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Abstract

Background: Nitrogen (N) is an essential and often limiting nutrient to plant growth and development. Previous
studies have shown that the mRNA expressions of numerous genes are regulated by nitrogen supplies; however,
little is known about the expressed non-coding elements, for example long non-coding RNAs (lncRNAs) that control
the response of maize (Zea mays L.) to nitrogen. LncRNAs are a class of non-coding RNAs larger than 200 bp, which
have emerged as key regulators in gene expression.

Results: In this study, we surveyed the intergenic/intronic lncRNAs in maize B73 leaves at the V7 stage under
conditions of N-deficiency and N-sufficiency using ribosomal RNA depletion and ultra-deep total RNA sequencing
approaches. By integration with mRNA expression profiles and physiological evaluations, 7245 lncRNAs and 637
nitrogen-responsive lncRNAs were identified that exhibited unique expression patterns. Co-expression network
analysis showed that the nitrogen-responsive lncRNAs were enriched mainly in one of the three co-expressed
modules. The genes in the enriched module are mainly involved in NADH dehydrogenase activity, oxidative
phosphorylation and the nitrogen compounds metabolic process.

Conclusions: We identified a large number of lncRNAs in maize and illustrated their potential regulatory roles in
response to N stress. The results lay the foundation for further in-depth understanding of the molecular mechanisms of
lncRNAs’ role in response to nitrogen stresses.
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Background
Maize (Zea mays L.) is an important cereal grain crop
that is grown widely in various agro-ecological environ-
ments worldwide. Apart from being used as human food,
maize is also largely used for livestock feed and industrial
materials in developed countries [1]. Plant growth and
grain development require an abundant supply of nutrients
particularly nitrogen (N) [2–4]. As a major yield-
determining factor, N is a vital plant nutrient for plant
growth and development. It not only provides an N source
for amino acids, nucleic acids, chlorophyll and ATP
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(adenosine triphosphate) [5–7], but also mediates the
utilization of phosphorus, potassium and other nutrients in
plants [8]. Massive amounts of synthetic nitrogen fertilizer
are currently applied to crop fields, however, the crops do
not use significant amounts. The excess nitrogen inevitably
becomes a major component of global environmental
pollution [9–12]. To reduce nitrogen pollution while
increasing productivity, enabling crops to use nitrogen
more efficiently is critical [13–15]. To achieve this goal,
multiple quantitative trait loci (QTLs) in the related
pathways have been identified [16–19] and differential
gene expression studies in response to nitrogen resources
and stresses have been reported [20–24]. However, nitro-
gen assimilation and its associated metabolic pathways are
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highly complicated. The underlying molecular mechanism
of nitrogen regulation remains largely unknown [25–27].
In recent years, studies of long non-coding RNAs

(lncRNAs), a class of non-coding RNA molecules longer
than 200 nt, have extended our understanding of the
eukaryotic transcriptome. Studies in animals and humans
have indicated that lncRNAs play a key role in regulating
diverse biological processes, such as transcriptional
regulation, dosage compensation and genomic imprinting
[28–31]. However, the study of lncRNAs in plants remains
largely unexplored. With the rapid development of high-
throughput sequencing technologies, large numbers of
lncRNAs have been identified in silico or experimentally in
Arabidopsis, maize, rice and other plant species. Boerner
and McGinnis [32] identified 1802 potential lncRNAs
in the maize genome using a computational pipeline from
18,668 full-length cDNA sequences. Li [33] identified
20,163 putative lncRNAs and 1704 high-confidence
lncRNAs by exploiting available public expressed se-
quence tag (EST) databases and RNA-seq datasets from
30 different experiments. In addition, several studies have
demonstrated the regulation of lncRNA expression in re-
sponse to abiotic stresses in plants [34–38]. Through in
silico genome-wide analysis of Arabidopsis full-length
cDNA databases, 76 ncRNAs including five siRNA pre-
cursors and 14 natural antisense transcripts of protein-
coding genes were identified. Twenty-two lncRNAs
related to abiotic stress response were identified by
studying stress expression profiles [39]. Zhang et al.
[40] reported the deep sequencing of mRNAs derived
from drought-stressed maize and 1724 lncRNAs were
identified as drought-responsive. In eukaryotes, most
transcripts, including mRNAs and lncRNAs have a
polyadenylated (poly (A)+) tail at their 3′ ends. However,
non-polyadenylated transcripts, such as ribosomal RNAs
(rRNAs) and replication-dependent histone mRNAs end
in a conserved 3′ stem-loop sequence [41], and some
lncRNAs [42–44] transcribed by RNA polymerase II are
present in large numbers among transcripts. Yang et al.
[42] explored poly(A) + and poly(A)- RNAs from HeLa
cells and H9 human embryonic stem cells using deep
sequencing, and found that a few excised introns accu-
mulate in cells and constitute a new class of non-
polyadenylated lncRNAs. Di et al. [44] performed total
RNA-seq for seedlings of Arabidopsis thaliana under
four stress conditions and identified 245 poly (A) + and
58 poly (A)- lncRNAs that are differentially expressed
under various stress stimuli. Thus, total RNA sequencing
should help us to detect more lncRNAs because it selects
RNAs independent of the presence of a poly(A) tail.
To investigate the potential role of lncRNAs with/

without polyA tails in response to nitrogen resources, we
first performed ultra-deep total RNA sequencing with only
rRNA depletion and identified a collection of intergenic/
intronic lncRNAs genes expressed in maize leaves. Among
the 7245 identified putative lncRNAs, 637 were
nitrogen-responsive. Eighty-five differentially expressed N
responsive lncRNAs were further classified into three co-
expressed modules, some of which are involved in
metabolic processes associated with energy, oxidative
phosphorylation, phosphorus and nitrogen compounds.
These results suggest that lncRNAs might have unique
roles in the response to nitrogen.
Methods
Plant materials and nitrogen stress treatments
The elite maize inbred line B73 was germinated in a plastic
container (20 × 20 × 40 cm) filled with a mixture of quartz
sand (80 %) and vermiculite (20 %) in a greenhouse at
JAAS (Jiangsu Academy of Agricultural Sciences). Plants
were watered daily until the three-leaf stage and then
watered with nutrient solution containing 5 mM CaCl2,
0.5 mM KH2PO4, 2 mM MgSO4, 0.05 mM EDTA-Fe-Na
Salt, 10 uM MnCl2, 0.3 uM CuSO4, 1 uM ZnSO4, 50 uM
H3BO3 and 0.5 uM Na2MoO4. Two different nitrate
(KNO3) concentrations were used: one as sufficient N
conditions (15 mM) and one as limited N conditions
(0.15 mM). Leaves at the seven-leaf (V7) stage were col-
lected and stored at −80 °C for further analysis. Three in-
dependent biological replicates were grown to validate
RNA expression via quantitative real-time PCR (qPCR).
Leaf N content measurement
To analyze the total nitrogen content of the leaves, B73
leaves from the two nitrogen treatments were dried at
105 °C until their weight was stable. They were then
ground to fine powder to ensure digestion. Total N
contents were then determined using San++ Continuous
Flow Analyzer (Skalar, the Netherlands).
RNA extraction, rRNA depletion and total RNA-seq
sequencing
The total RNA of each sample was isolated using a
Takara MiniBEST universal RNA extraction kit (Takara,
Japan) and digested with RNase-free DNase (Qiagen,
Germany) according to the manufacturer’s protocol. RNA
was then purified and concentrated using an RNeasy col-
umn (Takara). The RNA concentration and quality were
evaluated using an Agilent 2100 Bioanalyzer (Agilent
Technologies, USA). RNA samples were treated with the
RiboMinus™ plant rRNA removal kit (Invitrogen, CA,
USA) for rRNA depletion. Total RNA-seq libraries were
then constructed and sequenced using an Illumina HiSeq™
2500 with paired-end method by Berry Genomics Co.
Ltd., China.



a)

b)

Fig. 1 Phenotypic and physiological changes in response to N stress. a Phenotypes in response to N stress; b) Leaf N content at seven-leaf (V7)
stage under two N conditions. Bars represent the standard error of three biological replicates

Table 1 Overview of two total RNA-seq datasets

Samples Raw bases Cleaned bases Mean length Mapped (%)

SN 15,179,396,400 14,534,219,565 97.02 83.3

LN 13,175,171,000 12,408,379,110 96.72 67.3

SN B73 under sufficient nitrogen condition, LN B73 under limited nitrogen
condition
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RNA-seq analysis
The Tuxedo suite [45] was used to complete RNA-seq
analysis in this study. First, the FastQC [46] program
was employed to assess the quality of the reads. The
SolexaQA++ v3.1 [47] program was introduced to per-
form quality trimming using the Q20 value (Phred score
20, 1 in 100 chance of incorrect base call). Any reads less
than 40 bp were removed after trimming. Cleaned reads
were then aligned to the ribosomal RNA (rRNA) sequence
databases using the BWA [48] program with default pa-
rameters. Any reads containing rRNA sequences were
removed and the remaining reads were used for further
analysis. The maize genome assembly B73 (v3) was
downloaded from the Plant Ensembl database (http://
plants.ensembl.org, v26), which contains 39,556 genes
and 63,174 transcripts. Cleaned reads were aligned to
the maize reference genome using Tophat v2.0.13 [49].
Low-quality alignment results were filtered out using
Samtools [50] with a mapping quality threshold of 20.
After the alignment, Cufflinks (version 2.1.1) [45] was
used to assemble reads into transcripts. Subsequently, the
assembled transcripts were merged using Cuffmerge [45]
to obtain a non-redundant unified set of transcripts.
Transcripts from the two assemblies were compared
with reference annotation using the Cuffcompare [45]

http://plants.ensembl.org
http://plants.ensembl.org


Fig. 2 Annotation classification of assembled transcripts based on reference gene set. The percentage was calculated based on class codes generated
by Cuffcompare against B73 reference gene set ( Ensembl v26). Among of class codes, “=”: locus completely matched with intron chain; “c”: locus
contained in reference gene; “j”: locus is potentially a novel isoform and at least 1 splice junction is shared with a reference transcript; “e”: a possible
pre-mRNA fragment; “i”: a transfrag falling within an intron region; “o”: generic overlap with reference; “p”: possible polymerase run-on fragment; “x”:
exonic overlap with opposite strand of the reference; “s”: intronic overlap with opposite strand of the reference likely due to mapping error
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program. The class codes in the Cuffcompare output
were used to generate a consensus assembly. The num-
ber of fragments per kilobase per million mapped reads
(FPKM) per gene were calculated using cuffquant [45].
Cuffdiff [45] was used to perform pairwise comparisons
between samples to identify differentially expressed tran-
scripts. Cuffdiff was used to test for differential expression
a) b

c

Fig. 3 Flow chart of intergenic and intronic lncRNA identification and thes
and novel protein-coding gene identification analysis. RNA-seq data sets were
protein domain and length were used to set inclusion and exclusion criteria f
RNAs among the candidate unannotated transcripts. b Density plot of length
transcript for lncRNAs (blue) and coding RNAs (red)
and regulation among the assembled transcripts across
the different samples using the Cufflinks output.

Computational identification of intergenic and intronic
lncRNAs
To find lncRNAs, a strict computational strategy was
performed as described by Iyer et al. [51] and Xiao et al.
)

)

e length/exonic density. a Flow chart of intergenic/intronic lncRNAs
assembled and merged into a transcriptome by Cufflinks. CPC score,
or screening intergenic/intronic lncRNAs and putative protein-coding
s for lncRNAs (blue) and coding RNAs (red). c Density plot of exons per
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[52]. First, transcripts with class code “I” and “U” were se-
lected for further non-coding analysis. The Gffread pro-
gram was used to extract these transcripts. Then, these
transcripts were aligned against uniref90 and Pfam protein
databases using the CPC [53] program to assess their
protein-coding potential. Non-coding transcripts larger
than 200 bp, with an FPKM> 1 and a CPC score < -1,
were finally considered as candidate lncRNAs for further
analysis.

Co-expression network analysis
To construct the co-expression network, a set of micro-
array data under limited and sufficient nitrogen conditions
in maize produced by a previous study [54] were employed.
The data set generated 90 gene expression profiles contain-
ing 84,246 probe sets using the Affymetrix chip platform.
Combined expression profiles were extracted and normal-
ized using the GEOquery [55] package. Co-expression
correlation between lncRNA probes and non-lncRNA
probes was then calculated using Pearson correlation
with R2 ≥ 0.85. The normalized expression data from
lncRNAs probes and co-expressed probes were extracted
to construct an unsigned co-expression network using the
Fig. 4 Chromosome distribution and expression value of intergenic/intronic
intronic lncRNAs were identified in this study (y-axis) across the genome (x-ax
lncRNAs with high nitrogen treatment; Red represents the log10(FPKM+ 1) va
WGCNA [56] package with a soft threshold = 8. Module
assignment of lncRNAs and non-lncRNAs was identified
using Topological Overlap Matrix (TOM). Eigengenes of
each module were evaluated and the co-expressed net-
work was visualized by the Cytoscape [57] program.

GO (Gene Ontology) term enrichment analysis
The eigengene probes of each module were assigned puta-
tive functions by searching using the Blastx [58] program
against the uniprot protein database [59], using a cut-off
e-value ≤ 1e-15. Coding eigengenes were then submitted
to AgriGO online toolkits [60] for gene ontology term
enrichment. Fisher’s exact test was applied for the enrich-
ment analysis and the false discovery rate (FDR) was
assessed using the Bonferroni method. The significance
level was set to 0.1 to identify the significant functional
terms.

Validation and quantification of lncRNAs
To validate the lncRNAs, 14 lncRNAs were selected
and subjected to a PCR test using B73 genomic DNA
and cDNA to validate the accuracy of the assembly.
Primers were designed using mInDel [61] are shown in
lncRNAs under nitrogen treatments. The expression values of intergenic/
is). Blue represents the log10(FPKM+ 1) value per intergenic/intronic
lue per intergenic/intronic lncRNAs with low nitrogen treatment
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Additional file 1: Table S1 and Additional file 2: Table S2.
To confirm the RNA-seq expression results, total RNA
was used to synthesize cDNA using a PrimeScript™ RT
reagent kit (Takara) and random hexamer primers. Ubiqui-
tin was used as the internal reference gene control [62].
qPCR was performed using SYBR Premix DimerEraser™
kits (Takara) on a Real Time PCR System (Roche
LightCyclerR 96, USA), according to the manufacturer’s
instructions. Quantification results of target transcripts
were calculated using the comparative ΔΔCt method.
Three biological replicates for each selected transcript
were used.

Results
Phenotypic and physiological responses of maize
seedlings to N stress
The influence of N stress of varied intensities on devel-
oping maize seedlings (inbred line B73) was monitored
by measuring the N content in the leaves. Before N stress,
there was no significant difference detected between
sufficient nitrogen and limited nitrogen treatments. After
treatment, the leaf color differed between sufficient nitrogen
a

b)

Fig. 5 Similarity profiles of lncRNAs and annotated coding genes across re
against panicum virgatum,Sorghum bicolor and Sitalica genomes using Me
BLAST score to each database: red≥ 300; yellow ≥200; green ≥150; blue ≥
b putative intronic lncRNAs; c putative intergenic lncRNAs
and limited nitrogen supplies (Fig. 1a). Measurement of the
leaf N content demonstrated that the N content in the
nitrogen-limited maize leaves was significantly lower than
that in the nitrogen-sufficient treatment. The results sug-
gested that seedlings of inbred line B73 were sensitive to the
N stress and that the internal N content was altered by the
N treatments (Fig. 1b).

Ultra-deep total RNA sequencing and mapping
To obtain a comprehensive understanding of the tran-
scriptome under nitrogen stress, total RNAs of V7 leaves
were isolated from the maize inbred line B73 grown
under sufficient and limited N conditions. RNA-Seq li-
braries were constructed from the total RNA with rRNA
depletion and sequenced by the paired-end method
(100 bp × 2) using the Illumina HiSeq2500 platform. Ap-
proximately 15 Gb (SN, sufficient nitrogen) and 13 Gb
(LN, limited nitrogen) of sequences were obtained. After
removing low quality sequences below the Q20 thresh-
old, short sequences less than 40 bp in length, and those
with residual rRNA, 83.3 % SN and 67.3 % LN of the
high-quality reads were successfully aligned against the
)

c)

lated species. The nitrogen-responsive linRNA were searched separately
gablast (E-value≤ 1e-20). The color was coded based on the highest
100, and purple <100. a Annotated coding RNAs with class code “=”;
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maize B73 reference genome (V3) using the splice junc-
tion mapping algorithm in Tophat2 [49] (Table 1).
To identify unannotated RNA transcripts, Cufflinks

produced a merged data set of all nitrogen-treated
RNA-seq data sets using the RABT (reference annotation-
based transcript) assembly algorithm. As a result, 68,541
loci with 72,169 transcripts from B73 were generated.
Comparison with the known B73 reference gene set (Plant
Ensembl database, v26) by the Cuffcompare program pro-
duced a non-redundant combined set of 66,342 loci with
72,169 transcripts for further analysis. Meanwhile, the
comparison results showed that 20.16 % (14,547) of tran-
scripts were completely matched to annotated coding
genes, while 34,945 (48.42 %) transcripts were mapped to
unknown intergenic regions and 3.82 % (2755) transcripts
were located entirely within a reference intron (Fig. 2). In
total, 2119 (2.94 %) transcripts were presumed to be novel
isoforms. The results indicated that the majority of the
transcripts were from the intergenic or intronic regions,
and the total RNA-seq strategy is capable of recovering
these RNAs.
Fig. 6 Comparison of expression pattern of intergenic/intronic lncRNAs an
intergenic/intronic lncRNAs cluster, novel coding RNAs cluster and annotat
RNA-Seq data sets. A horizontal line represents the median of each sample
Computational identification and characterization of
intergenic and intronic lncRNAs
Potential lncRNAs and novel protein-coding mRNAs
were identified based on their sequence, amino acid pep-
tide lengths and protein-coding potential, using CPC
against UniRef90 and Pfam protein databases (Fig. 3a).
In this report, only intronic and intergenic transcripts
(“I” and “U”, respectively) were selected for lncRNA pre-
diction. Of the 37,700 transcripts with class code “I” and
“U”, 16,516 were identified with non-coding transcripts
after CPC analysis (CPC score < -1). Non-coding tran-
scripts were aligned against Pfam protein databases for
domain filtering. Finally, 7245 non-coding transcripts
longer than 200 bp and with an FPKM> 1 were considered
as LncRNAs and 5481 were potential novel protein-coding
transcripts (CPC score > 1) (Additional file 3: Table S3 and
Additional file 4: Table S4).
Among the 7245 putative lncRNAs, most were inter-

genic transcripts (6,211 lncRNAs) (class code “U”), while
1034 were located fully within an intron of a protein-
coding gene (class code “I”) (Additional file 3: Table S3).
d annotated coding RNAs. Expression values (Log10 (FPKM + 1 ))of
ed RNAs cluster were calculated separately based on SN and LN
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The average length of lncRNAs was shorter than that of
coding RNAs and mostly had only one exon (Fig. 3b, c).
LncRNAs from intergenic regions could also be named
as long intervening non-coding RNAs (lincRNAs). Ac-
cording to their genome positions, these lncRNAs over-
lapped with parts of inter- and intragenic sequences and
were widely distributed in maize genome (Fig. 4). A
fasta-formatted file containing the identified lncRNAs
file and a GTF-formatted annotated file are provided in
Additional file 5: Table S5.
Moreover, we used Megablast [58] to identify sequence

similarities with known plant ncRNAs (PNRD, plant
non-coding RNA database [63]). As a result, 167 inter-
genic/intronic lncRNAs showing high homology to
known lncRNAs from PNRD lncRNA databases were
considered as known lncRNAs. In addition, four miRNA
precursors, two tRNAs, one snRNAs and 16 snoRNAs
were identified as known ncRNAs (Additional file 6:
Table S6).

Evolutionary conservation of intergenic/intronic lncRNAs
To evaluate the sequence conservation, we investigated
the sequence similarity relationships of intergenic/in-
tronic lncRNAs among three monocot genomes ob-
tained from the plant ensembl genome database (http://
plants.ensembl.org/) using Blast [58] alignment. Anno-
tated coding RNAs (class code, “=”) sequences served as a
a) b)

Fig. 7 Volcano and heatmap plot of expressed transcripts between two ni
The red points indicate that both large-magnitude fold-changes (x-axis) as
plot of differential expressed isoforms with p < 0.01
control. Distributions of Blast scores were then visualized
using SimiTri [64] (Fig. 4, Additional file 7: Table S7).
The extent of sequence similarity observed among

intergenic and intronic lncRNAs was higher than that
seen in randomly selected intergenic regions. However,
both intergenic and intronic lncRNAs appeared to show
less similarity among the different genomes compared
with the annotated coding RNA set (Fig. 5a, b, c). A
Mann-Whitney U test showed that sequence similarity
of the intergenic/intronic lncRNAs was significantly
different from the corresponding set (p = 2.2 × 10−12).

Unique expression pattern of lncRNAs
According to RNA types, expressed transcripts were
classified into two major clusters: the lncRNAs group
and the annotated coding RNAs group. The expres-
sion patterns of the two clusters were calculated sep-
arately. In detail, the difference between lncRNAs and
coding RNAs was measured statistically using a two-
tailed Mann-Whitney U-Test (Fig. 6, Additional file 8:
Table S8).
The expression pattern of lncRNAs showed significant

differences to that of the coding genes (p < 2.2e-16 in
both SN and LN). The results suggested lncRNAs have
their own unique expression patterns and their overall
expression levels were significantly lower than those of
coding RNAs.
trogen conditions. a Volcano plot of expressed information of isoforms.
well as high statistical significance (-log10 of p-value, y-axis). b Heatmap

http://plants.ensembl.org/
http://plants.ensembl.org/
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Nitrogen-responsive intergenic and intronic lncRNAs
To investigate the potential role of intergenic and intronic
lncRNAs under nitrogen stress, we performed diffe-
rentially expressed genes analysis between samples with
different N treatments. Based on combined GTF annota-
tion, all transcripts’ expression profiles were obtained by
Cufflinks. Differentially expressed genes were analyzed by
Cuffdiff and 2391 transcripts with q values < 0.05 were
identified as differentially expressed. In detail, 637 of these
differentially expressed transcripts were from intergenic
and intronic lncRNAs (620 intergenic and 17 intronic
RNAs). Under high nitrogen conditions, 426 intergenic/in-
tronic lncRNAs were downregulated, including 417 inter-
genic and nine intronic RNAs, while 211 lncRNAs (203
lincRNAs and eight intronic lncRNAs) were upregulated
(Fig. 7, Additional file 9: Table S9). The remaining 1307
were other differentially expressed transcripts. Meanwhile,
we observed that 6608 lncRNAs were statistically insig-
nificant under the two nitrogen treatments. Differentially
expressed lncRNAs were further evaluated using co-
expression analysis to infer their potential function.
Fig. 8 The co-expression network between nitrogen-responsive intergeni
lncRNA and coding genes, with dissimilarity based on topological overlap
according to module size: turquoise denotes the largest module, blue ne
non-module genes
Co-expression network of nitrogen-responsive lncRNAs
Compared with specific coding genes and microRNAs,
most lncRNAs’ functions, particularly in response to ni-
trogen resources, remain largely unknown. Many reports
have suggested that co-expressed genes are usually
members of the same pathway or protein complexes and
are functionally related or controlled by the same tran-
scriptional regulatory program [65–67]. Genes or proteins
inside a co-expressed module can be co-regulated. There-
fore, computational construction of coding and non-
coding gene co-expression networks could be used to infer
the potential biological functions of the lncRNAs [66].
After similarity analysis of microarray probes with E

values < 1e-50, 85 probes were identified and considered
as differentially expressed intergenic/intronic lncRNAs
(Additional file 10: Table S10). We used a well-developed
computational algorithm, WGCNA, to construct the co-
expression network for coding RNAs and lncRNAs. The
distribution of association between coding genes and
lncRNA genes was calculated (Pearson correlation, R2 ≥
0.85). The significantly correlated genes were selected to
c/intronic lncRNAs and coding genes. Clustering dendrogram of
, together with assigned module colors. Module colors are assigned
xt, then brown, green, yellow, etc. The color grey is reserved for



Fig. 9 Graphical representation of coexpressed network M1
(weight threshold = 0.02). Top 50 nodes representing genes with
high intramodular connectivities from M1 modules were extracted
with weight threshold 0.02 and exported to an edge file and a node
file for visualization by Cytoscape. Red represents lncRNA nodes;
Blue represents other nodes
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construct the co-expression network. Excluding the re-
served non-coexpressed gray module, we dissected three
modules that included 33 lncRNAs that comprise various
nodes in the network. Interestingly, we noted that most
lncRNAs (32 of 33) were enriched in the blue module M1
(Fig. 8, Table 2); therefore, we focused on analyzing mod-
ule M1. Module M1 comprises 32 N-responsive intergenic
and intronic lncRNAs and 239 maize protein-coding
genes (Megablast against maize annotated coding genes
with e-value ≤ 1e-50) (Additional file 11: Table S11). Using
intramodular connectivity calculations, two lncRNAs:
TCONS_00068420 (A1ZM007479_at, E value = 6e-96)
and TCONS_00020903 (A1ZM007576_at, E value = 2e-
121) exhibited very high intramodular connectivity, which
suggested that these lncRNAs play an important hub
role in regulating the eigengenes of module M1 (Fig. 9).
A full list of the genes in the blue modules is provided
in Additional file 11: Table S11.

Function term enrichment of M1 eigengenes
The coding eigengenes of module M1 were further
assigned and enriched to different GO terms using AgriGO
[60] toolkits. We observed some significantly enriched
genes in the biological process category of oxidative
phosphorylation (GO: 0003954, corrected p value <
0.0005), generation of precursor metabolites and energy
(GO: 0006091, p value < 0.033) and oxidation reduction
(GO: 0055114, p < 0.054). In the molecular function
category, NADH dehydrogenase activity (GO: 0003954,
p < 5.80e-09) and oxidoreductase activity (GO: 0016491,
p < 0.0033) were highly and significantly enriched (Fig. 10,
Table 3). Besides, eigengenes were also assigned to GO
terms such as phosphorylation (GO: 0016310), phos-
phate metabolic process (GO: 0006796), phosphorus
metabolic process (GO: 0006793), nitrogen compound
metabolic process (GO: 0006807), biosynthetic process
(GO: 0009058) and cellular macromolecule metabolic
process (GO: 0044260) (Additional file 12: Dataset S1).

Validation and quantification of lncRNAs
We selected 14 lncRNAs, eight with introns and six with-
out introns, to conduct PCR validations using genomic
DNA and cDNA. The results showed a high degree of
consistency for the product sizes between assembled
lncRNAs and the actually amplified product, both at
Table 2 The statistics of coding genes and lncRNAs in
constructed co-expressed modules

Modules M1 (blue) M2 (turquoise) M3 (brown)

Other probes 904 1053 665

LncRNAs probes 32 0 1

Total probes 936 1053 666

M1 ~M3 represent the constructed co-expressed modules respectively
genomic and transcriptome levels (Fig. 11, Additional file 1:
Table S1). The results excluded the possibility of mis-
assembly of sequences and alternative splicing. To ensure
the accuracy and reliability of the RNA-seq results, a set
of independent biological replicates of the nitrogen treat-
ments were subjected to qPCR to confirm the expression
changes. Ten transcripts were randomly selected for qPCR
(Fig. 12, Additional file 2: Table S2). The results showed
good consistency between the qPCR results and the high-
throughput sequencing results.

Discussion
Compared with traditional microarrays, RNA-seq is su-
perior for the detection of novel lncRNAs because of its
greater sensitivity, high throughput and no need for prior
sequence information [68, 69]. In mRNA sequencing, the
mRNAs are captured based on the presence of a poly (A)
tail. Thus, lncRNAs with polyA tails can be captured.
However, Cheng et al. [70] suggested that 40 % of lncRNA
transcripts were not polyadenylated. To obtain a global
view of lncRNAs, we constructed and sequenced an entire
RNA library. Only ribosomal RNAs were removed. The
small RNAs, mRNAs, and all forms of lncRNAs were
retained. As a result, we detected more lncRNAs than any
other reported mRNA sequencing projects.
Although recent studies of lncRNAs suggested that

individual lncRNAs might play important and diverse
biological roles, only a few plant lncRNAs have been con-
firmed to regulate abiotic stress. In this study, we surveyed



Fig. 10 The network of enriched GO terms. The color represents the significant levels from yellow to red
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the intergenic/intronic lncRNAs in B73 leaves at the V7
stage under conditions of N-deficiency and N-sufficiency.
Integrated with mRNA expression profiles and physiological
evaluations, 7245 lncRNAs and 637 nitrogen responsive
lncRNAs were found. Moreover, a number of lncRNAs were
identified for the first time as specifically expressed under
different N conditions. The highly specific temporal and
spatial expression pattern is similar to previous observa-
tions in other plant species [44].
Table 3 Top 15 annotated and enriched GO terms of M1 module e

GO term Ontology Description

GO:0003954 F NADH dehydrogenase activity

GO:0016651 F oxidoreductase activity, acting on N

GO:0006119 P oxidative phosphorylation

GO:0016491 F oxidoreductase activity

GO:0006091 P generation of precursor metabolite

GO:0055114 P oxidation reduction

GO:0003824 F catalytic activity

GO:0016310 P phosphorylation

GO:0006796 P phosphate metabolic process

GO:0006793 P phosphorus metabolic process

GO:0006807 P nitrogen compound metabolic pro

GO:0006139 P nucleobase, nucleoside, nucleotide

GO:0044260 P cellular macromolecule metabolic p

GO:0044238 P primary metabolic process

GO:0016740 F transferase activity
The functions of most lncRNAs remain largely un-
known, therefore, we constructed a gene co-expression
network of nitrogen-responsive lncRNAs and coding
genes and identified three modules using public micro-
array data sets under different nitrogen treatments.
Interestingly, co-expressed lncRNAs were mainly clus-
tered in module M1. Thus, lncRNAs may play a key role
in gene expression regulation of module M1. Further
functional enrichment results suggested associations
igengenes

p-value FDR

4.00E-10 5.80E-09

ADH or NADPH 2.80E-10 5.80E-09

0.000008 0.0005

0.00015 0.0014

s and energy 0.001 0.033

0.0026 0.054

0.014 0.12

0.029 0.45

0.043 0.45

0.043 0.45

cess 0.5 1

and nucleic acid metabolic process 0.66 1

rocess 0.96 1

0.82 1

0.61 1



Fig. 11 PCR test against Genomic DNA and cDNA. M: Marker; G: Genomics DNA; T: cDNA transcripts
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with oxidation and reduction, generation of precursor
metabolites and energy processes. This result indicated
that N treatment during maize fertilization could have a
profound influence on the energy and substrate metab-
olism in leaves, which is highly consistent with the ex-
pectation that the category of nitrogen compound
metabolic process (GO: 0006807) could be found in the
N treatment experiment. However, the most significant
process was NADPH/NADH dehydrogenation (GO:
0003954, GO: 0050136, GO: 0008137, GO: 0016655 GO:
0016651). NADH and NADPH are the reduced forms
of NAD+ and NADP+, respectively. The assimilation
of nitrogen is associated with high NADH/NADPH
consumption [2]. N nutrient absorption improves the
photosynthesis system which is one of the biggest re-
sources of NADPH production in plants [71]. NADPH
also acts as an electron donor in carbon dioxide fixation
Fig. 12 qPCR results of randomly selected N-responsive transcripts. X-axis rep
ubiquitin was chosen as the reference gene. Relative expression value per sel
in the Calvin cycle (light-independent reactions) [72] and
lipid biosynthesis [73]. Phosphorylation (GO: 0016310)
was also found, which is a vital procedure in carbon fix-
ation, and in lipids and starch assembly. Previous studies
showed that plant growth and biomass production are
largely connected to the activity of primary metabolism in
the source leaf, including carbon fixation in photosyn-
thesis, large amounts of nitrogen for amino acids and
proteins, phosphorus for the synthesis of RNA and the
realization of energy metabolism. Environmental stress
is usually accompanied by a rebalancing of the cellu-
lar C-N-P homeostasis [74] in plants. The annotated
results in this study offered new insights into the poten-
tial roles of lncRNAs in C-N-P rebalancing in response to
nitrogen.
One limitation is that only 85 lncRNAs were repre-

sented by microarray probes. With the rapid accumulation
resents selected 10 differential expressed transcripts under N stress. Here,
ected transcripts between SN and LN samples was calculated (y-axis)
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of total RNA-seq data, we hope that a set of combined ex-
pression data containing all lncRNAs will soon be
available, which would allow the construction of a
more comprehensive co-expression network in the
future.
Our current understanding of lncRNA regulation in re-

sponse to nitrogen is still in its infancy. Several approaches
can be used to determine their biological functions, in-
cluding lncRNA silencing and structure disruption. The
present study has laid a foundation for future research in
this direction.

Conclusion
Genome-wide identification, characterization, differen-
tial expression and co-expression network analysis of
intergenic/intronic lncRNA in maize leaves provided a
global overview of transcriptional responses of lncRNAs
to N stress. Co-expression analyses suggested that the ex-
pression of N responsive lncRNAs is highly enriched in a
co-expressed module that is related to energy metabolic
pathways. Future efforts will be devoted to understanding
the interaction of these nitrogen-responsive lncRNAs,
especially those with hub lncRNA functions in the
network module. Experimental approaches such as
overexpression, RNA interference and promoter ana-
lysis have been demonstrated as useful strategies to
characterize their functions, which would provide valu-
able information for nitrogen-use efficiency improvement
in maize.
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