
Table S3 http://www.ncbi.nlm.nih.gov/probe/?term=JAK%
5Bsubm%5D%20). Primer sequence alignment showed
that the 10598 SSR markers are different from those
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previously reported by Pandey et al. [11] and Zhang et al.
[13]. A total of 10535 SSR markers were located on 9
chromosomes, and the remaining 63 were located on un-
mapped scaffolds. The number of SSR markers on the
chromosomes ranged from 658 to 1874, and the markers
collectively covered approximately 99.89 % of the physical
length of the genome (Table 1). The marker density along
each chromosome ranged from 16.17 to 31.78 markers
per Mb, with an average of 26.25 markers per Mb. The
highest marker density per Mb (31.78/Mb) was on
chromosome 9, followed by 30.80/Mb on chromosome 1,
30.24 Mb on chromosome 5, and the lowest marker dens-
ity per Mb (16.17/Mb) was on chromosome 8.

The most abundant type of SSR was pentanucleotides
(4780, 45.85 %), followed by hexanucleotides (2295,
22.01 %), tetranucleotides (1925, 18.47 %), trinucleotides
(782, 7.5 %), dinucleotides (376, 3.6 %) and mononucleo-
tides (267, 2.56 %). Biased distributions of SSR motifs were
detected on all nine chromosomes. For example, more
mononucleotide microsatellite fragments containing C &
G units were isolated, and more pentanucleotide SSR
containing AAAAG & GAAAA, TTTTC & CTTTT,
AAAAT &ATTTT and TTTCT & TCTTT were isolated
(Additional file 5: Figure S2).

Among the diverse SSR types developed in the present
study, a higher level of genomic variants was detected
among the ‘di-" types (Fig. 1). The levels of SSR poly-
morphism and genomic variants were highest on foxtail
millet chromosome 8 (Fig. 1). The PIC value for each
chromosome ranged from 0.059 to 0.282, with a mean
of 0.111. Among the diverse kinds of SSR muotif, using
the ‘di’ type as an example, AT & TA motif-containing
markers gave the highest PIC value, while CG & GC
motif-containing markers showed the lowest genetic di-
versity among the accessions sampled in this study.

Genetic linkage map
Among 10598 SSR markers screened, 1013 (9.6 %) showed
clear polymorphism between Yugul and Longgu?7. The
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polymorphic markers were used to genotype the (Yugul x
Longgu?7) F, population, and 1035 loci were produced.
The 1035 loci were mapped into nine chromosomes,
covering 1318.8 cM, with average distance of 1.27 cM
between adjacent markers (Table 2).

Loci were not evenly distributed over chromosomes.
For example, Chr. 8 was mapped with 186 loci, whereas
Chr. 1 and Chr. 4 were mapped with only 86 and 67 loci,
respectively. The longest chromosome in terms of re-
combinational length was Chr. 9, which spanned
226.4 cM, and the shortest was Chr. 7, which spanned
only 102.9 cM. Four large gaps (>20 cM) were identified
on Chr. 2 (25.7 cM), Chr. 4 (20.4 cM), Chr. 5 (21.4 cM)
and Chr. 9 (21.4 cM) (Figs. 2 and 3).

To study colinearity and genome variations [10], dot plots
were made comparing genetic maps and the reference
genome sequence (Fig. 4). The average ratio of genetic-to-
physical distance in low- and high-recombination chromo-
somes was 2.8 cM/Mb (Chr.2) and 3.85 cM/Mb (Chr.9),
respectively (Table 3). All these SSR markers in the genetic
map covered 395.65 Mb of physical length, which spanned
about 76.8 % of the entire recombinational length of the
foxtail millet genome (~515 Mb).

Marker segregation distortion

Among the 1035 loci, 220 (21.3 %) showed segregation dis-
tortion (P <0.05) with 107 (48.6 %) favoring Yugul alleles
and 108 (49.1 %) favoring Longgu7 alleles (Table 2). The
remaining distorted loci (5) favored the heterozygous geno-
type, and are clustered on Chr. 2. Distorted loci were un-
evenly mapped on different chromosomes. No distorted
loci were mapped on Chrs. 3, 5 and 7, whereas 66 loci dis-
torted toward Yugul were clustered on Chr. 9, and 12 and
56 loci distorted toward Longgu?7 clustered on Chrs. 4 and
6, respectively. Chrs. 1 and 8 each had two large segregation
distortion regions (SDR). There were 15 loci distorted to-
ward Yugul and 9 distorted toward Longgu7 on Chr. 1.
There were 26 loci distorted toward Yugul and 31 dis-
torted toward Longgu7 on Chr. 8. Distorted loci toward the

Table 1 Number and coverage of SSR markers on the chromosomes of S. italica L

Chr. SSR marker Cover length (Mb) Chr. length (Mb) Coverage (%) Density (marker/Mb)
1 1298 4213 42.15 99.95 30.80
2 1307 49.20 49.20 99.99 26.56
3 1335 5064 50.65 99.98 26.36
4 891 40.22 4041 99.53 22.05
5 1429 47.23 47.25 99.96 30.24
6 827 36.00 36.02 99.96 2296
7 916 35.94 35.96 99.93 2547
8 658 40.68 40.69 99.97 16.17
9 1874 58.83 5897 99.76 31.78
total 10535 400.87 401.30 99.89 26.25




Fang et al. BMC Genomics (2016) 17:336

Page 4 of 12

Number of SSRs

Number of SSRs

6000

5000

4000

3000

2000

1000

2000

1800

1600

1400

1200

1000

Chomosomes

Fig. 1 PIC variation among SSR motifs (a) and chromosomes (b)
A\

-1 0.25

~—@—Number of SSRs

—&— Average PIC value
40.2
40.15

2
10.1
-1 0.05
T T T T T 0
Mono Di Tri Tetra Penta Hexa
SSR MoTIF

103

—&—Number of SSRs

—&— Average PIC value {025
10.2

)
40.15 -
40.1
10.05
T T T T T T T T 0
Chr.l1 Chr.2 Chr.3 Chr4 Chr.5 Chr.6 Chr.7 Chr.8 Chr.9

same allele appeared on the same chromosome or within

the same SDR.

QTL for agronomic and yield traits

A total of 29 QTL were identified for 11 agronomic and
yield traits with a range of 1-6 QTL per trait (Table 4).
The percentage of phenotypic variance explained by

individual QTL for each trait ranged from 7.0 to 14.3 %.

Among these QTL, 18 were detected from both com-
bined analysis and single environment analysis and two
were detected only from combined analysis. There were

Table 2 Distribution of loci and distorted loci in the Yugul x Longgu7 map

22 favorable alleles originating from Yugul and 6 from
Longgu?. For each QTL, the favorable allele originated
from the same parent as indicated by the additive effect

Chr. Loci Recombinant Length (cM) Average interval (cM) SD? loci SD ratio (%)
1 86 1332 1.55 24 279
2 123 1289 1.05 5 4.1
3 144 1826 127 0 0.0
4 67 113.9 1.70 12 17.9
5 m 176.7 1.59 0 0.0
6 95 1293 136 56 589
7 m 102.9 093 0 0.0
8 186 1249 0.67 57 30.6
9 112 2264 2.02 66 589
Total 1035 131838 1.27 220 213

? Segregation Distortion
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Fig. 2 Genetic linkage map and QTL controlling agronomic and yield traits for Chr.1, Chr.2, Chr.3 and Chr4. On each chromosome, the name of each
marker is shown on the right. The number on the left indicates the genetic distance in cM. QTL were identified for 11 agronomic and yield traits and
shown as period of duration (PD), peduncle length (PL), length of the main stem (LMS), diameter of the main stem (DMS), node number of the main
stem (NMS), main panicle length (MPP), main panicle diameter (MPD), straw weight per plant (SWP), panicle weight per plant (PWP), grain weight per
plant (GWP), and 1000-grain weight (TGW)

of QTL, except that JTGW5.1 were conferred by different
parents in 2014 and combined.

Discussion

GSA primer pairs

Since the foxtail millet genome sequence has been
determined, a large number of genome-wide versatile
makers have been developed from the reference genome

[9-14, 19]. However, a limited number of markers were
applied to construct genetic linkage maps and identify
QTL for agronomic and yield traits, except for 79 SSR
detected by Sato et al. [19] and 0.8 million SNP detected
by Jia et al. [12]. Although SNP markers have many advan-
tages for genetic mapping and QTL mapping, SSR markers
are still useful because of low cost and the use of standard
equipment for genotyping large populations. Furthermore,
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Fig. 3 Genetic linkage map and QTL controlling agronomic and yield traits for Chr.5, Chr.6, Chr.7, Chr.8 and Chr.9

SSRs have become a marker of choice in genotyping
because of their high abundance, high level of allelic
variation, co-dominant inheritance and analytical simplicity
[13]. In this study, we have developed 10598 SSR markers
based on the reference genome sequence. The newly
developed markers were different from those previously
developed by Zhang et al. [13] and Pandey et al. [11].
Among the 10598 SSR markers, 1013 showing polymorph-
ism between Yugul and Longgu7 were applied to
construct a genetic map and identify QTL for agronomic

and vyield traits. Therefore, the newly developed SSR
markers in the present study were useful for fine-mapping,
map-based cloning and molecular marker assisted breeding.

The data presented here support findings in several
previous reports [2, 22, 23], that dinucleotide repeat
unit microsatellites show higher levels of polymorph-
ism in foxtail millet than other SSR motifs. However,
in the present study, only a small portion of SSR
(376, 3.6 %) were dinucleotide repeats. Additionally,
the GC & CG dinucleotide repeats were few in
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Fig. 4 Genetic distance vs. physical distance for 1035 loci in foxtail millet. Genetic position of the 1035 polymorphism loci was plotted against the
corresponding physical position. The shaded regions with very low recombination rates could be the centromere

Table 3 Genetic and physical distances among 1035 loci in foxtail millet

Chr. SSR marker Genetic distance(cM) Physical distance(Mb) Chr. length (Mb) Average ratio of Maker density
genetic-to-physical (marker/Mb)
distance(cM/Mb)

1 86 1332 40.6 42.13 3.28 2.04

2 123 1289 45.84 49.2 2.81 2.50

3 144 1826 50.55 50.64 361 2.84

4 67 1139 4021 4022 283 1.67

5 111 176.7 47.18 47.23 3.75 2.35

6 95 129.3 3598 36 359 264

7 111 1029 35.88 35.94 2.87 3.09

8 186 124.9 40.63 40.68 3.07 457

9 112 2264 58.78 58.83 385 1.90

total 1035 13188 395.65 400.87 333 2.58
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Table 4 QTL controlling agronomic and yield traits in the Yugul x Longgu? F2 population
Trait QTL Chr. Year Nearest marker LOD Additive PVE (%)
PD (d) qPD3.1 3 2014 GSA03737b 2.56 1.98 7
Combined GSA03029 2.66 0.56 73
qgPD5.1 5 2014 GSA06282 3.12 2.2 85
Combined GSA06282 3.59 1.55 9.7
qPD6.1 6 Combined GSA06527 2.64 122 7.2
PL (cm) gPL5.1 5 2013 GSA06158 293 —2.34 8.1
gPL6.1 6 2013 GSA06988 3.71 -2.22 10.1
Combined GSA07015 5.02 -2.35 133
qPL6.2 6 2014 GSAQ07046 263 -22 7.1
qPL4.1 4 2014 GSA04745 271 -1.58 74
LMS(cm) qLMS1.1 1 2013 GSA00776 3.92 8.29 10.5
qLMS7.1 7 2013 GSA07802 2.74 6.3 7.5
Combined GSA07802 3.04 44 83
qLMS3.1 3 2014 GSA03915 2.58 56 7.1
Combined GSA03443 298 5.1 8.1
qLMse.1 6 2014 GSA07126 3.94 —6.24 106
Combined GSAQ07087 3.01 -49 82
DMS(cm) gDMS1.1 1 2013 GSA00780 4.95 0.09 13.1
Combined GSA00780 4.85 0.06 129
qDMSé.1 6 Combined GSA06467 2.7 0.04 74
NMS(no) gNMS1.1 1 2013 GSA00776 493 0.63 13.1
Combined GSA00780 3.6 0.56 9.7
gNMS7.1 7 2013 GSA07533 29 0.5 79
MPL(cm) gMPL1.1 1 2013 GSA00767 4.88 2.06 13
Combined GSA00767 449 1.24 12
gMPL2.1 2 2014 GSA02220 4.19 1.6 1.2
Combined GSA02220 297 1.2 8.1
MPD(cm) gMPD1.1 1 2013 GSA00767 3.84 0.22 103
Combined GSA00767 3.52 0.15 9.5
gMPD4.1 4 2013 GSA04656 335 0.21 9.1
Combined GSA04656 2.75 0.13 7.5
gMPD5.1 5 2013 GSA05516 3.67 022 99
Combined GSA05516 353 0.16 95
gMPD5.2 5 2013 GSA06084 3.51 0.24 9.5
gMPD8.1 8 2013 GSA08391 3.84 0.05 103
Combined GSA08391 2.99 0.05 8.1
gMPD6.1 6 2014 GSAQ07087 2.7 0.02 74
SWP(g) qSWP1.1 1 2013 GSA00780 545 343 14.3
Combined GSA00780 3.07 231 83
qSWP7.1 7 2014 GSA07381a 2.8 127 76
PWP(g) qPWP1.1 1 2013 GSA00767 4.72 3.26 126
Combined GSA00767 3.78 231 10.2
GWP(g) qGWP1.1 1 2013 GSA00767 4.35 2.87 1.6
Combined GSA00767 3.25 1.99 88
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Table 4 QTL controlling agronomic and yield traits in the Yugu1 x Longgu?7 F2 population (Continued)

Trait QTL Chr. Year Nearest marker LOD Additive PVE (%)
TGW(9) qTGWA4.1 4 2013 GSA04227 29 -0.14 79
qTGWS5.1 5 2014 GSA06084 291 0.07 8
Combined GSA06092 294 -0.02 8

+ and-: Positive values indicate that the Yugu1 allele increased the trait value and negative values indicate that the Longgu?7 allele increased the trait value

“Combined”: the average data of agronomic and yield traits from 2013 and 2014

Traits are period of duration (PD), peduncle length (PL), length of main stem (LMS), diameter of main stem (DMS), node number of main stem (NMS), main panicle
length (MPP), main panicle diameter (MPD), straw weight per plant (SWP), panicle weight per plant (PWP), grain weight per plant (GWP), and 1000-grain

weight (TGW)

number and showed lower levels of polymorphism in
this study than other motifs, similar to the other re-
ports [24-26].

High-density genetic map
Genetic maps often have the problem of unevenly distrib-
uted markers, resulting in gaps. During meiosis, recom-
bination does not occur evenly over the chromosomes.
Further, marker sequences are not evenly, or even
randomly dispersed, especially sequence repeats such as
SSR [7]. The present genetic map contained 1035 loci,
spanning 1318.8 cM, with an average of 1.27 ¢cM between
adjacent loci. Compared to other published foxtail millet
interspecific genetic maps [2, 17, 20] and the intraspecific
map [9, 16, 18, 19], the present map is the most saturated,
mainly due to the large number of SSR primer pairs and
approximately even distribution of loci across the genome.
The microsatellites were also not randomly or evenly
distributed over the nine chromosomes of foxtail millet.
For instance, chromosomes with fewer SSR loci (Chr.
1, Chr. 4) might have low marker diversity between
the two parents of our population. The recombina-
tional lengths of some chromosomes (e.g. Chr. 9)
were much longer than others, similar to other stud-
ies [9, 16, 19].

Segregation distortion

Segregation distortion may arise from lethality, partial male
or female sterility, gametic selection or zygotic selection
[27], and is common in mapping populations. Wang et al.
[16] indicated severe segregation distortion on chromosome
VIII, which suggested the presence of a gametocidal gene. In
the present study, there were two SDRs at the middle-upper
and bottom of Chr. 8. The distorted loci in two SDRs
skewed toward different parents, suggesting that there may
be two gametocidal genes (Gc) on Chr. 8. In wheat, gameto-
cidal genes (Gc) in hetero- or hemizygous condition kill both
male and female gametes lacking Gc genes [28]. On the
other hand, 66 loci significantly distorted toward Yugul
were clustered on Chr. 9, as reported by Sato et al. [19],
suggesting that there may be several genes involved in
pollen sterility located on different chromosomes. Intraspe-
cific hybrid pollen sterility reported previously in foxtail

millet may also contribute to distorted segregation [29]. In
addition, clusters of linked loci experiencing segregation dis-
tortion indicated that genetic hitchhiking commonly oc-
curred in this foxtail millet population.

QTL co-located on chromosome regions

In the present study, many QTL controlling different traits
were co-located in the same intervals of the genome. For in-
stance, 8 QTL controlling length, diameter and node num-
ber of the main stem; main panicle length and diameter;
and straw weight, panicle weight and grain weight per plant
were detected in the same interval of Chr. 1. It is a wide-
spread phenomenon in plant genomes that QTL controlling
related traits often co-locate in specific intervals. Gupta et al.
[21] identified that multi-trait association has been shown
by different markers with significant r* value like SSR b129
that is correlated with traits like FLW, PdL, GY, Inf Br, PcL
and GW, p75 with GY, GW and PdL. Li et al. [30] indicated
that QTL controlling appearance quality in rice were con-
centrated in a few places, with more than three QTL in
the same intervals on Chr. 3, Chr. 5 and Chr. 6. In the
present study, co-location of QTL for different traits in
the same intervals was consistent with significant positive
correlations between these traits. Co-located QTL may be
conferred by pleiotropic genes that play important roles in
the network of agronomic and yield development of fox-
tail millet, or by closely-linked alleles from a common par-
ent that confer favorable effects.

Origin of favorable QTL alleles

In the present study, the two parents had significant dif-
ferences in agronomic and yield traits. Yugul is tall, with
less tillering, larger panicles and more grains than
Longgu7, reduced seed shattering, and other advantages.
Among the 29 QTL identified for 11 agronomic and yield
traits, only those controlling panicle neck length had
favorable alleles originating from Longgu7. For the other
traits, favorable alleles were from Yugul as indicated by
QTL additive effects, except qLMS6.1. This result con-
firmed that favorable alleles of traits from the elite Yugul
are genetically delivered to its progeny, as found in other
crops, such as cotton [31-33].
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The potential of QTL for agronomic and yield traits

Stable QTL for agronomic and vyield traits are import-
ant to functional gene cloning and molecular breed-
ing. To date, the number of QTL identified for
agronomic and yield traits is limited in foxtail millet
[12, 17-20], and the QTL identified have large confi-
dence intervals and low reliability. Therefore, the
QTL mapped to date often fail to meet the require-
ments of molecular marker assisted selection. Among
the 29 QTL identified for 11 agronomic and yield
traits in this study, qMPD5.2, and qMPLI1.1, and
gNNMS7.1 could also be detected in the haplotype
map with 0.8 million SNPs [12]. Intergenomic ana-
lyses between foxtail millet and sorghum revealed
highly conserved collinearity [9]. Comparing QTL in this
study with sorghum QTL from a meta-analysis of sor-
ghum QTL trials [34], the region of qLMS6.1 could cor-
respond to the common region of QCL2_7, QCL3_7 and
QCL4_7; qMPL2.1 could correspond to QPANLG2.2;
qPD3.1 could correspond to QDTFL1_8 and QDTFL2_8;
qPD6.1 could correspond to QDTFL1_7 and QDTFL2_7.
Additionally, several QTL, such as qPL6.1, qDMSI1.1,
qSWP1.1, and qPWP1.1 had high additive effects
and phenotypic variation explained. QTL that are
stable across different populations and species and
have high additive effects and phenotypic variation
explained are valuable for map-based cloning, candi-
date gene identification and marker assisted
selection.

Conclusions

A total of 10598 new SSRs were developed and screened
to construct a high density intraspecific genetic linkage
map for foxtail millet, which included 1035 loci on the
nine chromosomes, and spanned 1318.8 ¢cM with 1.27 cM
average distance between adjacent markers. A total of 29
QTL were identified for 11 agronomic and vyield traits,
and the new genetic markers along with genomic-SSRs
linked to the QTL may help breeders to construct desir-
able allelic combinations and accelerate breeding pro-
grams for the development of foxtail millet cultivars with
improved agronomic performance through MAS.

Methods

Development of SSR primers

The reference genome sequence (v2.1) of the foxtail mil-
let genotype ‘Yugul’ was retrieved from Phytozome
(https://phytozome.jgi.doe.gov/pz/portal.html) and sim-
ple sequence repeat (SSR) marker primers were designed
using SSR locator 1(http://comp.uark.edu/~ashi/MB/
SSRLocator.html). The microsatellite motifs were searched
by the criteria: eighteen repeat units for mononucleotide
(Mono) repeats, nine for dinucleotide (Di) repeats, six for
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trinucleotide (Tri) repeats, four for tetranucleotide (Tetra)
repeats, three for pentanucleotide (Penta) repeats and three
for hexanucleotide (Hexa) repeats. The major parame-
ters for designing SSR primers were: (1) primer length
from 18 to 27 bases; (2) PCR product size ranges from
100 to 200 bp; (3) melting temperature between 55 and
65 °C with 60 °C being the optimum annealing
temperature; (4) GC content of 45—65 % with an optimum
of 50 %. SSR primers were named ‘GSA’ and synthesized
by Invitrogen Co. Ltd. (Shanghai, China).

Plant materials and trait examination

Two foxtail millet cultivars, summer cultivated variety
Yugul and spring cultivated variety Longgu7, were
chosen as parents for the mapping population. Yugul is
characterized by a long growth period, tall plant height,
minimal tillering, large panicle, many grains and min-
imal seed shattering. Longgu7 is characterized by ex-
treme early maturity, short plant height and a small
panicle. The mapping parents were crossed in winter of
2012 in Sanya, Hainan, China. F; individuals were self-
pollinated to produce F, seeds at Sanya, Hainan, during
spring 2013. Parents and 167 F, plants were planted in
Tianshui, Gansu, during summer 2013. One hundred
sixty-seven F,-derived lines were self-pollinated to pro-
duce F,.3 and F,4 lines. Agronomic and yield traits were
evaluated for F, individuals planted in summer 2013 and
F,.4 lines planted in summer 2014 in Tianshui, Gansu.
Data were collected on period of duration (PD, d), ped-
uncle length (PL, cm), length of main stem (LMS, cm),
diameter of main stem (DMS, cm), node number of the
main stem (NNMS, no), main panicle length (MPP, cm),
main panicle diameter (MPD, cm), straw weight per
plant (SWP, g), panicle weight per plant (PWP, g), grain
weight per plant (GWP, g), and 1000-grain weight
(TGW, g). For F,3 lines planted in Sanya, Hainan,
167 F,.3 family lines were sowed in November 2013, and
harvested in January 2014. During this period, the plants
grew weakly under low temperature and trait data were
not measured.

SSR marker assays

Total genomic DNA from fresh young leaves of the par-
ents and 167 F, individuals were extracted according to
a modified CTAB method [35]. All newly developed SSR
primer pairs were screened for polymorphism between
the mapping parents and those showing clear poly-
morphism were used to genotype the F, population.
PCR amplification and product testing were performed ac-
cording to Zhang [35]. Clear polymorphic DNA bands on
the gels were used for scoring and genotyping. Loci de-
tected were named with the primer name. For multiple
polymorphic loci revealed by the same primer pair, an extra


https://phytozome.jgi.doe.gov/pz/portal.html
http://comp.uark.edu/~ashi/MB/SSRLocator.html
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letter was added to the primer name, such as a/b/c, indicat-
ing the molecular size from the smallest to the largest.

Genetic map construction

The segregation of each SSR marker was tested by a
Chi-squared test to determine if it deviated significantly
from the expected Mendelian segregation ratio. JoinMap
4.0 [36] was used to group and order all loci with a LOD
threshold of 5.0. The Kosambi mapping function was
used to convert recombination frequencies into map
distances [37].

QTL mapping

The multiple QTL mapping method of MapQTL 6.0
[38] was implemented to identify QTL and estimate
their effects. LOD >2.5 was used to declare suggestive
QTL. Positive additive effects of QTL indicated that the
Yugul allele increased the phenotypic value, whereas
negative effects indicated that the Longgu7 allele in-
creased the phenotypic value. QTL names started with
‘q; followed by a trait abbreviation (e.g. PD for period)
and the chromosome number, followed by the number
of QTL controlling the same trait on the chromosome.
Graphical representation of the genetic map and QTL
bars representing 1-LOD reduction in likelihood was
carried out with Map Chart 2.2 [39].
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