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Abstract

Background: Most living organisms use sunlight as a source of energy and/or information about their
environment. Consequently, they have developed mechanisms to sense light quality and quantity. In the fungus

Trichoderma atroviride blue-light is perceived through the Blue Light Regulator Complex, which in turn up-regulates
a set of genes (blu) and down-regulates another set (bld), triggering asexual reproduction. To gain insight into this
process, we characterized the blu/ gene, which encodes a protein containing a C2H2 zinc finger domain.

Results: Ablu7 mutants show reduced conidiation at low light fluences, which is still clear even when exposed to
saturating light. For the first time we show a genome wide survey of light regulated gene expression in T. atroviride,
including RNA-seq analyses of the wild type and the Ablu7 strains after brief exposure to blue-light. Our data show
a reduction in the number of induced genes and an increase in down-regulated genes in the mutant. Light
activates stress responses and several metabolic processes in the wild type strain that are no longer activated in the
mutant. In agreement with the misregulation of metabolic processes, continuous exposure to white light strongly
inhibited growth of the Ablu7 mutant, in a carbon source dependent fashion. RNA-seq analyses under constant
white light using glucose as sole carbon source revealed that localization and transport process present the
opposite regulation pattern in the Ablu7 and wild type strains. Genes related to amino acid, sugar and general
transporters were enriched in the induced genes in the mutant and the repressed genes of the wild type. Peptone
supplemented in the media restored growth of the Ablu7 mutant in constant light, suggesting a role of Blu7 in the
regulation of nitrogen metabolism in the presence of light.

Conclusions: Blu7 appears to regulate light sensitivity in terms of induction of conidiation, and to play a major role
in supporting growth under continuous exposure to light. The diminished conidiation observed in Ablu7 mutants is

likely due to misregulation of the cAMP signaling pathway and ROS production, whereas their low tolerance to
continuous exposure to light indicates that Blu7 is required for adaptation.
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Background

Most organisms can perceive light as a signal and the
response to this stimulus depends on the length of
exposure and light quality, serving as a cue of environ-
mental conditions [1]. Fungi can perceive a wide range
of light wavelengths, from far red to ultraviolet (UV)
light [2—4]. Many reports on light responses in fungi are
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related to reproduction, which determines whether
they should enter asexual or sexual reproduction or
neither [4-8].

The best-characterized photoreceptor in fungi is the
White Collar Complex (WCC) of Neurospora crassa.
This blue light photoreceptor WCC, formed by the
White Collar (WC-1, WC-2) proteins, regulates pigmen-
tation, circadian rhythm, conidiation and phototropism
of perithecial beaks [9-11]. The WCC of N. crassa
controls all light responses characterized so far in this
fungus, despite the presence of red (phytochromes), UV
(cryptochromes) or green (opsin) photoreceptors in its
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genome [12-15]. However, a cryptochrome dependent
oscillator (CDO) driving rhythmic spore development
under constant light, where the Frequency/WCC oscilla-
tor does not operate, was recently described [16]. The
cog-1 (cry-dependent oscillator gate-1) mutation uncov-
ered this CRY (Cryptochrome) dependent oscillator in
N. crassa, which regulates light responsive genes inde-
pendently of the WCC. Similarly, as no obvious bio-
logical functions for Phy-1/Phy-2 or Nop-1 are reported,
their role might be masked by the WCC function. More-
over, in Aspergillus nidulans the phytochrome (FphA) is
involved in repression of sexual development and myco-
toxin production by red light, whereas the LreA and
LreB proteins (orthologues of the WC proteins) stimu-
late both [6, 17, 18].

Asexual reproduction induced by light in T. atroviride
results in the formation of the so called “conidiation
ring” in the periphery of the colony. The BLRC, formed
by the BLR1 and BLR2 proteins, is responsible for the
perception of blue light [19]. Like their N. crassa coun-
terparts, the BLR proteins have GATA zinc finger DNA
binding domains, that allows them to act as transcrip-
tion factors, and PAS domains to form a protein com-
plex. The BLRC controls the transcriptional response to
light and photoconidiation [19-21]. In T. atroviride a set
of genes targeted by the BLRC was identified by
microarray analysis after a 30 min pulse of white light
[22]. Rosales et al. [22] reported only 40 differentially
expressed genes, 30 blue light up-regulated (blu) and 10
blue light down-regulated (bld). From the 40 light
regulated genes, only the blu7 gene was predicted as a
putative transcription factor (TF) encoding a C2H2 zinc
finger DNA binding domain protein. In this sense,
microarray analyses covering the complete genome of
the fungus N. crassa revealed the activation of six genes
encoding transcription factors in response to light [15].
However, recently, high-throughput RNA sequencing
showed that there are 58 light responsive transcription
factors in N. crassa [23]. Furthermore, transcriptional
regulation by the N. crassa’s WCC in response to a brief
pulse (8 min) of white light was recently analyzed by
Chip-Seq, uncovering more than 400 genes regulated by
this complex, including 24 transcription factors (TFs) as
direct targets [24]. Currently, only six of the transcrip-
tion factors, (2 GATA (WC-1, SUB-1), 2 C2H2 (CSP-1,
SAH-1) and 2 Zn,Cysg (VAD-3 & Cutinase TF-1f3))
reported by Chen et al., [15] have been studied in
response to constant white light exposure. These tran-
scription factors regulate genes after illumination at early
or late stages [15]. However, only the absence of the
GATA factor sub-1 (submerged protoperithecia-1) showed
the expected lack of expression in late light regulated
genes after illumination with white light, as a compo-
nent of a second transcriptional cascade [15]. Despite

Page 2 of 21

the lack of late light regulated genes in Asub-1, asex-
ual reproduction and carotenoid accumulation after
illumination is similar to that of the wild type (WT);
suggesting a main role of sub-1 in sexual reproduction,
acting as a repressor of protoperithecia formation [25].
The recent findings by RNA-seq analysis of the light re-
sponse in N. crassa revealed a complex regulation of gene
expression during illumination, unveiling down-regulated
genes previously not found by microarrary analysis. In
addition, TFs negatively regulated after the light treatment
were discovered, integrating more pieces to the puzzle of
the light response in this fungus [23].

In A. nidulans the LreA and LreB proteins regulate
425 genes positively and 108 genes negatively in re-
sponse to a brief pulse of light, representing 5 % of the
genome [26]. Expression of the fIbC gene, a C2H2 TF
involved in conidiation, depends on the complex photo-
receptor system integrated by the Light Response
proteins LreA and LreB as well as the red light photo-
receptor FphA. fIbC activation turns on the expression
of the transcription factor brlA, a well-known C2H2 TF
regulator of conidiation [27]. The photoreceptor com-
plex also activates the expression of fIbB and flIbD
encoding bZIP and cMYC TFs, which also regulate the
expression of brlA, to promote the morphological transi-
tion of vegetative growth to conidiophores in A. nidu-
lans [26]. BrlA regulates the transition of the elongated
hyphae to metulae, which in turn activates abaA expres-
sion [28]. AbaA controls the correct formation of conid-
ial beaks, whose maturation is reached upon activation
of WetA [29]. T. atroviride has one orthologue of the
fIbC gene as putative transcriptional activator but its
expression does not appear to be affected by light, simi-
larly to what is observed in A. fumigatus [30]. Despite
the fact that there is no obvious briA orthologue in the
genome of T. atroviride, homologues of AbaA (37 %
identity with A. nidulans) and WetA (A. nidulans, 66 %
identity of the C-terminal region) have been identified.
Overall, it is clear that there are undiscovered light tran-
scriptional response pathways in T. atroviride. At least
part of such pathways must be BLRC targets, such as the
putative C2H2 transcription factor Blu7, acting down-
stream in response to light. The rapid activation of blu7
expression, by the Blr proteins, showed a maximum at
15 min both under constant illumination and after a
pulse of blue light, suggesting a role in the control of
early light regulated genes [31].

The cAMP signaling pathway is involved in several
processes in fungi, such as growth, reproduction and
nutrient utilization [32, 33]. In T. atroviride light stimu-
lates cAMP synthesis and asexual reproduction is stimu-
lated by addition of extracellular cAMP both in the dark
and in light on rich medium, but requires the presence
of the Blrl and Blr2 proteins. Intriguingly, the induction



Cetz-Chel et al. BMC Genomics (2016) 17:327

of asexual sporulation by sudden carbon starvation also
requires the presence of the Blrl and Blr2 proteins, but
the addition of extracellular cAMP triggers conidiation
even in the absence of the blrl or blr2 genes [34]. In
addition, extracellular cAMP changes the degree of
stimulation of conidiation provoked by different carbon
sources in the blr mutants of T. atroviride, both in a
positive and negative way [35]. Furthermore, the carbon
source available and the Blrl or Blr2 proteins act
together to stimulate growth and conidiation in the
presence of light or in the dark [35, 36]. These data led
to the proposal that the cAMP-signaling pathway regulates
conidiation genes through the action of the cAMP
dependent kinase (PKA) in coordination with the BLRC in
response to light [34]. On top of that, the BLRC dependent
PAS domain protein Envoy of Trichoderma reesei, another
photoreceptor, regulates cAMP production in the presence
of light mainly by inhibition of the corresponding phospho-
diesterase, linking regulation of asexual reproduction and
nutrient signaling by modulating the expression of the G-
proteins Gnal and Gna3 [37].

The present work describes the role of the putative
C2H2 zinc finger transcription factor Blu7 in the
response to light. RNA-seq analysis of the blu7 gene
replacement mutants was carried out after a pulse of
blue light (100 pmolm™2) to evaluate its role in photoco-
nidiation. The rapid accumulation of the blu7 mRNA in
response to light led us to hypothesize that it could be
part of a transcriptional cascade resulting in asexual
reproduction. The Blrl and Blr2 dependent induction of
asexual reproduction by glucose starvation led us ask if
the Blu7 C2H2 zinc finger protein is involved in this
process. Hence, we evaluated the transcriptional re-
sponse of the Ablu7 mutant when exposed to constant
white light on glucose as a carbon source. Surprisingly,
the transcriptional analysis of the light response uncov-
ered a role of the blu7 gene in nitrogen regulation in a
glucose dependent way.

Results

Blu7 is commonly found among Hypocreales

Blue light perception in 7. atroviride through the Blrl
and Blr2 proteins activates transcription factors to
control subsequent events of a transcriptional cascade.
One of this putative BLR dependent transcription factors
is encoded by the up-regulated gene blu7 [22]. The
previously reported blu7 cDNA (642 bp) [22], differed
from the gene prediction based on genome sequencing
(Id 138208; http://genome.jgi.doe.gov/cgi-bin/dispGene-
Model?db=Triat2&id=138208), in that it contained a
shorter open reading frame (213 aa). To establish what
was the actual gene, we sequenced the cDNA, which
corresponded to a 3002 bases long mRNA (GenBank Id
KU666056). The CDS corresponded with that of another
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predicted gene (Id 284873; http://genome.jgi.doe.gov/
cgi-bin/dispGeneModel?db=Triat2&id=284873; Additional
file 1A), and encodes a 537 amino acid protein with a
C2H2 zinc finger DNA binding domain at the C-terminal
region, which also contains a Nuclear Localization signal
(NLS), two proline rich (ProRich) motifs at the N-terminal
region, and a glutamine rich region predicted by Motif-
Scan (http://myhits.isb-sib.ch/cgi-bin/motif scan) as a pu-
tative activation domain [22].

To get insight into the putative function of the Blu7
protein we searched for homologues by BLAST against
the non-redundant database (nr) of the NCBI. Ortholo-
gues of the Blu7 protein are present in many, but not all
ascomycetes, and they are more commonly found in the
Hypocreales, being Trichoderma spp., Fusarium, Metar-
hizium and Colletotrichum spp. the most representative.
Interestingly, we did not find orthologues of Blu7 in the
N. crassa or A. nidulans genomes.

Absence of the blu7 gene results in reduced
photoconidiation in T. atroviride

We replaced part of the coding sequence of blu7, cover-
ing the polyQ, ProRich, and zinc finger C2H2 type
domain at the C-terminal region of the originally
predicted 213 amino acid protein [22], by a cassette
containing the selectable marker hph using the PCR
double-joint protocol [38]. Replacement of this locus
was validated by PCRs flanking the replacement cassette
and confirmed by Southern blot in six independent
transformants (Additional file 2A). Although deletion of
the blu7 locus was not complete, given that the replace-
ment eliminated the most relevant motifs, we expected
to generate a loss of function allele for this putative
transcription factor (Additional file 2B).

The growth rate of the mutants was not affected in
the dark, neither under constant white light illumination
(3.2 pmolm’zs’l), as compared to the WT (Additional
file 3A). However, a clear growth delay of the three inde-
pendent Ablu7 mutants tested was observed when the
strains were grown under constant blue light (4.9
umolm s, Additional file 3B). Noticeably, during the
first 36 h continuous illumination provoked the stron-
gest effect on growth but by the end of the assay all
colonies had the same diameter, suggesting that the
mutants do not adapt to or tolerate light normally, and
might, upon prolonged exposure to light, be able to
compensate for this defect. In contrast, when grown
under photoperiods of 12 h blue light-darkness (4.9
umolm ?s!) during 72 h, the Ablu7 mutants showed
the same growth as the WT (Additional file 3C). We
also observed that 90 % more conidia were produced
under constant blue (4.9 pmolm2s™') compared to
white light (3.2 umolm™2s™") in the WT, whereas in the
Ablu7 mutants the level of conidiation in blue or white
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light was similar (Additional file 3D). Production of
conidia by the Ablu7 mutants under constant white light
was 50 % of that observed for the WT, whereas when
exposed to blue light conidia production of the mutant
dropped to 33 % of that of the WT (Additional file 3D).
Since the BLRC is required to induce the formation of
a conidiation ring after a pulse of blue light, and blu7
expression is BLR dependent, we evaluated the produc-
tion of asexual spores of the mutants when exposed to
varying blue light fluence. The conidiation ring was not
formed at light fluences lower than 150 pmolm™ in the
Ablu7 mutants. Nevertheless, at higher blue light flu-
ences the conidiation ring is observed, but the mutants
never reach the yield of conidia of the WT (Fig. 1a, b).
Production of conidia is already detectable upon expos-
ure to 50 pmolm ™ of blue light in the WT, whereas the
Ablu7 mutants require 150 pmolm ™ to trigger the coni-
diation process, pointing to either a light perception or
downstream signaling defect (Fig. 1a, b). However, the
two strains appear to require approximately the same
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amount of photons to reach half-saturation of the
response, suggesting that there is no such a defect in
light perception. We then analyzed the expression of the
blu7, envl and, short aerial hyphae 1 (sahl) genes after
a pulse of 100 umolm ™ of blue light by semiquantitative
PCR (Fig. 1c). mRNA of blu7 was observed even after
120 min of light induction in the WT and, as expected,
it was not detected in the Ablu7 mutant. Expression of
the sahl and envl genes had the same profile in the WT
and the Ablu7 strain after light induction, suggesting
that light perception by the BLRC is functional. Thus,
the absence of conidiation after exposure to 100 umolm >
of blue light is possibly due to the control of a particular
set of genes by Blu7.

The transcriptional response to light of the Ablu7 mutant
Given that the Ablu7 mutants are unable to form the
conidiation ring at 100 umolm > blue light, we decided
to analyze the transcriptomes of the WT and a Ablu7
mutant under this condition to identify genes whose
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Fig. 1 Photoconidiation of the WT and Ablu7 strains after a pulse of blue light. a Induction of conidiation ring in WT and Ablu7 mutant strains in
response to increasing blue light fluence, as indicated. b Conidia production of the WT (squares) and the Ablu7 (triangles) mutant at different blue
light fluence. The inset is a zoom view of the induction of conidiation at fluences lower than 200 umolm 2. The strains were cultivated during 36 h in
the dark, then exposed to a pulse of blue light of 0, 50, 80, 100, 250, 500, 1200, 2400, 4800, 9600 and 11000 pmolm’? ¢ Semiquantitative RT-PCR of the
blu7, envl and sah1 genes after a pulse of blue light in the WT and the Ablu7 mutant; gpd was used as a control. Replicates of three independent
assays were used to evaluate conidia production by the mutant and WT strains. A t-test was applied to data with significant differences set at P < 0.05.
A logarithmic base 10 tendency line was obtained for the data of the WT (blue line) and Ablu7 mutant (green line)
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expression could be affected in the mutant, and that
could be involved in asexual reproduction. A total of
453 genes were differentially expressed in the Ablu7 and
461 in the WT in light as compared to controls kept in
the dark [cutoff Fold Change (FC) >2 (log2 |FC| >1),
False Discovery Rate (FDR) < 0.01; Additional file 4]. The
WT strain showed more up-regulated genes (246) than
the Ablu7 mutant (206), while the Ablu7 mutant pre-
sented more repressed genes (247) than the WT (215).
The expression levels of the main light responsive
genes in the WT and Ablu7 showed similar degree
of induction or repression. However, in the WT the
light regulated genes in average are more strongly
induced (Fig. 2a).

Hierarchical clustering of the differentially expressed
genes, based on expression level, results in six main
clusters for the total light responsive genes, as compared
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to their corresponding dark control (Additional file 5A;
Fig. 2b). The most responsive genes, up- or down-
regulated, were grouped in Clusters I and VI (Additional
file 4 and Additional file 5A). Cluster II contained
induced genes ranging from FC 2.3 to 8. Cluster III
contained genes up-regulated in Ablu7 in a FC range
between 2 and 2.5, whereas in the WT ranged from FC
2 to 3.5. In Cluster IV we found the less repressed genes.
In Cluster V the level of repression was similar in both
strains, although not in the same genes. Homologues of
previously reported light responsive genes in fungi were
found distributed in all clusters.

Among the genes regulated in common in both strains
we found six genes more strongly induced in Ablu7
(Additional file 6) and 26 genes with higher induction in
the WT (Additional file 6). On the other hand, among
this set of genes we found 32 more strongly repressed in
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Ablu7 (Additional file 7) and 16 genes with stronger
repression in the WT (Additional file 7).

In Cluster I we found two alleles (Id. 300570 and Id.:
529689) orthologous to the N. crassa ccg-1/grgl gene
(clock controlled gene-1), one of them (Id. 300570)
showed the highest level of expression in both the
WT (FC=292.3) and the Ablu7 (FC=149.4) mutant
(Additional file 4). Interestingly envI, a gene related
to photoadaptation of light regulated genes, was more
strongly induced in the WT (FC=73.9) than in the
Ablu7 (FC =58) mutant (Z-score < 0.2). The remaining
7 genes in Cluster I were related to catalytic activity,
protein binding and nucleotide binding with similar
expression profile in the WT and the Ablu7 strain. In
Cluster II we found an orthologue of the frq gene of
N. crassa (Id. 131340), involved in circadian clock
regulation, and the blul7 gene (Id. 160158), an ortho-
logue of the N. crassa al-3 gene (encoding a geranyl-
geranyl pyrophosphate synthase). The frq gene had
the same level of expression in both strains; but the
orthologue of al-3 was slightly more strongly induced
in the WT (WT FC=4.2; Ablu7 FC=2.9). Looking
into the transcription factor encoding genes, we detected
four in this cluster, three of them corresponding to
Zn,Cyse zinc finger proteins not yet studied, and the cp2
gene (Id. 319089), an orthologue of the gri-like gene of N.
crassa involved in the release of spores [39]. Only c¢p2
showed a slightly stronger induction in the Ablu7
(FC=3.8) than in the WT (FC=3.1). Interestingly,
the DNA photolyase phrl (Id. 86846) and a putative
base excision DNA repair (Id. 26345) protein encod-
ing genes had stronger induction in the WT than in
the mutant, both genes related to DNA damage response
(Additional file 4).

In Cluster III we detected two transcription factors,
the C2H2 zinc finger protein encoded by azfl (Id.
165197) and the GATA type subl gene (Id. 258818).
Induction of the azfl gene, involved in glucose growth
regulation by cyclin control in Saccharomyces cerevisiae
[40, 41] was stronger in the WT (FC = 3) than in Ablu7
(FC =2.1). Induction of subl was higher in the Ablu7
mutant (FC = 2.86) than in the WT (FC = 2).

In Cluster IV we found nine genes that were more
repressed in the WT than in the mutant, and 13
genes more repressed in the mutant than in the WT
(Additional file 4). The genes encoding a calcipresin
family protein (Id. 299076), a Ste20 like protein kinase (Id.
242521) were among the most repressed ones in the WT.
Calcipresin is a negative regulator of the Calcineurin-
Calmodulin phosphatase in yeast and mammals [42, 43].
In Aspergillus fumigatus and Botrytis cinerea, calcipresin
participates as a positive regulator of hyphal growth [44,
45]. In Cluster V, 6 genes were more repressed in the WT
than in the mutant, and 17 genes more repressed in Ablu7
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than in the WT. The genes with stronger repression in
both strains were detected in Cluster VI (violet, Fig. 2b).
The remaining genes were repressed to a similar extent in
the Ablu7 and the WT (Additional file 4).

Most of the induced genes in the WT and Ablu7
mutant belong to the GO-term metabolic process
(Fig. 2c). We observed the same subcategories of the
metabolic process in the WT and Ablu7 strains. How-
ever, genes belonging to the lipid metabolic process were
more abundant in the WT than in the mutant, whereas
in Ablu7 genes belonging to the protein metabolic
process were more abundant. The Ablu7 mutant lacked
two GO biological process categories (Developmental
process and Multicellular organismal process) among
the induced genes compared to the WT, whereas the
signaling process category was found as induced only in
the Ablu7 mutant. In contrast, both the mutant and WT
strain down regulated genes showed the same GO
categories in biological process, however more genes
constituted these categories in the case of the Ablu7
mutant (Fig. 2c). Even though the number of total light
regulated genes in each strain is similar, the Ablu7
mutant has less than half of uniquely induced genes (27)
of those found for the WT (67), and almost twice the
number of unique down-regulated genes (82/50; Fig. 2d).

BLAST2GO annotation by biological process showed
that the response to stress, nitrogen metabolism,
localization and biosynthetic process were up-regulated
only in the WT (Fig. 3a), while processes related to
single organism signaling and catabolic process were up-
regulated only in the Ablu7 mutant (Fig. 3a). Although
the same GO biological processes were present in the
down-regulated genes of both strains (Fig. 3a), those
genes down regulated by light only in the Ablu7 strain
showed 12 repressed genes whose expression in the WT
remained almost unchanged. Interestingly, more genes
repressed only in Ablu7 mutant integrated the GO
molecular process hydrolase activity, reported in T.
reesei as regulated by the BLR proteins and Envoy [46].
The expression profile of the genes 138295 (arrestin
binding domain) and 315387 (3-5’ cyclic phosphodiester-
ase), annotated in single organism signaling process,
were induced only in the Ablu7 mutant. Those genes
annotated as belonging to response to stress, were
induced in the WT, and showed low expression levels in
the mutant. Aside, genes related to correct protein
folding were more strongly repressed in the WT (Fig. 3b).
However the hsp70 gene, also related to correct protein
folding was induced only in the WT (Fig. 3c). Further-
more, we observed several genes encoding a ribonuclease
p-mrp, an Hsp70 protein, a trichotecene c-15 hydrolase, a
glycerol hydrolase, and a peroxisomal catalase with more
than two fold induction in the WT that in the mutant did
not show a change in expression after the light pulse
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(Additional file 8), making them potential targets of Blu7
regulation (Fig. 3¢).

The molecular function of the most repressed genes
(FC<0.4) in the mutant or the WT strains was related
to hydrolase activity, protein binding, transferase activity,
and catalytic activity (Additional file 8).

Previous microarray studies in 7. atroviride showed
light induced expression of only one gene encoding a
C2H2 zinc finger TF (blu7) [22]. Here, we found 25 TFs
differentially regulated by light in both strains (Additional
file 9). Twelve (48 %) belong to the Zn,Cysg zinc finger
family, five (20 %) to the C2H2 family, including Blu7, and
the remaining 32 % to other families (Fig. 3d, Additional
file 9). We detected six genes encoding TFs (Ids. 689,

288492, 53602, 173231, 164928, 234627; not studied yet)
repressed more than 2 fold only in the WT (Additional
file 9). On the other hand, we identified four transcrip-
tion factor encoding genes repressed more than two
fold only in Ablu?7.

The Blu7 protein is involved in tolerance to continuous
exposure to light

The reduction of colony growth of the Ablu7 mutant
when grown under constant illumination prompted us
to evaluate the response of the mutants and the WT
under constant blue light. Radial growth and mycelial
mass of the WT in darkness and constant exposure to
blue light (4.9 pmolm 2s™) was the same on PDA.
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However, a slight radial growth reduction at 10 and 32
umolm™s™' of blue-light was noticed in the WT,
although not statistically significant (Additional file 10).
In contrast, the Ablu7 mutant strain showed a stronger
growth reduction under constant blue light as fluence
increased (Additional file 10). The growth delay of the
mutant strain was observed already at 4.9 pmolm%s™"
(mycelial mass: 0.150+0.023 mg in the dark and
0.070+0.012 mg in light), and was more evident at
10 and 32 pumolm™s™' of blue light (Fig. 4a). Growth
inhibition by light in T. atroviride has been reported
to be dependent on the BLR proteins and the carbon
source available [35, 36]. Since the BLR complex induces
blu7 gene expression, we evaluated the growth of the mu-
tant under constant white light using glucose, glycerol,
mannitol or fructose as sole carbon sources on minimal
media and on PDA (Fig. 4b). We observed growth inhib-
ition under constant white light on all carbon sources
tested for both the WT and the Ablu7 mutant strains
(Fig. 4b). However, the growth reduction of the mutants
on medium containing glucose, glycerol or fructose was
40 % more pronounced than that of the WT, whereas the
growth rate on mannitol was similar to that of the WT
(Fig. 4c). In this regard, it has been clearly established that
primary and secondary metabolism processes are regu-
lated by light in fungi [47, 48], but how are they regulated
is still largely an open question.

To gain deeper understanding of the function of Blu7
in the light response, we obtained an overexpressing
strain (OEblu7) of the blu7 gene reported by Rosales et
al. [22]. For this purpose the 642 bp CDS was placed
under the control of the pyruvate kinase constitutive
promoter. The 213 aa long overexpressed version of
Blu7 (containing half of the polyQ, the pro-rich and the
C2H2 zinc finger domain) was enough to increase more
than twice conidiation after a pulse of blue light
compared to WT levels (Additional file 11). Growth of
the OEblu7 strain in darkness or in constant light (white
or blue) did not differ from that of the WT on minimal
media on glucose (Fig. 5a, b). However in constant light
colonies of the OEblu7 strain appear to be greener,
apparently due to higher production of conidia (Fig. 5a).
Indeed, the OEblu7 strain produced 76 % more conidia
than the WT under continuous exposure to white light,
and 110 % more conidia when exposed to blue light
(Fig. 5¢), and no inhibition of growth by light was
observed (Fig. 5a). The fact that the overexpressing
transformant still required light to conidiate indicates that
expression of blu7 is not sufficient to trigger conidiation,
and that other factors are required to achieve photoconi-
diation or that the Blu7 protein needs to be post-
translationally modified in a light dependent manner.

Carbon starvation induces asexual reproduction in 7.
atroviride [34]. Interestingly, in the absence of the Blr
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proteins there is no response to this stimulus [19], sug-
gesting that down stream targets of the Blr proteins
regulate conidiation and growth under carbon starva-
tion. The fact that growth of the Ablu7 mutants is
reduced when compared to that of the WT, but only in
the presence of light, indicates an alteration in their
capacity to respond to light rather than a defect on
carbon uptake. Consequently, we decided to analyze the
transcriptional response of the Ablu7 mutant and the
WT strain under constant light using glucose as sole
carbon source to identify the genes that are deregulated
and involved in growth under such conditions.

Blu7 is involved in glucose metabolism under constant
light
A Ablu7 mutant strain and the WT were cultivated
under constant white light or in darkness with 2 % of
glucose as sole carbon source during 60 h, and their
transcriptome analyzed by RNAseq. Genes showing
differential expression under these conditions may in-
clude direct targets of BLR, genes regulated by Blu7, and
genes regulated by events taking place further down-
stream in the signaling cascade. Global expression of
light regulated genes ranged from 891 to 0.005 FC for
the WT, and between 1910 and 0.006 FC for the Ablu7
mutant (Fig. 6a). A total of 1901 light regulated genes
were identified in both strains (Additional file 12), repre-
senting 16 % of the genome. In the WT strain, 1551 light
regulated genes were identified and 1380 in Ablu7, as
compared to the corresponding controls grown in the
dark. Interestingly we found five genes (Ids. 287033,
318140, 274363, 88516 and 267549) induced in WT but
repressed in the mutant and two genes (Ids. 91844 and
323077) repressed in the WT but induced in the mutant.
Twice as many uniquely induced genes were found in
the WT (355) as in the mutant (171), and 633 genes
overlapped between the two strains. In contrast, unique
down-regulated genes were almost the same number in
the WT (173) and the Ablu7 strain (186), and 390 com-
mon down-regulated genes were identified (Fig. 6d).
Hierarchical clustering of the light regulated genes
results in eight main groups depicted by colors and
roman numbers (Additional file 5B, Fig. 6b). In Cluster I
(Additional file 12), 13 genes integrated the highly
induced genes in both strains, which included the
conidiation marker gene con-10, an orthologue of N.
crassa [49]. Cluster II also has genes highly up-regulated
in both strains, however 11 genes were more induced in
the WT and 12 were more induced in the Ablu7 mutant
(Additional file 12). Interestingly, the envI gene was
more strongly induced in Ablu7 (FC = 142.3) than in the
WT (FC=57.3), suggesting an altered photoadaptation
response. Previously reported light responsive genes of
fungi were also found in this cluster, such as the
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orthologues of the N. crassa clock controlled genes 1 and  found in the Ablu7 strain. GO-terms of those genes
6 (ccg-1 & ccg-6), and con-13, showing similar induction  indicate that they are involved in metabolism (ie., cyto-
levels in both strains [48-50]. In Cluster III more genes chrome, oxidoreductase, homoserine o-acetyltransferase),
of the WT showed stronger induction, compared to that  stress responses (i.e., rdsI and cry-DASH) and transport
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(mfs, multidrug transporter genes). This cluster also
encompasses genes that respond more strongly in the
Ablu7 mutant than in the WT strain, two genes were
involved in transport (mfs multidrug transporter, general
transporter) and 5 genes were annotated in metabolism
(aldehyde dehydrogenase, 2og-fe oxygenase family, gly-
consiltransferase family, cytochrome, NAD dependent
epimerase dehydratase encoding genes). Cluster IV con-
tained genes more strongly induced in the WT than in the
Ablu7 mutant (Additional file 11). In this case, the main
GO terms enriched by biological process were related to
biosynthetic, metabolic and nucleobase-containing com-
pound metabolic process. In this cluster we found the
orthologues of the N. crassa clock-controlled gene 9 (ccg-9;

Id. 77441) and regulator of conidiation-1 (Id. 131307)
induced to a higher extent in the WT than in Ablu7.
Additionally, we observed 14 genes in the WT with more
than 3 fold induction compared to the Ablu7 mutant
(Additional file 12). Cluster V (Additional file 5B, 11)
contains genes with the lowest induction in the WT that
in the Ablu7 mutant were more induced. The main genes
in this group were annotated in transport and carbohy-
drate metabolic process. Mainly transporter encoding
genes annotated as amino acid permeases and MFS multi-
drug transporters with more than two fold higher induc-
tion in the mutant.

Cluster VI contains slightly repressed genes under
continuous illumination (0.5 >FC > 0.06). In this case,
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we observed 28 genes repressed more than two fold in
Ablu7; whereas in the WT strain, 89 of the genes
detected showed twice stronger repression compared to
the mutant. Genes more strongly repressed in Ablu7
were related mainly to metabolic process, and in the
WT to metabolic process and transport. In general, clus-
ter VII contains genes repressed to the same extent in
the WT and the Ablu7 mutant. However we detected 16
genes with more than two fold repression in Ablu7, two
of them with peptidase activity (a serine endopeptidase
and an alpha beta hydrolase) and the remaining genes
were related to catalytic activity and hydrolase activity.
In the case of the WT, we observed 13 genes repressed
more than two fold, as compared to the mutant. In
cluster VIII we found the five most repressed genes of
the light regulated set. The benzoate 4-monooxygenase
cytochrome P450 encoding gene was more strongly
repressed in the WT (FC=0.008) than in the mutant
(FC=0.02) and the cyclohexanone monooxygenase en-
coding gene (FC =0.012) was more strongly repressed in
the Ablu7 (FC=0.012) compared to WT (FC=0.03).
While the tricothecene c15-hydroxylase and two cyclo-
hexanone monooxygenase encoding genes were repressed
to the same extent in the WT and the Ablu7 strains.

Most of the GO-terms by Biological process (BP),
Molecular function (MF) or Cellular component (CC)
enriched in the up- or down- regulated genes were
present in both strains (Fig. 6¢). However, GO-terms
enriched of the biological process categories related to
Localization, Establishment of localization and transport
were induced in the Ablu7 mutant but repressed in WT
(Fig. 6¢). Interestingly, we observed that the molecular
function (MF) related to hydrolase activity (glycoside
hydrolase activity family 76, 18, 15, 55, 54, 81, 18 and
47; as well as chitinases 3, 18—1 and endo-beta gluca-
nases) was enriched only in the case of the WT induced
genes. Furthermore, the term transporter activity was
enriched in the WT repressed genes, and in the Ablu7
mutant induced ones. These data prompted us to analyze
the genes that are light regulated only in one of the
strains. Enrichment analysis of the unique up- or down-
regulated genes in the WT or Ablu7 are shown in Fig. 7a.
GO-terms: localization, establishment of localization and
transport were enriched in down-regulated genes of the
WT and enriched in the up-regulated genes of the Ablu7
mutant. We also observed GO-terms (small molecule
binding, nucleoside phosphate binding, phosphotransfer-
ase activity, nucleotide binding and protein kinase activity)
of induced genes enriched only in WT and GO-terms
(transferase activity) of induced genes enriched only in the
Ablu7 mutant. On the other hand, down-regulated genes
were enriched in the GO-terms carbohydrate metabolic
process and catalytic activity in both strains (Fig. 7a).
Looking into transport and transporter activity, GO-terms
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enriched in the genes repressed in the WT and those
induced in Ablu7, we observed that these categories were
mainly represented by general nitrogen transporter and
sugar transporter encoding genes (Fig. 7b). Interestingly,
the Ablu7 mutant presented general amino acid trans-
porter and general monosaccharide transporter encoding
genes as induced; whereas in the WT methionine trans-
porter and general sugar transporter genes were repressed
(Fig. 7b). These data indicate a nitrogen metabolism defect
in the mutants, so we cultivated the WT and Ablu7 strains
on minimal media supplemented with 0.2 % peptone
under constant light during 60 h (Fig. 8). Radial growth of
the WT and Ablu7 mutant was the same under con-
stant light or in darkness when grown on peptone-
supplemented media. However, production of conidia
in the Ablu7 mutant was much lower than in the
WT (Fig. 8), indicating that nitrogen sufficiency is
enough to tolerate prolonged light exposure but not
to support conidiation in Ablu7 mutants.

Discussion

Asexual reproduction of T. atroviride is induced by light,
nutrient limitation and mechanical damage. The BLR
complex does not only regulate photoconidiation, but
also conidiation in response to sudden carbon deprivation
[34]. Notwithstanding, downstream components of the
signaling pathway initiated through the BLR proteins are
largely unknown. A cDNA microarray analysis identified a
single putative transcription factor induced by a pulse of
white light. Based on that microarray approach, covering
only 12 % of the genes in the genome, 40 genes (2.8 %)
were found to be light regulated. To extend our know-
ledge of the transcriptional response of T. atroviride to
light to a genome wide scale, we used RNA-seq to analyze
the role of the putative transcription factor Blu7 in the
control of asexual development, light sensitivity, and
response to light on glucose as carbon source.

The transcriptional response of the WT and Ablu7
mutant, 30 min after a pulse of 100 pumolm™ of blue
light, showed 4.8 % of the genome responsive with more
than 2-fold change, similarly to N. crassa, A. nidulans
and A. fumigatus [15, 26]. Interestingly we observed a
significant correlation (R*=0.87) of the up-regulated
genes shared between the Ablu7 mutant and the WT, in
contrast the down-regulated genes were not correlated
(R* = 0.57), showing more negative values in log2FC of
the Ablu7 responsive genes. These data indicate that
Blu7 plays a particularly relevant role in tuning the
regulation of light repressed genes.

The GO-terms (developmental and multicellular or-
ganismal process) induced after the pulse of light only in
the WT were related to hypothetical genes, whereas in
the signaling category present only in the Ablu7 mutant
the genes encoded Envoyl, a 3’-5 cyclic nucleotide
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Fig. 8 Growth under continuous exposure to light is rescued by a

nitrogen rich medium. Growth of the wild type (WT) and Ablu7

mutant strain under constant white light (filled bars) or in the dark

(empty bars), supplemented or not with 0.2 % of peptone, as indicated
A

phosphodiesterase and an arrestin domain-containing
protein. In this regard, it has been established that envI
is an orthologue of the N. crassa vivid involved in the
negative regulation of light responsive genes in a process
called photoadaptation. While the cyclic nucleotide
phosphodiesterase controls cAMP levels by hydrolyzing
the phosphodiester bond in cAMP. In Trichoderma it is
known that there is a transient biphasic oscillation in
intracellular cAMP levels, activation of adenylyl cyclase,
and phosphorylation of proteins upon exposure to a
pulse of blue light. In fact, addition of exogenous cAMP
to Trichoderma promotes sporulation even in the dark
[51], whereas atropine, a compound known to inhibit
adenylyl cyclase in Neurospora [52], prevents sporulation
even after photoinduction [53]. In addition, the arrestin
gene, which encodes a protein that blocks coupling of
the GPCR to G proteins, was more strongly induced in
the mutant. Thus, changes in arrestin levels could
contribute to lower cAMP production by impairing
GPCRs GNA1 or GNA3 signaling. Furthermore, Envoyl
has been postulated as a regulator of cAMP levels in T.
reesei trough repression of the cAMP phosphodiesterase
[37], and the G-protein coupled receptors GNA1 and
GNA3 direct that control of cAMP levels by regulating
envl and their own expression. In agreement with our
observations of the light induction of blu7, the corre-
sponding mutants are less responsive to light, hence to
conidiation, possibly due to reduced phosphodiesterase
repression and partial loss of cCAMP signaling of GNA1
or GNA3 by the presence of the Arrestin protein.
Although, the cAMP accumulation in the Ablu7 mutant
after the pulse of blue light requires further investigation
in order to validate this hypothesis. Taking together
these data, we suggest that in the 7. atroviride WT strain
cAMP might allow asexual reproduction after the pulse
of light, but in the Ablu7 strain the missing signaling im-
pairs conidiation at low light fluence. At high blue light
fluence another level of regulation may exist, such as the
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accumulation of ROS or DNA damage, to induce coni-
diation in order to survive to extreme environments.

In agreement with these observations, a peroxisomal
catalase and one heat shock protein were induced only
in the WT, and another catalase was more strongly
induced in the mutant than in the WT. Thus, the typical
activation of stress responses observed in several fungi
after exposure to light [54] is reduced in the Trichoderma
Ablu7 mutants. It has been observed that oxidative stress
stimulates differentiation in N. crassa, Aspergillus and
Trichoderma [36, 55-57], and ROS produced upon light
exposure induces conidiation in N. crassa [58]. In this
sense, catalases and superoxide dismutases reduce ROS
after the light pulse to re-establish cell homeostasis. Fur-
thermore, it was recently shown that in B. cinerea the
white collar proteins are required to deal with ROS
produced under constant illumination, and that the Bcltfl
GATA TE a homologue of SUB-1 of N. crassa, is import-
ant to cope with oxidative stress [59]. In the Ablu7 mutant
described here we observed a higher expression of sub-1,
which might, consequently result in lower levels of ROS
after exposure to light, and might play a particularly
relevant role at low light fluences.

Another possible explanation for the reduced catalases
transcript levels and lower conidiation levels in the
Ablu7 mutants is that there is a higher reducing power
in these mutants than in the WT. In this regard, we
observed 11 genes with oxidoreductase activity repressed
only in the mutant. Also, we observed 6 genes encoding
enzymes with reductase activity (cyclohexanone mono-
oxygenase, lipooxigenase 1, berberin family protein, FAD
monooxygenase, FAD binding domain protein, NADPH
dehydrogenase) more strongly induced in Ablu7 and 4
genes (encoding: short chain dehydrogenase reductase,
oxidoreductase protein, FAD dependent oxidoreductase,
NADH-flavin oxidoreductase NADH oxidase family
protein) repressed only in the WT. In addition, there
were 2 genes (encoding cyclohexanone monooxygenase,
& FAD monooxygenase) repressed to a lower extent in
the Ablu7 mutant (FC 0.49, 0.47) than in the WT strain
(FC 0.36, 0.36). Therefore, the reduced levels of ROS
signaling and cAMP production would not be sufficient
to trigger conidiation in the Ablu7 mutants at low light
fluence. This defect might be compensated at high light
fluence by higher production of ROS, although under
those conditions these signals might be regulated through
another mechanism.

In N. crassa and A. nidulans the WCC controls
several transcription factors that in turn regulate
asexual reproduction [15, 17, 26, 60]. Among the
transcription factors regulated by a pulse of blue light
only 6 have GO annotation. We observed two TF
(cp2 and sub-1) more strongly induced in the Ablu7
mutant. GRHY-like or CP2 has been found in several
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fungal transcriptomes of light treatments [15, 24, 26].
Recently a CP2/GRHY-like was identified as a conidial
separation-2 (csp-2) allele in N. crassa and shown to
be involved in conidial separation and spore release
by cell wall remodeling [39]. Reports on the study of a
sub-1 deletion mutant showed that its presence is required
to activate late light regulated genes in N. crassa. However,
the mutant presents defects only in sexual develop-
ment [15, 25]. It might be that some of the genes
more strongly induced in the Ablu7 mutant are not
directly under its control, but at least are in part reg-
ulated by CP2 or SUB-1.

Under constant illumination, we observed a growth
delay in the Ab/u7 mutant at high light intensities (above
10 pumolm2s™"). This is in agreement with the require-
ment of the BLR proteins to grow in the presence of
blue or red light in T. atroviride [19]. Under constant
illumination the BLRC must regulate genes to deal with
the constant exposure to light (i.e., growth, morphogen-
esis, stress). The growth delay of the mutants under
constant blue light suggests that Blu7 participates in
light tolerance. Reduced tolerance of the Ablu7 mutants
was much more evident when glucose was used as sole
carbon source compared to rich media, such as PDA,
suggesting a role of Blu7 in carbon metabolism to toler-
ate continuous light exposure. The combination of light
with different carbon sources differentially stimulates
conidiation and growth, and this response depends on
the BLR proteins [35, 36]. In addition, the downstream
target of the BLRC, Envoyl of T. reesei is involved in
carbon dependent growth in the presence of light.

Since light only temporarily delayed growth of the
mutants, we suggest that they are affected in their
capacity to tolerate light. These phenotypes resemble
those of the AenvI mutants of T. reesei and T. atroviride
in constant light on PDA [61, 62]. In the envl mutants
of T. reesei the lack of the negative feedback loop, over
the light regulated genes controlled by the BLRC, leads
to a reduced growth [61, 62]. In this loop Envoy acts as
a repressor of negative regulators of growth activated by
the BLR proteins. Accordingly, the stronger induction of
envl in Ablu7 suggests that Blu7 participates as a
positive regulator of growth in this negative feedback
loop; however, further investigation is required to test
this hypothesis.

Conidiation of the Ablu7 mutant was not completely
impaired but reduced in constant light. This is also in
agreement with the phenotype of Aenvl mutants of T.
atroviride which produce more conidia than the WT
strain in response to light, likely due to a longer perman-
ence of mRNAs of photoconidiation genes, such as blu7
[62]. In the Ablu7 mutant, the increased induction of
envl may lead to fast shut down of the photoconidiation
genes and the absence of Blu7 in reduced cAMP levels,
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due to increased transcript levels of the cAMP phospho-
diesterase gene, and thereof of its enzymatic activity.

The differentially expressed genes observed in the Ablu7
and the WT grown on glucose containing medium under
continuous exposure to white light reflected major meta-
bolic changes in both strains compared to darkness. Since
in darkness, growth of the WT and the Ablu7 mutant was
similar, glucose uptake or metabolism is not deficient or
impaired. This points to a light activation of the Blu7
protein or its light regulation through an interacting
protein to support metabolic changes. Interestingly, GO-
terms related to localization and transport categories were
repressed in the WT and induced in the Ablu7 mutant.
These categories contained genes encoding sugar, amino
acid and multidrug transporters. In addition, we observed
two-fold higher induction of the nmmrA gene (Id
35890) in the WT (FC=3.9) compared to the Ablu7
mutant (FC =1.8). In A. nidulans, NmrA is a negative
regulator of nitrogen metabolite repression, which
controls expression of enzymes and permeases necessary
for the use of non-preferred nitrogen sources [63, 64].
Thus, the partial nitrogen metabolism deregulation ob-
served in the Ablu7 mutant might be due to nmrA repres-
sion, leading to the induction of several amino acid
transporter genes in Ablu7. In M. oryzae the tpsl
gene (encoding a trehalose-6-phosphate synthase), a
glucose-6-phosphate sensor, negatively regulates NMR
inactivating Nmrl-3. Also the multidrug and toxin
extrusion (MATE)-family pump Mdtl, a downstream
target of Tpsl, is involved in glucose assimilation,
conidiation and virulence [65]. Similarly, we observed
several monosaccharide and general sugar transporters
induced in Ablu7 and repressed in the WT, as well as
multidrug transporters induced in both strains. These
observations point to the light regulation of carbon
and nitrogen metabolism to stimulate conidiation and
growth in T. atroviride, respectively.

Carbon or nitrogen starvation results in the formation
of less branched compact hyphae than those observed in
rich media, in addition the sudden lack of nitrogen or
carbon source in 7. atroviride resembles the ring of
conidiation triggered by a pulse of light [19]. Interest-
ingly, in the absence of the blrl or blr2 genes the induc-
tion of conidiation by carbon (glucose) starvation is lost,
in contrast nitrogen starvation can still stimulate coni-
diation, suggesting an independent regulation of asexual
reproduction by the BLR proteins [34]. Thus we hypoth-
esized that nitrogen metabolism should be involved in
hyphal growth under constant light. Several genes en-
coding enzymes with peptidase activity (papain cysteine
protease, candidapesin-3 precursor, family al protease,
microbial serine protease, extracellular alkaline serine
protease), including an intracellular serine protease,
were induced in the WT strain, suggesting that protein
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degradation or recycling of nitrogen resources is acti-
vated in response to light. Nitrogen metabolism related
genes have also been found among the light regulated
genes of N. crassa [15, 23].

In accordance with these observations, we found an
allantoinase-encoding gene (Id. 300514), involved in
purine metabolism, induced only in the WT. Besides
two allantoate permeases (Ids. 257840 & 127784) were
repressed in the WT, but not in the Ablu7 strain, and
two allantoate transporters (Ids. 302043 & 35866) were
induced only in the mutant - allantoate is used as nitro-
gen storage in plants [66]. Transport of amino acids was
repressed in the WT, mainly methionine transport. In
contrast, in Ablu7 higher induction levels of genes
encoding amino acid transporters and allantoate trans-
porters were observed. These data are highly coincident
with the transcriptional response to nitrogen starvation
reported in the phytopathogenic fungus Magnaporthe
grisea [67]. Taken together, our data appear to indicate
that the absence of Blu7 mimics a nitrogen starvation
condition when Trichoderma is grown under constant
exposure to light, which results in clearly reduced
growth. Restoration of growth rate and radial colony size
of the WT and Ablu7 mutants by the addition of
peptone to the media suggests that light growth inhib-
ition is mainly due to nitrogen intracellular metabolism,
and that Blu7 indirectly participates in the regulation of
nitrogen metabolism in the presence of light under
limited nitrogen supply (Fig. 8). As a consequence of the
lack of Blu7, the mutants have lower capacity to recycle
nitrogen sources, requiring the induction of general
amino acid transporters, which in the presence of
peptides from peptone are taken up and metabolized,
resulting in much better growth.

We also observed misregulation of the ras GTPase
(rsr; 1d. 300901), which was induced to higher levels in
the Ablu7 (FC =5.2) mutant than in the WT (FC = 2.0).
Activation of this pathway in yeast involves a G-protein
coupled receptor and RAS signaling to regulate glucose
availability [68, 69]. From the GPCRs regulated in both
strains only the predicted GPCR gene Id. 40423 is more
strongly induced in the Ablu7 mutant, which might act
as an upstream regulator. GPCRs are involved in amino
acid and carbon source sensing as well as in cAMP
perception. The gprli gene (Id. 83166), encoding a
homolog of the N. crassa cAMP receptor Gprl [70, 71],
is induced only in the WT strain. Silencing of gprI in T.
atroviride P1 reduces growth, conidiation and secondary
metabolism [71]. In Yeast the GPR1-GPA2 GPCR sys-
tem is involved in the regulation of cAMP signaling [69].
The absence of Gprl in the Ablu7 mutants in conjunc-
tion with the increase in cAMP phosphodiesterase might
be reflected in the lack of protein kinase A (PKA) activ-
ity resulting in the loss of this signaling pathway to
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regulate the light response. PKA signaling after a pulse
of light is required to regulate up or down responsive
genes, also regulated by the BLR proteins [19, 34]. We
further observed 6 serine-threonine protein kinase en-
coding genes induced only in the WT, which might exert
posttranslational modifications in transcription factors,
consequently affecting regulation of gene expression in re-
sponse to light, or might directly affect enzyme activity,
resulting in altered metabolism.

An overview of the data presented here is depicted in
Fig. 9. The BLRC perceives light and induces blu7
expression. Transient increase of cCAMP by inhibition of
the 3'-5" cAMP phosphodiesterase leads to activation of
photoconidiation genes by PKA. Growth rate under
constant light depends on nitrogen availability,
controlling the uptake from the media or mobilization
of stored nitrogen (Fig. 9).

Conclusions

The present work describes the transcriptional response
to light of the mutant in the putative transcription factor
encoding gene blu7, a BLRC dependent light regulated
gene in T. atroviride. The blu7 gene is required for
photoconidiation at low but not at high blue light
fluence. The absence of blu7 resulted in increased levels
of expression of the 3’-5 cAMP phosphodiesterase
encoding gene, which could explain the reduced conidia-
tion observed in the mutant. Furthermore, the increased
expression of envl observed in the Ablu7 strain under
constant illumination suggests linked roles in photoadap-
tation between these two regulators. Interestingly, the
growth inhibition response of the blu7 replacement
mutant to light was reduced in rich media. The decreased
expression of energy and metabolism related genes in the
Ablu7 mutant under constant light may explain the slower
growth, rendered by defective nitrogen metabolism.

Ethics (and consent to participate)
Not applicable.

Consent to publish
Not applicable.

Methods

Strains and culture media

All Trichoderma strains were cultivated on potato dex-
trose agar (PDA) at 28 °C under the light regime indi-
cated. The wild type strain used was IMI206040. The
Ablu7 mutant was obtained by replacement of 664 bp of
the gene locus of the WT strain IMI206040. An overex-
pressing version of blu7 was generated using the pki
(pyruvate kinase) constitutive promoter inserted in plas-
mid pUE10 [31]. Culture minimal medium (MM) contains
K,HPO, 5.1 mM, MgSO, 1.7 mM, KCl 2.7 mM, NH;NO;
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Fig. 9 Model of the role of the transcriptional regulator Blu7 in the molecular response of T. atroviride to light. a Molecular responses to a pulse
of blue light. Exposure of T. atroviride to low fluence blue light perceived by the BLRC results in the transcriptional activation of blu7, subl, azfl,
xInr and 20 other TF encoding genes, as well as the induction of Envoy. Blu7 tunes photoconidiation by repressing the expression of the 5-3'
cAMP phosphodiesterase encoding gene (PD). Likewise, the induction of env! enhances PD repression, while transitory accumulation of cCAMP
activates PKA that in turn regulates photoconidiation genes [34]. Nitrogen mobilization (@amino acid transporters) is indirectly regulated by Blu7
and modulates the balance between conidiation and mycelial growth. b Molecular responses to continuous light exposure. Under constant white
light, blu7 induction by the BLRC is regulated by the carbon source available in the medium. ENV1 negatively regulates BLRC target genes for
adaptation to constant light. When T. atroviride is grown on glucose containing medium, blu/ limits the induction of envi. Blu7 is required for
nitrogen mobilization through the inhibition of the orthologue of AreA by the negative regulator NmrA up-regulation. In addition, hyphal growth
and conidiation are tightly regulated by the amount of FIbC to induce the sequential expression of the transcription factors C2H2 =»AbaA = WetA.
Black lines indicate control points supported by our RNA-seq data and gray lines are based on previously reported experimental evidence

125 mM, FeSO, 13.1 pM, ZnSO, 7 pM and MnCl,
7.9 uM, and 2 % glucose as carbon source, unless other-
wise indicated, and 1.5 % bacto-agar, and was adjusted to
pH 4.8. Constant white light treatments were carried out
with a fluorescent lamp at a 4.9 pmolm s fluence. Blue
light treatments were carried out in a chamber equipped
with light emitting diodes (LED). All other manipulations

were carried out in the dark using only a safety red light
with 0.5 pmolm s ™" fluence.

RNA and DNA manipulations

The blu7 cDNA sequence was initially obtained from a
standard ¢cDNA library generated from polyA" RNA ob-
tained from blue-light induced mycelia of T. atroviride.
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Since this cDNA appeared to be incomplete, we walked
on the transcript using RT-PCR reactions and primers at
different positions up-stream of the original transcript,
aided by the genome sequence. The complete cDNA
clone sequence was deposited in the GeneBank (Id
KU666056). This sequence was supported by our Illumina
transcriptome data (see below).

Gene replacement Ablu7 constructs were obtained by
the double-joint PCR method [38]. The first PCR was
made using the primers Pblu7-F, PQblu7-R and TQblu7-
E, Tblu7-R (Additional file 13) to amplify 1.4 kb frag-
ments up- and down-stream of the 664 bp fragment to
be replaced respectively, and joined them to 1.4 kb of
the hygromycin phosphotransferase resistance cassette
(hph), amplified by PCR from plasmid pCB1004 using
the primers hph-F and hph-R (Additional file 13), in a
second PCR without primers. Finally, the nested primers
N5’-BLU7-F and N3’-BLU7-R were used in a third PCR
reaction to amplify the 4.2 kb construct containing the
joined 5’'UTRblu7-hph-3"UTRblu7 fragments. Transfor-
mants overexpressing blu7 were obtained using a con-
struct made by amplifying the cDNA of blu7 with the
primers ORFBLU7-F and ORFBLU7-R and cloning it in
TOPO-PCR 2.1. The plasmid was then digested with
EcoRI and BamH]I, and the cDNA fragment inserted into
EcoRI and BamHI sites of pUE10 [31]. The resulting
plasmid carries the blu7 cDNA under the control of the
constitutive promoter of the pyruvate kinase gene from
T. reesei, and 1.4 kb of the 3" UTR of the blul7 gene of
T. atroviride. Both constructions were directly used for
PEG-mediated protoplast transformation of the WT
strain as previously described [38]. After three rounds of
single spore isolation, fungal DNA from the WT, Ablu7
and OEblu7 strains was obtained according to the proto-
col reported of Raeder and Broda [72]. Southern blot
analysis of the Ablu7 mutants was carried out digesting
genomic DNA with Xhol, using as probe a 1.4 kb of the
terminator region of blu7. For RNA preparation, mycelia
were scraped from the surface of cellophane under red
safelight (0.05 pmolm>s™"), immediately frozen in liquid
nitrogen, and RNA extracted with TRIzol according to the
manufacturer recommendations (Invitrogen, GIBCO-BLR).

Light treatments of Ablu7 mutants

Light-response curves of WT and Ablu7 mutants to blue
light fluence were carried out in a growth chamber
equipped with light-emitting diodes (Percival Scientific,
Wisconsin, U.S.A.). A plug of mycelium from a colony
grown on PDA for 48 h in darkness was used as inocu-
lum in all experiments. Inocula of all strains (WT,
Ablu7, OEblu?7), for photoconidiation experiments, were
cultivated in darkness for 36 h before exposure to a
pulse of blue light of 50 (2.9 umolm’zs’l, 17.2 s), 80 (2.9
umolm ?s™!, 27.6 s), 100 (2.9 pumolm ?s™!, 34.5 s), 150
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(6.8 umolm’zs’l, 22's), 250 (6.8 pmolm’zs’l, 30.7 s), 500
(10.35 pmolm™2s™!, 345 s), 1200 (282 pmolm s,
42,5 s), 2400 (30.7 pumolm™s™!, 782 s), 4800 (30.7
pmolm’zs’l, 156.4 s), 9600 (30.7 pmolm’zs’l, 312.7 s)
and 11000 (30.7 pmolm?s™!, 358.3 s) umolm™>, and
then placed back in the dark for 36 h. Conidia were col-
lected from plates with a micropipette upon addition of
2 ml sterile water to the plate and carefully scratching the
surface of the colony with a sterile metal rod. Conidia
from three independent biological replicates for each
strain were then quantified using a hematocytometer.

For gene expression analysis of the blu7, envl, sahl
and gpd genes after a pulse of light, T. atroviride WT or
Ablu7 mutant strain were exposed to 100 umolm™ (2.9
umolm ?s™, 34.5 s) of blue light using three biological
replicates. After the blue light pulse, the mycelia were
incubated in the dark for 30 min and collected for RNA
extraction. Cultures of the WT or Ablu7 strains main-
tained always in the dark were used as controls of gene
expression. Semiquantitative RT-PCR analyses were per-
formed with superscript II transcriptase and Recombin-
ant polymerase kits from Invitrogen. PCR’s were carried
out in a final volume of 25 pl with the protocol specified
by the manufacturer. To obtain the cDNA, 2 ug of total
RNA were used from each condition using reverse
specific primers for each gene evaluated. The pairs of
primers (Additional file 13) used were qBlu7-F — gBlu7-R
for blu7, SAHIRT-5 F — SAH1RT-3R for sahl, ENV-
F — ENV-R for envl and GPD-F - GDP-R for gpd.
The PCR condition was 95 °C, 3 min; 20 cycles of
95 °C, 20 s; 60 °C, 20 s and 72 °C, 20 s; and a
1 min final extension at 72 °C.

Growth assays under constant blue light of 4.9, 10 and
32 pumolm™2s™" were carried out using a light emitting
diodes (LED) equipped chamber at 28 °C during 72 h.
Radial growth of the WT and Ablu7 mutant strains was
determined every 12 h.

To evaluate the impact of continuous exposure to light
on growth with carbon limitation, the WT and Ablu7
mutant strains were cultivated in minimal media with
2 % glucose, glycerol, mannitol or fructose under a 4.9
umolm s~ white light at 28 °C during 72 h.

Mycelium of the WT strain (IMI206040) and the
Ablu7 mutant collected after 60 h of growth under
constant white light (4.9 umolms™") on glucose as sole
carbon source was used for RNA-seq. Cultures of the
WT and Ablu7 mutant maintained always in the dark
during 60 h were used as controls for gene expression
analyses. All experiments were carried out using three
biological replicates for each strain in different days.

All RNA samples (Blue light pulse or continuous illumin-
ation) were processed and subjected to high-throughput
sequencing using an Ilumina HiSeq'™2500 in the core
facilities of Cinvestav (Irapuato, Guanajuato, Mexico).
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Analysis of the transcriptome data

The Illumina sequencing data was grouped in 6 reads
libraries of each light treatment for WT or Ablu7
mutant, 3 read libraries for the dark control and 3 for
the light treatment, derived from three biological repli-
cates carried out in independent days, starting from
different pre-inoculum. Read libraries were mapped to
the genome of T. atroviride using bowtie2 version 2.0.0-
beta7 with very sensitive default parameters [73, 74].
Reads counts were normalized by counts per million in
the R version 2.15.2 environment using EDGER [75].
The same program was used to obtain differentially
expressed genes using a cut-off of two-fold change and
0.01 of FDR between samples. Protein sequences in
FASTA format was obtained from the Frozen gene
catalog of T. atroviride genome V2 (http://genome.jgi.-
doe.gov/Triat2/Triat2.download.html). The correspond-
ing proteins were compared against the MIPS database
with a cutoff of 1x 107, GO term assignation was
performed using an E-value<1 x107>, an annotation
score <40, a GO weight of 5 [76]. Additionally, we used
BLAST2GO with an E-value < 1x107° for the annotation
of all light regulated genes [77]. The differentially re-
gulated genes associated proteins were annotated and
showed as multilevel graphs by biological process, mo-
lecular function and cellular component, the representa-
tive level with more than 5 components was showed. GO
enrichment analysis for each set of differentially expressed
genes was performed using as reference the normalized
set of genes with evidence of expression with at least two
counts in one of the analyzed condition and with at least
six counts among all conditions. In this analysis, Blast2GO
[77] was used to compute enriched GO terms applying
Fisher’s exact test as implemented in GOSSIP [76, 78].
GO terms with 0.05 FDR and g-value < 0.05 were consid-
ered as significantly enriched in each comparison.

Availability of data and materials

RNA-Seq were deposited in the NCBI BioSample data-
base (http://www.ncbi.nlm.nih.gov/biosample/) with the
IDs SAMNO04022924 and SAMNO04025729, and linked to
the sequence read archive (SRA, http://www.ncbi.nlm.-
nih.gov/sra) with the following IDs: SRS1050830 and
SRS1051774. The sequence of the blu7 cDNA can be found
in the GeneBank with accession number BankIt1891430
Seql KU666056.

Additional files

Additional file 1: Figure S1. A) Overview of 4500 bp of the blu7 gene
locus showing the reads mapping to this region. The JGI Genwise
predicted structure for the blu7 gene (ID 284873) and that derived from
our cDNA clone are schematically represented. B) Schematic
representation of the domains found for the Blu7 deduced protein. The
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scheme indicates the proline rich region (PP, green box), the putative
activation domain (QQQ, red box), the nuclear localization signal (NLS,
light grey box) and the C2H2 zinc finger domain (ZnF C2H2). Numbers
indicate amino acid positions. The dotted box shows the sequence
deleted as a result of the gene replacement event. (JPG 1968 kb)

Additional file 2: Figure S2. Southern blot analysis of blu7 mutants. A)
Schematic representation of the gene replacement event. Blue and red
boxes represent the blu7 ORF and its 5 & 3’ flanking regions, respectively;
and restriction sites for Xhol, the enzyme used for DNA digestion
indicated. The genes replacement construct is represented by the
hygromycin resistance cassette (hph; green box), and the blu7 5" & 3
flanking regions (red boxes). The probe, a 1.4 kb-long segment
corresponding to the 3" UTR of the blu7 locus, is also indicated. B)
Autoradiogram of the Southern analysis. The expected 2.7 kb signal for
the WT and the 4.6 kb for the Ablu7 is shown due to a loss of the Xhol
site by the hph replacement. JPG 873 kb)

Additional file 3: Figure S3. Light growth response of the WT and
Ablu7 strains under constant illumination. A) Growth rate of WT and
Ablu7 mutant during 72 h in darkness (D) or constant white light. B)
Growth rate of WT and Ablu7 mutant during 72 h in constant blue light.
Q) Growth rate of the Ablu7 mutant and WT under photoperiod of blue
light- dark conditions during 72 h. D) Conidia production of the WT and Ablu7
mutant under constant white (3.2 umo\m’zs’]) or blue (4.9 umolm’zs’w) light
treatments. One-way ANOVA and a pairwise t-test were applied to 6
independent replicates; asterisks indicate statistically significant
differences (a < 0.05). (JPG 1758 kb)

Additional file 4: Table S1. List of responsive genes in WT or Ablu7
30 min after a pulse of 100 umol of blue light compared to dark control
of each strain. (CSV 77 kb)

Additional file 5: Figure S4. Heatmap of the overall light regulated
genes of WT and Ablu7 mutant. Hierarchical clustering of the differential
genes after a pulse of 100 umolm ™ of blue light (A) or under constant
white light (B) of the WT and Ablu7 mutant is shown. JPG 1801 kb)

Additional file 6: Table S2. List of the most induced genes 30 min
after a pulse of 100 umolm ™ of blue light shared in the mutant and the
WT strain. (CSV 9 kb)

Additional file 7: Table S3. List of the most repressed genes after
30 min of 100 umolm™2 of blue light shared in the mutant and the WT
strain. (CSV 14 kb)

Additional file 8: Table S4. List of the most responsive genes present
only in the WT or the Ablu7 mutant strains. (CSV 9 kb)

Additional file 9: Table S5. List of putative light responsive
transcription factors. All putative transcription factors responding 30 min
after a 100 umolm ™ pulse of blue light in the WT or Ablu7 mutant are
listed. (CSV 5 kb)

Additional file 10: Figure S4. A) Phenotype of the WT and Ablu7 after
under constant blue light of 49, 10 and 32 pmolm?s~". B) Radial colony
growth after 72 h of light treatment of the WT and Ablu7 strains.
One-way ANOVA and a pairwise t-test were applied to data. Different
letters indicate statistically significant differences (a < 0.05). JPG 1062 kb)

Additional file 11: Figure S5. Stimulation of photoconidiation by
several blue light fluences (from 50 to 11000 pmo\m’z) in the WT, Ablu7
mutant and overexpressing (OEblu?) strains. (JPG 1487 kb)

Additional file 12: Table S6. List of genes responding after 60 h
exposure to constant white light on glucose as carbon source compared
to dark control in the WT or Ablu7 strains. (CSV 257 kb)

Additional file 13: Table S7. List of primers used in this study. Primers
used to obtain the Ablu7 mutant and OEblu7 strains, as well as the

primers used in RT-PCRs are listed. (CSV 1 kb)
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