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Abstract

Background: Proximity ligation-mediated methods are essential to study the impact of three-dimensional chromatin
organization on gene programming. Albeit significant progress has been made in the development of computational
tools that assess long-range chromatin interactions, next to nothing is known about the quality of the generated
datasets.

Method: We have developed LOGIQA (www.ngs-qc.org/logiqa), a database hosting quality scores for long-range
genome interaction assays, accessible through a user-friendly web-based environment.

Results: Currently, LOGIQA harbors QC scores for >900 datasets, which provides a global view of their relative quality
and reveals the impact of genome size, coverage and other technical aspects. LOGIQA provides a user-friendly dataset
query panel and a genome viewer to assess local genome-interaction maps at different resolution and
quality-assessment conditions.

Conclusions: LOGIQA is the first database hosting quality scores dedicated to long-range chromatin interaction
assays, which in addition provides a platform for visualizing genome interactions made available by the
scientific community.
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Background
Today massive parallel DNA sequencing is used not only
to decrypt the digital nature of genomes but, in combin-
ation with a variety of molecular biology techniques, it
provides functional insights into a plethora of regula-
tory levels and functions, including epigenomics and
protein-genome interactions (e.g., ChIP-seq, MeDIP-seq),
global transcriptional activity (e.g., RNA-seq, GRO-seq,
Ribo-seq), protein-RNA interactions (e.g., CLIP/RIP-seq),
chromatin accessibility (e.g., DNase-seq, FAIRE-seq,
ATAC-seq, MNase-seq) and the 3-dimensional chromatin
organisation [HiC [1], ChIA-PET [2, 3]].
While data acquisition is not anymore an issue, today’s

challenge is the availability of user-friendly computational
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solutions to interrogate and integrate - in a comparative
manner - billions of data points from different types of
functional genomics datasets. In fact, large consortia, like
ENCODE, modENCODE, IHEC, NIH Epigenomics Road-
map provide enormous amounts of functional genomics
data [4]. In addition, a great number of laboratories
perform functional genomics studies in a diverse set of
systems covering a large number of molecular targets,
such that the number of genomics data linked to various
cell/(patho)physiological functions increase exponen-
tially in public repositories like the Gene Expression
Omnibus (GEO [5]). However, despite the fact that
these repositories contain huge amounts of functional
genomics information their exploitation is seriously lim-
ited by (i) the lack of information on the quality of these
datasets and (ii) the limited toolbox of exploratory com-
putational resources.
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In this context, we have developed previously a quality
control system dedicated to ChIP-seq and enrichment-
related datasets [6] (www.ngs-qc.org). Here we describe
LOGIQA (www.ngs-qc.org/logiqa), a database hosting
quality scores for long-range genome interaction assays
accessible through a user-friendly web-based environ-
ment dedicated to quality-scored visualization of long-
range interaction maps.
Fig. 1 (See legend on next page.)
Construction and content
Principles used for quality assessment
LOGIQA is based on the principles applied by the NGS-
QC Generator to compute quality descriptors [6]; specif-
ically this involves the assessment of multiple random
samplings over long-range interaction readouts to infer
numerical local and global quality scores (Fig. 1). In fact,
the working hypothesis is that under ideal conditions,

http://www.ngs-qc.org
http://www.ngs-qc.org/logiqa


(See figure on previous page.)
Fig. 1 Principles in use for Quality Assessment. Total mapped paired-end tags (PETs) are first classified in intra-chromosomal and inter-chromosomal
events. For quality assessment, only intra-chromosomal PETs spanning genome distances longer than 10 kb - referred here as filtered PETs - are
considered. Random sub-sampling generates PET subsets corresponding to 90, 70 and 50 % of the original filtered PETs and the numbers of
PETs in 5 kb or 25 kb size genomic windows is quantified. By comparing each of the PET counts/window in the various random subsets with
that observed on the original dataset, the fraction of recovered PET counts (recPETs) after random sub-sampling and the dispersion from the
theoretically expected values are calculated. Note that the expected values correspond to a decrease in the number of PET counts per window
that is proportional to the random sub-sampling (e.g. recPETs/window =50 % when 50 % of filtered PETs are random sub-sampled). By evaluating the
fraction of genomic windows with recPET count dispersions lower than a defined confidence interval (default value 10 %) global quality descriptors like
the density and similarity quality indicators (denQCi, and simQCi respectively), as well as the global QCscore are computed. Overall these quality
descriptors reflect the fractions of the observed long-range chromatin interactions (>10 kb), which are considered reproducible. On top of the panel: a
chromatin interaction map derived from a HiC assay is depicted on the context of the observed PET counts (heatmap scale). On the bottom: After
LOGIQA data treatment, the chromatin interaction map displays the inferred PET counts dispersion (in percent; heatmap scale). Notably, the bottom
panel recapitulates the genomic contacts observed on the top panel, but in addition it provides a further information concerning their reproducibility
over the multiple random sub-sampling assays accomplished during quality assessment
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the reconstructed chromatin interaction maps from a
subset of the mapped paired-end tags (PETs) should
present the same patterns than those observed in the
original map. Obviously, multiple factors can lead to a
deviation from this optimal situation; one of them is the
sequencing depth. Indeed, sequencing depths below a
“saturation point”, as previously described for ChIP-
sequencing assays[7], will lead to a decreased accuracy
of chromatin interaction patterns. Importantly, applying
this concept to long-range chromatin interaction assays
provides a direct relationship between the sequencing
depth and the confidence in predicting chromatin
interactions. This confidence is herein referred to as
the quality of the dataset under study.
Technically, we first selected unique PETs (excluding

potential PCR-generated “clonal” reads), which participate
in intra-chromosomal interactions longer than 10 kb. We
thereby excluded PETs resulting from short-range chro-
matin interactions, which dominate chromatin interac-
tomes (forming the diagonal in interaction maps) and
would bias the quality assessment due to their over-
representation. Indeed, Removal of PETs spanning >10 kb
or >25 kb led to a direct correlation between the amounts
of PETs per dataset and their associated QCscores
(Additional file 1: Figure S1A). This correlated also with
an improved visual quality and visibility of Topologically
Associating Domains (TADs) in chromatin interaction
maps (Additional file 1: Figure S1B). Next we established
randomly sampled interaction PET subsets for defined
fractions of the original population (90 %, 70 %, 50 %;
described hereafter as s90, s70 or s50). After random sam-
pling, intra-chromosomal interaction maps were recon-
structed by assessing the number of PET counts within
5 kb or 25 kb bins. These two analytical windows enable
quality assessment at two different resolutions and facili-
tate the comparison of different types of datasets; this con-
cerns particularly HiC assays that are generated with
different restriction enzymes or ChIA-PET assays involv-
ing sonication-sheared chromatin.
Finally, global and local quality scores were computed
by comparing the recovered PET counts per 5 kb or
25 kb bin after random sampling with those observed in
the original dataset (Fig. 2a).

Computing local and global quality indicators
Technically quality assessment is performed by first
computing the recovered PET counts after random
sampling as follows:

recPETcounts ¼ samPETcounts
oPETcounts

� �
� 100

where samPETcounts correspond to PET counts assessed
after random sampling and oPETcounts correspond to
those retrieved with the original dataset. Then it is used
for computing the difference between the observed re-
covered PET counts after random sampling relative to
that ideally expected (samd; which is equivalent to the
random sampling density (90 %, 70 % or 50 %)):

∂PETcounts ¼ samd−recPETcounts

The recovered PET count dispersion (δPETcounts) per
genomic window is referred to as the local QC indicator,
such that each evaluated genomic region (5 kb or 25 kb
window) can be expressed by this quantitative readout
assessed for a given random sampling subset analysis.
Importantly, representing genome interaction maps in
the context of PET count dispersions (δPETcounts)
transforms the display into a uniform scale for compar-
ing datasets generated at variable PET sequencing levels
(e.g. PET count dispersion: 5-50 %).
Finally, while δPETcounts interaction maps provide a

visual display of the quality associated to a given gen-
omic region, they do not allow evaluation of the quality
of the entire dataset. Therefore, we defined the following
global quality descriptors:



A C

B

D

Fig. 2 Assessing quality descriptors over long-range genome interaction assays. a Scatter-plot illustrating the fraction of PET counts recovered
after random subsampling (Y-axis) relative to the original PET counts in 5 kb genome windows (X-axis). Note that genome windows with high
PET counts contain PET levels close to the expected value; in contrast, the lower the PET counts, the higher is the deviation from this theoretically
expected level. b Recovery scatter-plots assessed from datasets with increasing PET count levels (from 100 to 500 millions). Note that we generated
these datasets by random sub-sampling of a large metafile (>600 million reads). c QCscores computed from datasets presenting increasing PET count
levels (from 100 to 500 millions). The illustrated QCscores, computed from five independent replicates, present variation coefficients below 3 % (see
Additional file 1: Figure S2). d Local displays illustrating chromatin interactions (chromosome 6, mm9) evaluated in the context of PET count dispersion
levels (percentage) per genomic window (5 kb) relative to the expected recovery levels. Note that short-range genomic interactions (diagonal) show
the lowest dispersion levels
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Density quality indicators (denQCi)
The fraction of genomic regions (5 kb or 25 kb window)
in the random sampled datasets presenting δPETcounts
lower than a defined threshold; which in the context of
this study has been fixed at 10 %. Specifically, LOGIQA
presents denQCi values computed for 90 %, 70 % and
50 % random samplings (denQC.90, denQC.70 and
denQC.50 respectively).

Similarity quality indicators (simQCi)
The ratio between two denQCis is used to evaluate their
degree of similarity. Specifically, LOGIQA presents
simQCi values computed for denQC.90 and denQC.70
relative to denQC.50 (simQC.90/50 and simQC.70/50
respectively).
Note that denQCi aims at quantifying the proportion

of genomic regions that fluctuates in less than 10 % for a
given random sampling. In fact, an s90 random sampling
presents generally less variation from the original data-
set, while the s50 subset will have the highest deviation.
The simQCi measures the relative difference between
denQC indicators computed at different random sub-
sampling conditions. For instance, simQC.90/50 compares
the denQC at 90 % to that computed at 50 % sub-
sampling. In an ideal situation (saturation of the interac-
tome readout), the fraction of genome interactions
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affected by the random sampling is identical at 90 % and
50 % and would yield a simQC = 1. While none of the
evaluated datasets are at saturation, the closer this indi-
cator is to 1, the lower is the difference of the denQC
indicators between the two random sub-samplings and
the higher is the dataset quality.
Intuitively, high quality datasets generally contain a

high amount of genomics regions that are “robust” to
the most severe 50 % random sub-sampling (i.e., they
will display high denQC.50 levels); they will also show
low differences between denQCis assessed at various
random sub-sampling conditions (i.e., their simQC.90/
50 and simQC.s70/50 will be close to 1). To integrate
these two aspects on a single readout, we defined a global
QCscore, which summarizes the previous metrics (denQCi
and simQCi) into a single quality descriptor according to
the following formula:

QCscore ¼ denQC:50
simQC:90=50

� �
� denQC:50

simQC:70=50

� �

The QCscore provides a quality readout, in which
the influence of both the denQC.50 and the simQCis
computed for s90 relative to s50 (simQC.90/50), and
s70 relative to s50 (simQC.70/s50) are represented.

Quality scores computed for a variety of long-range
chromatin interaction assays
Because of its universal principle, LOGIQA allows to
compute quality scores for chromatin interaction data-
sets generated from a variety of techniques. Indeed,
LOGIQA hosts currently QC scores for >250 publicly
available HiC (including several variants of the original
protocol, like in situ or capture HiC), but also several
ChIA-PET (>50) and 4C-seq (>900) datasets.

Utility
Quality score validations
One of the principal motivations for the development of
the present quality score system was to provide a nu-
merical quality descriptor that can predict the optimal
sequencing depth for long-range chromatin interaction
assays. In fact, even though chromatin interaction assays
are expected to require high sequencing depth [8, 9], to
date there is no quantitative approach that can compare
multiple HiC or similar assays in the context of their
relative sequencing depths. The QCscores computed by
LOGIQA solve this problem. To illustrate this point, we
have constructed a HiC metafile composed of more than
600 million PETs and established subsets by random
sampling (100, 200, 300, 400 and 500 million PETs),
which were used for calibration of a quality scale. This
calibration system reveals a direct negative correlation
between sequencing depth and the deviation of the
recovered PET count levels from the original dataset
after random sampling (Fig. 2b; note the enlarged dis-
persions of the 100 million vs. the 500 million PET data-
sets) which translates into a gain of global QCscores for
high PET counts (Fig. 2c). Importantly, the reproducibil-
ity of the computed global QCscores has been validated
from multiple independent random samplings, for which
the coefficient of variation was systematically <10 %
(Additional file 1: Figure S2). This calibration revealed
also the influence of the sequencing depth on PET count
dispersion in a selected genome region, as illustrated for
chromosome 6 in Fig. 2d, where the chromatin inter-
action maps reconstructed from different total PET
counts are compared using a color-code for PET count
dispersion.
We next computed the quality scores for datasets that

were reported to be of superior quality due to a modifi-
cation of the technology, referred to as in situ HiC [10].
Specifically, these assays involve cell in situ proximity
ligation, which reduces the frequency of random inter-
molecular ligation. In this context, we compared QC
scores computed for 126 HiC and 87 in situ HiC data-
sets in the context of their total sequenced PETs. The
QC scores of the in situ HiC datasets were generally
among the top for a given PET range (Fig. 3a, e) even
though there was no clear separation in the quality of
HiC and in situ HiC. Rather, it appears that the quality
of HiC is more variable than that of in situ HiC, which
were generally performed with lower total PETs (Fig. 3b).
Our comparative analysis supported also the notion that
there are less inter-chromosomal PETs in in situ HiC, as
we observed on average more than 70 % intra-
chromosomal PETs for in situ HiCs, while significantly
less were seen in HiCs (Fig. 3c). Given that LOGIQA
computes QC scores on the basis of intra-chromosomal
PETs that span a genomic distance of above 10 kb (re-
ferred to as “filtered PETs”), we compared the two HiC
technologies in the context of filtered PETs. We noted
that in situ HiC assays generated on average significantly
higher amounts of filtered PETs (~40 %) than HiC
(~25 %) assays (Fig. 3d).
Albeit increasing the PET coverage can compensate

for reduced QC scores, we were rather interested in
comparing the QC scores of HiC and in situ HiC at
comparable PET coverage (and thus similar sequencing
costs). Notably, mean QC scores around −30 were
attained by in situ HiC at a total PET coverage of 50 M
to 100 M, while for HiC 100 M to 200 M PETs were
required to reach this score (Fig. 3e; dashed green line).
To demonstrate that the global QC score is a meaning-

ful value also for local quality assessment we generated
local genome interaction maps (chromosome 6, hg19)
generated from two datasets with similar numbers of
filtered PETs (~120 million) but significantly different
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Fig. 3 Quality scores assessed on 76 HiC and 71 in situ HiC assays evaluated in the context of total sequenced PETs. a Global Quality scores computed
for HiC and in situ HiC assays relative to the total PETs. b, c and d Violin plots illustrating the number of total PETs (b), and the fraction of intra-
chromosomal (c) and intra-chromosomal (d) filtered PETs. e Violin plots displaying the QC scores for HiC and in situ HiC datasets stratified for identical
total PET intervals. The dashed horizontal green line demarcates the median QC score assessed for in situ assays with less than 200 million PETs
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global QC scores (Fig. 4). Importantly, the in situ HiC data
formed clearly defined topological domains (TADs) for
the illustrated region, which corresponds to the human
histone gene cluster 1, while the dataset generated by clas-
sical HiC appeared less well defined. The visual perception
of this difference is further enhanced when the graphic
displays were generated from randomly sub-sampled frac-
tions of the two original PET datasets. In fact, when 50 %
of the PETs were used for reconstructing the chromatin
interactomes, the TAD pattern was readily detectable by
visual inspection in the in situ HiC assay for PET disper-
sion levels <10 %, while the classical HiC assay had PET
dispersion levels >20 and a very blurred graphical presen-
tation, in which no TADs could be identified.
Taken together, in situ HiC generates higher amounts of

intra-chromosomal PETs and delivers at similar PET
coverage better QC scores than HiC. Thus, the present
comparative study with large populations of HiC datasets
demonstrates the utility of the quality scores computed by
LOGIQA.



Fig. 4 Chromosome 6 interaction maps displayed for two datasets presenting similar number of filtered PETs but different global QC scores. The
illustrated HiC (GSM1055801) and in situ HiC (GSM1551563) datasets comprise about 120 million filtered PETs, nevertheless their global QC scores are
different (higher quality for in situ than for the classical HiC assay). In both cases, large genome interaction views (top panels: 10 million bp), as well as
closer views (5 million bp) clearly demonstrate the presence of more clearly defined topological domains in the in situ HiC dataset. Note that for the
close-ups, both the PET count displays from the original datasets, as well as PET count dispersion displays (dPETs) of the random sub-samplings clearly
illustrate the differences in quality of the interaction patterns
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Quality scores as quantitative means for revealing
heterogeneity among datasets
The LOGIQA database provides a global view of the rela-
tive quality of all long-range chromatin interaction assays,
thus revealing the impact of the methodology, sequencing-
depth and other technical/performance aspects that are
specific to each individual assay. To illustrate the last point,
we compiled the QC scores of multiple ChIA-PET, HiC
and in situ HiC assays and displayed them relative to the
filtered PETs used in the assays (Fig. 5, central panel). We
then displayed contact maps for two pairs of datasets with
largely distinct QC scores but similar filtered PET density -
one pair comprised a ChIA-PET and a HiC (about 9 M
filtered PETs) and the other an in situ HiC and a classical
HiC (about 120 M filtered PETs). The illustrated maps
correspond to the same region of chromosome 6 in
which either the total PET counts or the PET count dis-
persions at 70 % sub-sampling are displayed (top and
Fig. 5 Comparison of a variety of long-range chromatin interaction dataset
Scatter-plot illustrating the global quality scores for several long-range chro
(Left and right panels) To highlight the power of discrimination provided by
panels; ~9M PETs - GSM811037 & GSM927076) and high (right panels; ~120
illustrated in a local context (the panels show the histone gene cluster on
depicted in PET counts (top) or PET count dispersion (bottom; %δPETs retri
to the number of intra-chromosomal contacts spanning a minimal genom
bottom panels, respectively, in each of the blue-framed
boxes). It is very obvious from these displays that the in
situ HiC GSM1551536 (top right) displays more
confident chromatin interaction patterns than the HiC
GSM1055801 (bottom right) and indeed, LOGIQA attrib-
uted a global QC score of −36.98 to the in situ HiC but
only −42.74 to the HiC assay. Remarkably, the target-
driven ChIA-PET GSM811037 presented a rather similar
global QC score (−43.71) as HiC GSM1055801 even
though a very low number of filtered PETs were obtained
in this assay (~9 million) and TAD structures are clearly
discernible in the connectivity maps (Top left), albeit with
lower confidence than in the in situ HiC GSM1551536. In
stark contrast to the ChIA-PET the connectivity map of
HiC GSM927076 (Bottom left) that was generated with
similar number of PETs does not reveal any TAD struc-
tures and received from LOGIQA the rather poor global
QC score −52.75.
s in the context of the sequenced paired-end tags (PETs). (Center)
matin interaction assays in the context of the associated PET counts.
global QC scores, the indicated datasets, chosen to represent low (left
PETs – GSM1551563 & GSM1055801) filtered PET count conditions, are
chromosome 6). Local interaction maps generated by LOGIQA are
eved after 70 % random PET sub-sampling). Filtered PETs correspond
e distance of 10 kb
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Overall, Fig. 5 clearly illustrates very convincingly the
comparative power of the numerical QC scores computed
by LOGIQA and their coherence with the visual impres-
sion obtained from chromatin contact maps.
While LOGIQA contains also quality indicators for

more than 600 4C-seq assays, it is important to note that
these values were computed differently. Since 4C-seq as-
says query all potential genomic interactions associated to
a given genomic region - commonly referred to as “bait” -
it resembles ChIP-seq assays, in which a target factor is
used to define specific sites within the genome. Conse-
quently, we performed quality assessments of 4C-seq simi-
larly as for ChIP-seq assays using the NGS-QC Generator
algorithm (for details see [6] or www.ngs-qc.org).
Fig. 6 LOGIQA: A database hosting local and global quality scores assessed o
scores (y-axis, QC-score) for >160 HiC assays in the context of their associated
LOGIQA query panel. (Bottom panel). Screenshot of the visualization tool disp
dispersion levels (heatmap scale)
LOGIQA provides a unique web access interface
In contrast to other computational solutions dedicated
to visualize HiC or related datasets [10], users do not re-
quire to install any software to use LOGIQA. Further-
more, while a few other databases that host publicly
available HiC and related assays became recently avail-
able [11, 12], LOGIQA is to our knowledge the first
database of quality descriptors for a large collection of
publicly available datasets. LOGIQA is a fully functional
web-based system, which provides to users the quality
scores for currently more than 900 publicly available
datasets covering mouse, human and drosophila on a var-
iety of long-range chromatin interaction assays. Specific-
ally, global QC scores for all evaluated datasets are
f long-range interaction assays. (Top right). Scatter-plot illustrating quality
paired-end tag (PET) counts (x-axis, log10). (Top left). Illustration of the
laying local chromatin interaction events depicted by their PET counts

http://www.ngs-qc.org
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available in a scatter-plot format relative to their related
PET counts, revealing the impact of genome size,
sequencing-depth, and technical performance on the
robustness and thus, quality of the data sets (Fig. 6 and
Additional file 1: Figure S3).
To facilitate the retrieval of datasets, LOGIQA provides

a user-friendly query panel covering items like species,
type of experiment (e.g. in situ HiC), use of restriction
enzyme for chromatin fragmentation, target molecule for
ChIA-PET assays, name of (an) author(s), minimal/
maximal PET counts to be retrieved, as well as a key-
word search for the abstract of the corresponding
publication(s).
Finally, LOGIQA provides a dedicated genome viewer,

in which users can either select a defined gene (with
user-defined upstream and downstream extensions), or
provide genome coordinates (Fig. 6 and Additional file 1:
Figure S4). The visualisation module displays either local
QC dispersion readouts (for 70, 50 or 90 % random sam-
pling conditions) or PET counts. The user can modify in
both cases the associated heatmap scale and the genome
window resolution (5 or 25 kb windows) (Additional file 1:
Figure S5).

Discussion and conclusions
Multiple features, which are at least in part inter-
dependent, affect what can be considered as ‘quality’
of a long-range chromatin interaction assay. It is obvious
that several experimental steps and procedures can be
performed under more or less optimal conditions and that
this will influence the final dataset. Some of the variables
are purely experimental (crosslinking, restriction digest,
end repair and biotin labelling in HiC; crosslinking, sonic-
ation and IP/antibody quality in ChIA-PET; generation of
the sequencing library as well as sequencing coverage);
others are bioinformatic (read alignment stringency).
In this context, previous studies suggested that quality
assessment in chromatin interaction assays could be
performed by evaluating the alignment statistics, the
frequency of dangling-end or self-circle PETs to reveal po-
tential experimental problems during sample preparation,
the levels of duplicated PETs as indicator of library com-
plexity and PCR amplification bias, the fraction of intra
over inter-chromosomal interactions and the frequency
of long-range versus short-range intra-chromosomal
interactions (see also [13]).
LOGIQA provides users with the possibility to retrieve

the total PET counts, the fraction of unique PETs and
number of intra and inter-chromosomal events. However,
these are criteria that are more or less subjective, non-
quantitative and non-cumulative; different users may
value them differently. For example, while HiC assays may
be judged subjectively as ‘good’ because they contain a
high frequency of intra-chromosomal events, the variable
ratio of long/short interaction PETs is generally not
assessed. The quality assessment of LOGIQA fills this gap
by computing the frequency of genomic contacts, which
are in addition tested for “robustness” by random sub-
sampling.
LOGIQA is based on the concept that we have previ-

ously presented for the assessment of quality scores for
ChIP-seq and related assays [6]. The use of random sub-
sampling of mapped PETs follows the same principle as
for mapped reads from ChIP-seq assays. Specifically, this
methodology is based on the concept of a “sequencing
saturation point”, beyond which no new enrichments
can be identified [7, 14]. This concept has been initially
evaluated in a retrospective manner in ChIP-sequencing
assays by assessing the number of significant binding
sites retrieved when only a subset of the original se-
quenced reads is used for profile reconstruction (read
random sub-sampling approach; [15]). In a similar man-
ner we have shown empirically that in ChIP-sequencing
assays genomic regions with high intensity levels
followed a proportional decrease after mapped read sub-
sampling [6].
LOGIQA is an independent tool that complements the

NGS-QC database with quality score information associ-
ated to long-range chromatin interaction assays. In fact,
the study of chromatin interactomes is rapidly gaining
popularity in scientific community, as revealed by >170
publications indexed in Medline (November 2015) and
>500 datasets deposited in GEO. While these numbers
are small compared to several thousand ChIP-seq and
related datasets, there is an obvious need of establishing
quality standards for both types of datasets. Since our
first release of the NGS-QC Generator tool in 2013, we
have processed more than 30,000 public datasets and
we expect to cover virtually all ChIP-seq datasets by 2016.
Similarly, LOGIQA will be expanded to cover all available
HiC datasets and other type of datasets, like ChIA-PET.
Ultimately, we will provide to users a cross-visualisation
platform that displays datasets processed by the NGS-QC
Generator together with those retrieved by LOGIQA such
that users can explore long-range chromatin interaction
maps in the context of available ChIP-seq and related
datasets. Together, LOGIQA and NGS-QC Generator
represent powerful tools for quality-guided exploration of
public repositories dedicated to functional genomics
datasets.

Availability and requirements
Database availability
LOGIQA is available trough a dedicated web access :
www.ngs-qc.org/logiqa.
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Additional file 1: Figure S1. Influence of the short-range PET distance
on the assessment of LOGIQA QCscores. Figure S2. Global QC scores
reproducibility evaluated over multiple PETs’ random sub-sampling. Figure S3.
Global overview of the LOGIQA web application. Figure S4. Visualization
panel (Interaction map). Figure S5. Genome interaction maps for the dataset
GSM1551643 assessed at 5kb and 25kb bins resolution. (PDF 1952 kb)
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