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Abstract

Background: The cuticular wax plays important roles in plant resistance to various biotic and abiotic stresses.
Understanding the synthesis and secretion of cuticular waxes is necessary in utilizing cuticular waxes to improve

crop productivity and plant ecological adaptation. Due to the lack of genomic resources, little genetic research on
cuticular wax deposition has been focused on Poa pratensis, a perennial forage and turf grass species that is widely
distributed under various habitats. In this study, we performed de novo transcriptome sequencing to explore
differentially expressed genes between the leaf non-elongation zone (NEZm) and the emerged blade zone (EBZ)
and to identify genes related to cuticular wax deposition.

Results: A total of 77,707,414 high quality reads were obtained from llumina HiSeq 2500 platform, which were then
assembled into 106,766 unigenes. Among them, 6019 unigenes showed significant differences in expression between

NEZm and EBZ. In our assembled sequences, 3087 SSRs molecular markers were discovered. All the unigenes were
searched against the NR, Swissprot, GO, COG, and KEGG databases using BLAST program for functional annotation.
From 3156 unigenes with more expression in NEZm compared to EBZ, a number of unigenes involved in very long
chain fatty acids (VLCFAs) and cuticular wax biosynthesis, transportation and regulation were identified. Several
unigenes related to defense response and epidermal patterning were also found. Twelve putative genes involved in
VLCFAs and cuticular wax biosynthesis were further analyzed for their expressions using qRT-PCR.

Conclusions: The transcriptome of P. pratensis leaf was deep sequenced, de novo assembled and annotated, and the
candidate genes potentially involved in VLCFAs and cuticular wax biosynthesis, secretion and regulation in P. pratensis
were identified. This provides fundamental genetic resources in improving plant adaptation to abiotic and biotic

stresses.
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Background

Cuticular wax, as the major chemical component of plant
cuticles, plays important physiological and ecological roles
in the interactions between plants and their abiotic and
biotic environments [1]. It has become clear that cuticular
wax deposition could prevent water loss through leaf
epidermis [2]; reduce water retention on leaf surface [3];
protect plant against enhanced ultraviolet radiation [4];
defend plant against pathogen attack [5]; and protect plant
against air pollution and weathering [6]. The cuticular
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waxes are very long chain fatty acids (VLCFAs), consisting
of hydrocarbons such as n-alkanes, primary alcohols, ali-
phatic ketones, n-alkanoic acids, as well as esters, alde-
hydes, and secondary alcohols [7]. Studies have shown
that wax compositions differ in their functions and
responses to abiotic and biotic stresses [8, 9]. Therefore,
understanding the synthesis and transportation of each
cuticular wax composition is necessary in utilizing cuticu-
lar waxes to improve crop productivity and plant eco-
logical adaptation.

Wax biosynthesis begins with de novo C16 or C18
fatty acid biosynthesis in the plastid of epidermal cells.
Then using the C16 or C18 acyl-CoA and malonylcoen-
zyme A as substrates, fatty acid elongase (FAE) complex
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performs a reiterative cycle of four reactions catalyzed by
a P-ketoacyl-CoA synthase (KCS), a p-ketoacyl-CoA
reductase (KCR), a p-hydroxyacyl-CoA dehydratase
(HCD), and an enoyl-CoA reductase (ECR), to produce
saturated VLCFAs with 24-36 carbon atoms. These
VLCFAs are further modified to various wax molecules
through two major pathways, the acyl-reduction and the
decarbonylation pathways [10]. Using wax-deficient
mutants, some genes encoding enzymes involved in these
wax biosynthesis pathways have been cloned and charac-
terized. The mutant loci in Arabidopsis thaliana are
termed eceriferum (cer), and 21 independent cer loci have
been identified in this plant model [11]. For example,
CER6/KCS6 and CERI0 have been identified for encoding
KCS and ECR involved in VLCFAs biosynthesis [12, 13].
CERS encodes Long-chain Acyl-CoA Synthetase (LACS)
catalyzing free fatty acids to CoA [14]. CER3, CERI and
MAHI encode enzymes involved in the decarbonylation
pathway which produces aldehydes, alkanes, secondary
alcohols, and ketones [15, 16]. CER4 and WSDI encode
enzymes involved in the acyl reduction which forms pri-
mary alcohol and wax esters [17, 18]. CER5/ABCGI12 [19]
and ABCGI1 [20], which belong to ATP-binding cas-
sette (ABC) transporters, were reported to be required
for Arabidopsis wax export. The identification of these
wax-related genes helps understanding the production
of cuticular wax and their functions.

Understanding the development of wax depositions
during plant growth also provides an alternative way in
screening cuticular wax genes. A microarray study on
Arabidopsis by Costaglioli et al. (2005) showed that
comparison of gene expression between (younger) wax
synthesizing and (older) not wax-synthesizing shoot
tissue was better suited for screening wax-related genes
than comparison of expression between wild-type and
cer mutant plants [21]. For monocotyledonous plants,
Rhee et al. (1998) analyzed the wax deposition along the
length of expanding leek (Allium porrum L.) and found
that the level of total cuticular wax increased along
the length of the leaf and the microsomal fatty acid
elongation activities were induced within a defined
and identifiable region of the expanding leek leaf [22].
In grasses, Richardson et al. (2007a) reported that
cutin deposition in barley leaf epidermis occurred in
parallel with cell elongation, whereas deposition of
significant amounts of wax commenced as cells ceased
to elongate [23]. Based on this finding, Richardson et
al. (2007b) compared expression of candidate contig-
sequences between leaf Elongation Zone, Non-Elongation
Zone and Emerged Blade Zone, and identified candidate
genes involved in wax deposition on barley leaves through
a microarray approach [24].

Poa pratensis L, also known as Kentucky bluegrass, is
a perennial forage and turf grass species that is well
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adapted to a wide range of mesic to moist habitats, and
temperate to alpine conditions [25]. Pertierra et al.
(2013) also reported that it was the longest surviving
non-native vascular plant colony known in Antarctica
from 1954 to 2012 [26]. The proportion of total cuticu-
lar wax present as alkanes was the highest in the alpine
Poa species compared to low land Poa species [27],
implying that the wide distribution of P. pratensis might
be attributed to its ability in adjusting cuticular wax de-
positions. The RNA-Seq is a powerful, recently devel-
oped, high-throughput sequencing method, and provides
new approaches to explore functional genes. In this
study, we performed the pair end transcriptome sequen-
cing of leaf non-elongation zone (NEZm) and the
emerged blade zone (EBZ) of P. pratensis using the Illu-
mina HiSeq platform. A total of 102,878,869 reads were
obtained and assembled into 106,766 Unigenes. Thou-
sands of potential simple sequence repeats (SSRs)
molecular markers were discovered. About 6019 uni-
genes were differentially expressed between two leaf
zones and a number of unigenes involved in cuticular
wax deposition were identified. Twelve putative differen-
tially expressed unigenes involved in cuticular wax
biosynthesis were analyzed for their relative expression
by further quantitative real-time PCR. The objective of
this study was to provide a comprehensive molecular
biology insight into the cuticular wax deposition in P.
pratensis and to identify genes which are likely to be
involved in wax deposition in P. pratensis leaves.

Results

Leaf cuticular wax

Leaf three of P. pratensis was divided into mixed sample
of non-elongation zone and elongation zone (NEZm)
and emerged blade zone (EBZ) according to their posi-
tions (Fig. la). The NEZm was covered by sheath
whereas the EBZ was fully expanded and exposed under
air. Cuticular wax differentially deposited on the leaf
zones of P. pratensis. Scanning electron microscope ana-
lysis showed that there was less wax crystalloids in
NEZm than EBZ (Fig. 1b). The amount of total cuticular
wax on EBZ was about three times than that in NEZm
(Fig. 1c). In grasses, leaf cells divide and expand within the
sheaths of older leaves, where the micro-environment dif-
fers from the open atmosphere. By the time epidermal
cells are displaced into the atmosphere, they must have a
functional cuticle to minimize uncontrolled water loss.

Poa Pratensis transcriptome sequencing and de novo
assembly

RNA samples from leaf NEZm and EBZ were subjected
to Illumina HiSeq 2500 paired-end sequencing. In total,
102,878,869 reads with a total of 20,574,028,763 base-
pairs (20.57 Gb) were generated. After stringent quality
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assessment and data filtering, 77,707,414 reads (15.54 G)
with 93.17 % Q30 bases (those with a base quality
greater than 30) were selected as high quality reads for
further analysis. An overview of the sequencing was pre-
sented in Table 1. All reads of sequencing have been
deposited in the NCBIs Short Read Archive (accession
number SRX1512962, SRX1512973, SRX1512974, and
SRX1512975).

Table 1 Summary of the sequencing reads and reads after
preprocessing

Poa pratensis

Sequencing reads before preprocessing

Total reads 102,878,869
Total bases 20,574,028,763
GC% 5218

Q30% 80.39

Reads after trimming and preprocessing

Total reads 77,707,414
Total bases 15,540,103,604
GC% 50.81

Q30% 93.17

Using the Trinity de novo assembly program [28],
short read sequences were assembled into 8,032,387
contigs, of which there were 12,335 contigs coding for
transcripts longer than 1 kb and 5435 contigs coding for
transcripts longer than 2 kb. The contigs were subse-
quently subjected to cluster and assembly analysis. A
total of 106,766 unigenes with N50 length of 1042 bp
and mean length of 640.83 bp were obtained, among
which 18,559 genes (17.38 %) were greater than 1 kb. An
overview of the assembled contigs, transcripts and uni-
genes was presented in Table 2. These results demon-
strated the effectiveness of Illumina pyrosequencing in
rapidly capturing a large portion of the transcriptome.

Since there was no reference genome sequence for
P. Pratensis, the de novo assembled transcriptome
sequence by Trinity was regarded as a reference
sequence. Bowtie software [29] was used to map all
the clean reads to the de novo assembly transcriptome
reference sequences and to qualify transcriptome by
assigning to unigenes with the RSEM (RNA-Seq by
Expectation Maximization) software [30]. The
59,429,338 clean reads (76.47 %) were successfully
realigned to the reference sequence, showing that the
quality of these assembled unigenes was sufficient to
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Table 2 Summary of lllumina transcriptome assembly for Poa
pratensis

Length range  Total Length (Percentage)

Contigs Transcripts Unigenes
200-300 7951,914(99.00 %)  65336(2344 %)  41,403(38.78 %)
300-500 40,282(0.50 %) 60,304(21.63 %)  29,234(27.38 %)
500-1000 22,421(0.28 %) 688712471 %)  17,570(16.46 %)
1000-2000 12,335(0.15 %) 60,743(21.79 %)  12,683(11.88 %)
22000 5435(0.07 %) 23,481(842 %) 5876(5.50 %)
Total number 8,032,387 278,735 106,766
Total length 466,581,232 239,460,551 68,419,199
N50 length 53 1313 1042
Mean length  58.09 859.10 640.83

conduct the following analysis. Sequencing randomness
and sequencing saturation assessment also demonstrated
RNA integrity at transcript level (in Additional file 1:
Figure S1).

Furthermore, 106,000 unigenes were found to have
predicted ORF by using the software Getorf (http://
emboss.sourceforge.net/apps/cvs/emboss/apps/getorf html).
The predicted ORFs ranged from 57 bp to 10,376 bp in
length and N50 is 753 bp. The length distribution of the
predicted ORFs was shown in Fig. 2.

Frequency and distribution of SSRs in the P. pratensis leaf
transcripts

SSRs markers are the most important molecular markers
in plants and have been proven to be a valuable tool for
various applications in genetics and plant breeding. In this
study, 18,559 unigenes (more than 1 kb) were used to

Page 4 of 12

determine potential microsatellite motifs using MIcroSAt-
ellite (MISA) software (http://pgrc.ipk-gatersleben.de/
misa). In total 3087 SSRs were identified in leaf samples
(Table 3). Tri-nucleotide repeats (1432, 46.39 %) were the
most abundant SSR motif in leaf tissues followed by
mono-nucleotide (1032, 33.43 %), di-nucleotide (412,
13.35 %), tetra-nucleotide (29, 0.94 %), penta-nucleotide
(8, 0.26 %), and hexa-nucleotide (5, 0.16 %) motifs. The
number of compound SSRs and uncertain compound
SSRs were 157 (5.09 %) and 12 (0.39 %), respectively.

Analysis of differentially expressed genes (DEGs)

The transcript abundance of each unigene was estimated
by reads per kilobase of exon per million mapped reads
(RPKM). Using software DESeq [31] and FDR <0.001
and 1og2FC =8 as the criteria, 6019 unigenes showed
significant differences in expression between the NEZm
and the EBZ (Fig. 3), including both 2863 up-regulated
unigenes and 3156 down-regulated unigenes in the EBZ
library compared to those in the NEZm library.

Functional annotation

For the validation and annotation of the assembled
unigenes, all the assembled unigenes were searched
against the NCBI non-redundant (NR), Swissprot, Gene
ontology (GO), Clusters of Orthologous Groups (COG),
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
databases using BLAST program with an E-value thresh-
old of 10, Among 106,766 unigenes, 53,851 (50.44 %)
and 32,710 (30.64 %) unigenes had significant matches
in the NR and Swiss-Prot database, respectively (Table 4).
Furthermore, GO, COG and KEGG annotations were
applicable for 33.36, 12.45, and 791 % of unigenes,
respectively.

100000
& Table 3 Frequency of SSRs in Poa pratensis
O 10000
g Motif length Repeat numbers
.gﬂ 1000 5 6 7 8 9 10 >10 Total (%)
g 0 perfect_SSR_1 - - - - - 58 444 1032 (3343 %)
E perfect_SSR_2 - 239 82 46 22 10 13 412(1335%)
§ 10 perfect_SSR_3 1042 280 97 13 - - - 1432 (46.39 %)
2
1 perfect_SSR_4 25 4 - - - - - 29 (0.94 %)
R888888882882282258999999999938 | pefect SRS 7 1 - - - - - 8(26%
AAARNARAARS SOOI OSGEIRSRRNANNARS
ANNANAAANANNNAAAANANANAAAA perfect_SSR_6 5 - - - - - - 5(0.16 %)
Length (bp) compound_SSR - - - - - - - 157 (5.09 %)
Fig_. 2 Length distribution Qf Poa pratensis unigene.OEF. The y-axis compound_SSR* - R R oL R 12 (039 %)
indicates the number of unigene ORF, and the x-axis indicates the
length of unigene ORF. Of the 106,766 unigenes, 106,000 unigenes Total SSR 1079 524 179 59 22 598 457 3087
were found to have predicted ORF by using the software Getorf. Perfect_SSR_1, SSR_2, SSR_3, SSR_4, SSR_5, and SSR_6 represent mono-, di-,
The minimum length was 57 bp and the maximum length was tri-, tetra-, penta-, and hexa-nucleotide repeat, respectively. Compound _SSR
10,376 bp. The largest number of ORF was in the range of 0-300 bp represents compound of two or more motifs. *uncertain SSR resulted from

the compound
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There were 4782 DEGs annotated in NR database,
among which 3442 DEGs were assigned with one or
more GO terms (Fig. 4). In the biological process cat-
egory, 2430 DEGs were classified into 24 GO classes,
and “Metabolic process” and “Cellular process” were the
most represented GO terms. In the cellular component
category and the molecular function category, 1992 and
2545 DEGs fell into 16 GO classes, respectively. “Cell
part”, “Cell” and “Organelle” were the most common
terms in the cellular component category. Regarding
molecular function, unigenes with binding and catalytic
activity were highly represented (Fig. 4). Different

Table 4 Functional annotation of the unigenes from Poa

pratensis

Annotated databases All sequence > =300 nt >=1000 nt
COG 13,296 11,188 6491

GO 35619 26,932 12,428
KEGG 8449 6514 3311
Swiss-Prot 32,710 26,122 12,686

NR 53,851 39,903 16,597

All 54,219 40,083 16,623

enrichment trends between all unigenes and DEG uni-
genes were mainly observed in “Extracellular matrix”,
“Extracellular region” and “Membrane-enclosed lumen”
in the cellular component category, “Nutrient reservoir
activity”, “antioxidant activity” and “protein binding
transcription factor activity” in the molecular function
category, and “Cell prolifereation” and “Pigmentation”
in the biological process category, respectively (Fig. 4).

DEG unigenes were also subjected to a search against
the COG database for functional prediction and classifi-
cation. Finally, 1427 DEGs could be assigned to COG
classifications (Fig. 5). COG annotated putative proteins
were functionally classified into at least 25 protein
families involved in lipid transport and metabolism,
transcription, signal transduction mechanisms, and so
on. The cluster for general function prediction (403,
28.24 %) represented the largest group, followed by rep-
lication, recombination and repair (280, 19.62 %), tran-
scription (239, 16.75 %), and signal transduction
mechanisms (226, 15.84 %).

To further analyze DEGs between leaf NEZm and the
EBZ, all the DEG unigenes were analyzed in KEGG
pathway database. As a result, 615 DEGs were found to
have significant matches in the database and were
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assigned to 100 KEGG pathways (in Additional file 2:
Table S1). The top 20 KEGG pathways with the most
significant enrichment were shown in Fig. 6. It was also
observed that there were 9 DEGs encoding enzymes that
were involved in fatty acid biosynthesis.

Differentially expressed genes involved in wax
biosynthesis in P. pratensis

To identify the genes likely involved in wax biosynthesis
in P. pratensis, we constructed a candidate fatty acid and
wax deposition related gene set from down-regulated
unigenes in the EBZ (non-active wax synthesizing) com-
pared to the NEZm (active wax synthesizing) based on
the GO, COG, KEGG, Swissprot, and NR annotation (in
Additional file 2: Table S2). The selected unigene ID and
annotation were listed in Additional file 2: Table S2.
Three enzymes related to very-long-chain-fatty acid bio-
synthesis and six enzymes and proteins related to cuticu-
lar wax biosynthesis, secretion and regulation were
identified. Putative proteins involved in defense response
were also found (in Additional file 2: Table S3). In the
most cases, more than one unigenes were assigned to
the same enzyme or protein. Such unigenes might repre-
sent different fragments of a single transcript, different
members of a gene family, or both.

Quantitative real-time-PCR validation of the candidate
DEGs involved in wax biosynthesis

To validate the responsible genes in the candidate gene
set involved in wax deposition, twelve unigenes from the
above set were selected and detected their expression
profile between the NEZm and the EBZ by qRT-PCR.
The results showed that twelve unigenes significantly
up-regulated in the NEZm compared to the EBZ (Fig. 7),
which were in consistent with the transcriptome data.

Discussion

Transcriptome sequencing is widely applied in transcrip-
tional and post-transcriptional regulation analysis of
genes and global expression pattern analysis of complex
genomes. In this study, a comparative de novo transcrip-
tome analysis of leaf NEZm versus EBZ was conducted
and 102,878,869 reads with a total of 20,574,028,763 bp
(20.57 Gb) were generated by Illumina HiSeq 2500
paired-end sequencing. For plants without a genomic
sequence, such short reads can be effectively assembled
through the improvement of read length by the paired-
end sequencing and the using of Trinity [28]. In total,
8,032,387 bp contigs, 278,735 bp transcripts and
106,766 bp unigenes were obtained in P. pratensis,
respectively.
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It was previously reported that wax deposition in barley
started to be synthesized from the leaf NEZ wrapped by
sheath [23]. In this study, transcript levels from the leaf
NEZm and the EBZ were compared to obtain a list of sig-
nificantly differentially expressed unigenes. Using DESeq
software, which is suitable for screening differentially
expressed genes in samples with biological replicates, and
FDR<0.01 and log2FC =2 as the criteria, 16,626 uni-
genes showed significant differences in expression
between the NEZm and the EBZ. This number of DEGs
was far beyond normal differential range. Considering the
potential big difference between the two tissues and to
increase the accuracy of the screening results, FDR < 0.001
and |log2FC| > 8 was used as adjusted criteria and finally
6019 DEGs were obtained. The functions of the DEGs by
GO annotations were mainly related to “Extracellular
matrix” and “Extracellular region” in the cellular compo-
nents, and “Nutrient reservoir activity” in the molecular
function category. These functions were in consistent with
the vital importance of plant surface wax in protecting tis-
sue from environmental stresses [9]. During cuticle depos-
ition, a massive flux of lipids occurs from the sites of lipid
synthesis in the plastid and the endoplasmic reticulum to
the plant surface. The endoplasmic reticulum integrated

with the membrane and plasmodesma in cellular compo-
nents may play an important role in wax synthesis. Fur-
thermore, DEGs were also mainly annotated with “Cell
prolifereation”, attributing to different surface area expan-
sion rates in NEZm and EBZ. This supports the
phenomenon that leaf cells divide and expand within the
sheaths of older leaves in grasses.

Based on Swissprot and NR annotation, several candi-
date genes involved in VLCFAs and cuticular wax bio-
synthesis pathway were obtained, such as LACS, KCS,
KCR, FAR, and CERI. VLCFAs, as both wax component
and wax precursor, was catalyzed by the elongase com-
plexes, including KCS, KCR, HCD, and ECR. KCS is the
first and committing step in VLCFAs biosynthesis and
has broad substrate specificity [32]. Alcohol-forming
fatty acyl-CoA reductase (FAR) and aldhydede carbony-
lase CER1 were identified catalyzing the production of
primary alcohols and alkanes, respectively [15, 17].
LACS catalyzed free long-chain fatty acids to CoA [14].
In this study, LACS, KCS, KCR, FAR and CERI were
expressed predominantly in the NEZm, the zone where
significant wax deposition commences, supporting the
previous results that younger shoot tissue was the active
wax synthesis site [21]. In the developing barley leaf,
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wax deposition commences within the portion of the
blade that is enclosed by sheaths of older leaves [33].
Changes in the micro-environment of the leaf from the
NEZm to EBZ might alter the expression of the uni-
genes. However, five unigenes (c183078.graph_cO,
c175984.graph_c0, ¢171931.graph_c1, c175102.graph_c0
and ¢171931.graph_c0) annotated as KCS and
c185031.graph_c1 annotated as KCR were expressed
higher in the EBZ compared to NEZm, suggesting the
functional differentiation of KCS and KCR gene family
members. Besides involving in cuticular wax synthesis,
VLCFAs were also related to other physiological function
such as involving in membrane lipids and sphingolipids
[34]. Therefore, it is possible that only some KCS and
KCR gene family members participate in wax production.

ABC transporter family was ubiquitously associated
with transport across membranes of a broad range of mol-
ecules in prokaryotes and eukaryotes [35]. In this study,
putative ABC transporter G, B and C families, and Lipid
Transfer Proteins (LTPs) were significantly up-regulated
in the NEZm compared to EBZ, indicating that these pro-
teins might play an important role in P. pratensis wax
secretion. It has been commonly proposed that ABC
transporter G family member and LTPs were involved in
wax trafficking from the endoplasmic reticulum to the
plasma membrane and wax extracellular transportation,
respectively [19, 36, 37].

The wax metabolic pathway is regulated by various
transcription factors. One of these to be identified and
characterized for its role in cuticle metabolism was
SHN1/WINI1, a member of the A. thaliana ethylene-
responsive AP2-domain transcription factor super family
[38—40]. In this study, putative ethylene-responsive tran-
scription factor, including WINIand WRII, were
expressed mainly in the NEZm, which might activate
wax deposition in younger tissue. The expression of
WINI was also related to defense response of plant. The
overexpression of SISHN3, an ortholog of the Arabidop-
sis WIN/SHN3, increased tomato resistance to Botrytis
cinerea, whereas SISHN3-RNAi plants were more sensi-
tive to B. cinerea compared to wild-type plants [41]. The
altered defense responses in SISHN3-overexpressing
plants were correlated with the cuticle permeability and
the activation of pathogenesis-related gene PRIa and
AOS [41]. Several defense response related genes,
including PR1, were more expressed in NEZm compared
to EBZ in this study, indicating that wax deposition
might be linked with defense response. Garbay et al
[2007] reported that the amount of PRI-mRNA was not
directly correlated to the amount of leaf epicuticular
wax, but was rather correlated to the presence or
absence of some particular lipid-constituents in the epi-
cuticular wax layer [42]. Other transcription factors
characterized for its role in cuticle metabolism belonged
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to MYB family. It is reported that MYB96 could pro-
mote drought tolerance and trigger disease resistance
response by inducing Arabidopsis cuticular wax accumu-
lation [43, 44]. The overexpression of MYB30 in Arabi-
dopsis stimulated the production of VLCFAs and waxes
[45]. In this study, although no MYB96 and MYB30
were identified, fourteen unigenes annotated with Myb
protein were found to have more expression in the
NEZm compared to the EBZ, suggesting the potential
role of MYB family in wax metabolism regulation.

Besides their primary role in stress response, cuticular
waxes were also found to be involved in developmental
processes, notably through tight connections with the
epidermis morphology [46]. The more expression of epi-
dermal patterning factor (EPF) in NEZm than that in
EBZ supported the link between cuticular wax metabol-
ism and the process of epidermal cell patterning (in
Additional file 2: Table S4). In addition, putative bHLH
transcription factors were also up-regulated in the
NEZm (in Additional file 2: Table S5). This was in agree-
ment with the function of bHLH, which was important
in development or cell activity.

Conclusions

In this study, a comparative transcriptome sequencing
between leaf NEZm and EBZ in P. pratensis was per-
formed using Illumina platform. In total, 77,707,414
clean reads were de novo assembled into 106,766 uni-
genes. All unigenes were then evaluated and functionally
annotated by comparing with the existing protein data-
bases, including NR, Swissprot, GO, COG, and KEGG
database. Several candidate genes potentially involved in
cuticular wax biosynthesis, transportation, regulation,
development, and defense response, were identified.
About 3087 SSR molecular markers were developed.
The database will improve our understanding of the
molecular mechanism of cuticular wax deposition in P.
pratensis leaf and will provide the fundamental genetic
resources in improving plant adaptation to abiotic and
biotic stresses.

Methods

Plant material

Poa pratensis cv Nuglade plants were grown in pot
(10 cm x 15 cm) filled with turfy soil in a growth cham-
ber (15 °C /25 °C, RH 75 %). To make sure the plants
grow well, 1/4 Hoagland solution were applied every
5 days. There were 70 pots with 15 plants in each pot.
Forty 5 days after germination, most plants went into
three leaf stage. According to the study of Richardson et
al. (2007a), the leaf of barley was divided into three
parts, elongation, non-elongation and emerged blade
[23]. According to the protocol from Rymen et al. [47],
for leaf three of P. pratensis in this study, the length of
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emerged blade, non-elongation and elongation parts
reached about 10 cm, 1.5 cm and 0.5 cm, respectively.
Since it was difficult to separate elongation zone and
non-elongation zone clearly for RNA extraction and
cuticular wax analysis separately, non-elongation and
elongation zone (mainly non-elongation zone) were
mixed together as one sample (NEZm) and were used
for later analysis as well as emerged blade zone (EBZ) in
this study. About 1 cm samples were collected from
NEZm and EBZ of leaf three, separately, immersed in
liquid nitrogen immediately, and then stored at-80 °C.
About 200 plants from 20 pots were collected and
bulked into one sample, approximately 0.1 g. In total
two bulk samples were collected for RNA extraction
from NEZm and EBZ, separately, as two biological
replicates.

Cuticular wax extraction and analysis

Samples from remaining 30 pots were used for wax
extraction, with 10 pots as one replicate. The samples
from NEZm and EBZ were separately dipped in 50 ml of
chloroform containing 0.25 pg of hexadecane (Sigma) as
internal standard for 30s at room temperature. The wax
extractions were dried under nitrogen stream, derivated
with 100 ul of BSTFA (N,O-Bis (trimethylsilyl) trifluor-
oacetamide) for 1 h at 80 °C, and the surplus BSTFA
was evaporated under nitrogen. The extract was re-
dissolved in 1 mL of hexane for wax analysis using
GCMS-2010 (Shimadzu Technologies Co, Japan)
equipped with a flame ionization detector (FID) as de-
scribed by Kim et al. (2007) [48]. Peaks were assigned by
comparing of their mass spectra with the mass spectral
library, GCMS solution Software (Shimadzu, Japan).
Amounts of cuticular waxes were expressed in pg/g.

Scanning electron microscopy (SEM) analysis

Samples from NEZm and EBZ were collected, air dried,
and then affixed to an aluminum stub with double sided
adhesive tape. Stub was coated with gold and placed in
the low-vacuum, variable-pressure chamber of the Hita-
chi S3500 Scanning electron microscopy and photo-
graphed with a digital camera with a digital camera at
approximately 5000 magnification. Each sample repli-
cated three times.

RNA extraction, cDNA preparation and transcriptome
sequencing

Total RNA was extracted from the EBZ and NEZm of P.
pratensis leaf using TransZol kit (TransGen, China).
DNA contamination was removed with RNase-free
DNase I (Takara, China). RNA quality and quantity were
assessed by absorption at 260 nm/280 nm, and gel elec-
trophoresis. Briefly 2.5 pug of total RNA was enriched for
Poly-A using NEBNext Poly (A) mRNA Magnetic

Page 10 of 12

Isolation Module (NEB, E7490). Transcriptome library
for sequencing was constructed according to NEBNext
mRNA Library Prep Master Mix Set for Illumina (NEB,
E6110) and NEBNext Multiplex Oligos for Illumina
(NEB, E7500). The prepared library was quantified using
Library Quantification Kit-Illumina GA Universal (Kapa,
KK4824) and validated for quality by running 1.8 % agar-
ose gel electrophoresis. The library products were se-
quenced via [llumina HiSeq™2500 sequencer.

Sequence data processing and de novo assembly

The raw reads generated by HiSeq2500 were cleaned by
removing adaptor and primer sequences, reads in which
the percentage of unknown bases (N) is greater than 5 %
and low quality reads in which the percentage of the low
quality bases was more than 20 %. Trinity [28] was used
in de novo sequence assembly. First, Trinity combined
the reads with a certain overlap length to form longer
fragments, which were called contigs. Next, these reads
were mapped back to contigs; with paired-end reads,
Trinity was able to detect contigs from the same tran-
script and determine the distances between these con-
tigs. Finally, Trinity connected these contigs into
sequences that could not be extended on their end. Such
sequences were defined as unigenes. Sequence saturation
and distribution of reads on reference genes were ana-
lyzed to assess the overall sequencing quality. The ORFs
were identified as the nucleotide sequence or as the
protein translation provided by the “Getorf” software
(http://emboss.sourceforge.net/apps/cvs/emboss/apps/
getorfhtml). The longest ORF was extracted for each
unigene. The gene expression level was calculated using
the RPKM method [49].

Sequence annotation and functional characterization

The assembled sequences were annotated using BLASTX
program against NCBI database and all unigenes were uti-
lized for homology searches against protein databases
such as NCBI Nr (http://www.ncbi.nlm.nih.gov/) and
Swissprot (http://www.expasy.ch/sprot/). To further anno-
tate the unigenes in this research, the Blast2GO program
was used to get GO annotation according to molecular
function, biological process and cellular component ontol-
ogies (http://www.geneontology.org/). Each annotated
sequence may have more than one GO term, either
assigned in the different GO categories or in the same cat-
egory. Secondary metabolic Pathway assignments were
performed according to the KEGG pathway database [50].
The unigenes sequences were also aligned to the COG
database [51] to predict and classify functions. DESeq [31]
was used to identify differentially expressed genes (DEGs)
between the NEZm and EBZ. FDR (false discovery rate) <
0.001 and Fold Change > 8 were used as the threshold to
judge the significance of gene expression difference. The
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annotation information from all the unigenes was
extracted for the DEGs.

Simple sequence repeats (SSRs) identification

All the unigenes with length more than 1 kb were used
in a microsatellite program (MISA) (http:// pgrc.ipk-
gatersleben.de/misa/misa/) for identification of potent
SSR motifs. We searched for microsatellites from mono-
nucleotide to hexa-nucleotide. Dinucleotide repeats of
more than six times and tri-, tetra, penta and hexa- nu-
cleotide repeats of more than five times were considered
as the search criteria for SSRs in MISA script. Both per-
fect (i.e. contain a single repeat motif) and compound
repeats (i.e. composed of two or more motifs separated
by 100 bases) were identified.

Quantitative real-time reverse transcription-PCR (qRT-PCR)
Twelve up-regulated unigenes in the NEZm with potential
roles in cuticular wax deposition were chosen for valid-
ation using qRT-PCR. Total RNA was extracted from the
EBZ and the NEZm of P. pratensis leaf using TransZol kit
(TransGen, China). DNase-treated RNA was used to
synthesize first strand cDNA by using SuperScript II re-
verse transcriptase (Invitrogen, China). The gene names
and primers used for qRT-PCR are liste in Additional file
2: Table S6. The quantitative reaction was performed on
the CFX96 Real-Time PCR Detection System (Bio-Rad)
using the SYBR Premix Ex Taqll(Takara, China). qRT-
PCRs were performed as follows: 95 °C for 30 s, 40 cycles
0of 95°C 55,59 °C 30, and 72 °C 15 s. CFX Manager soft-
ware (Bio-Rad) was used for data analysis. Expression
levels of the selected unigenes were normalized to that of
Elongation factor 1 (eEFl-a), an internal reference gene
[52]. The relative expression levels of target genes were
calculated with the 2722€* method [53]. All the experi-
ments were repeated using three biological and three
technical replicates and the data were analyzed
statistically.

Availability of data and material
The data sets supporting the results of this article are in-
cluded within the article and its additional files.
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Additional file 1: Figure S1. A, Randomness test of cDNA fragments; B,
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represent EBZ. (PDF 290 kb)

Additional file 2: Table S1. List of DEG unigenes between NEZm and
EBZ related to KEGG pathway. Table S2. Candidate genes involved in
fatty acids and cuticular wax biosynthesis in P. pratensis leaf. Table S3.
List of unigenes involved in defense response that is differentially
expressed in EBZ versus NEZm. Table S4. Putative epidermal patterning
factor (EPF) differentially expressed between NEZm and EBZ. Table S5.
Putative bHLH transcription factor differentially expressed between NEZm
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