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Abstract

Background: Plant response mechanisms to heat and drought stresses have been considered in strategies for
generating stress tolerant genotypes, but with limited success. Here, we analyzed the transcriptome and improved
tolerance to heat stress and drought of maize plants over-expressing the OsMYB55 gene.

Results: Over-expression of OsMYB55 in maize decreased the negative effects of high temperature and drought
resulting in improved plant growth and performance under these conditions. This was evidenced by the higher
plant biomass and reduced leaf damage exhibited by the transgenic lines compared to wild type when plants were
subjected to individual or combined stresses and during or after recovery from stress. A global transcriptomic
analysis using RNA sequencing revealed that several genes induced by heat stress in wild type plants are constitutively
up-regulated in OsMYB55 transgenic maize. In addition, a significant number of genes up-regulated in OsMYB55
transgenic maize under control or heat treatments have been associated with responses to abiotic stresses including
high temperature, dehydration and oxidative stress. The latter is a common and major consequence of imposed heat
and drought conditions, suggesting that this altered gene expression may be associated with the improved stress
tolerance in these transgenic lines. Functional annotation and enrichment analysis of the transcriptome also pinpoint
the relevance of specific biological processes for stress responses.

Conclusions: Our results show that expression of OsMYB55 can improve tolerance to heat stress and drought in
maize plants. Enhanced expression of stress-associated genes may be involved in OsMYB55-mediated stress
tolerance. Possible implications for the improved tolerance to heat stress and drought of OsMYB55 transgenic

maize are discussed.
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Background

It is anticipated that the demand for cereals will increase
by 70 % by 2050 given the increased food production
needed to sustain a growing population, with the largest
increases required in many low-income countries [1].
This pressure for more food is complicated by the nega-
tive effects of global climate change on the efficient use
of water, energy and land for major crops [2]. Extreme
temperatures and water deficits are among the most
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serious climatic factors limiting crop production. On
average, our planet’s surface temperature has registered
an increase of 0.6 °C over the past century and a further
increase of 2 to 4 degrees has been predicted by the end
of the present century [3]. Although this may be beneficial
for a few crops in certain high latitude regions, overall
productivity will be negatively affected because of higher
temperatures during the growing season and more severe
and longer droughts [4]. Thus, under this future scenario,
there is a need to expand breeding programs and biotech-
nology strategies to improve growth performance of major
crops by introducing varieties with higher yield and less
vulnerability to diseases and other environmental stresses.
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High temperatures adversely affect germination and
water relations, shorten developmental stages and cause
perturbation of photosynthesis-related processes such as
light perception, carbon fixation and respiration, leading
to heat-induced vyield loss in cereals [5]. Even with suffi-
cient moisture, higher temperatures both at day and night
have an effect on yield potential. For maize for instance,
temperatures above 35 °C (above the optimum daytime
range of 25-30 °C) will affect vegetative and reproductive
growth, from germination to grain filling [6]. At the cellu-
lar level, the major consequences of high temperatures
are: (1) alteration of membrane fluidity affecting mem-
brane function which has an impact on photosynthesis
and respiration and (2) onset of oxidative damage caused
by the heat-induced imbalance of photosynthesis and res-
piration, production of reactive oxygen species (ROS) and
reduced antioxidant activity [7]. Similar to reacting to
drought and salinity, plants deploy various protection
mechanisms to endure heat stress (HS) including scaven-
ging of ROS, production of antioxidants, accumulation of
compatible solutes and activating signaling cascades
leading to the synthesis of molecular chaperones such
as heat-shock proteins (HSPs) and late embryogenesis
abundant (LEA) proteins. These chaperones would pre-
vent denaturation of existing proteins, misfolding of
newly synthesized proteins and maintaining membrane
stability [8]. All these response mechanisms have been
considered in strategies for improving heat tolerance
through modern breeding protocols and biotechno-
logical approaches, though up to now their success has
been limited.

Studies on heat response and heat tolerance have largely
focused on heat shock proteins (HSPs) and transcriptional
activation of their genes by heat shock transcription fac-
tors (HSFs) [8]. Positive correlations between expression
of HSPs and HS tolerance have been reported [9-12].
Nonetheless, besides HSPs, other pathways can be poten-
tially manipulated to improve thermotolerance. It has
been suggested that part of the response to HS is mediated
by the action of plant growth regulators such as cytokinin
[13], methyl jasmonate [14], salicylate [15] and brassi-
nolides [16]. Similarly, other molecules such as proline,
glycine-betaine, polyamines or signal molecules (e.g.
ABA, calcium, hydrogen sulfide) can aid in maintaining
cell membrane integrity, ion homeostasis and increased
photosynthesis, either when applied exogenously [17] or
by manipulating their biosynthesis [18—20]. Although dif-
ferences exist between responses to HS and drought when
imposed individually [21], the above examples indicate
that reactions to HS often involve interconnected net-
works and defense mechanisms shared with other stress
responses. This is further evidenced by the protective role
of HSFs and HSPs against more than one abiotic stress
condition [22-24].
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Tolerance to heat is generally characterized by tran-
scriptional activity leading to synthesis of protective com-
ponents as mentioned above. A transcriptome analysis
performed in wheat, revealed the induction of a large
number of transcription factors following heat treatment,
including members of the HSF, AP2, bHLH, bZIP, MYB,
NAC and WRKY and Zn-finger gene families [25]. Inter-
estingly, members of the same gene families were recently
identified in a transcriptome study in rice [26]. Data of the
latter study showed 31 and 21 out of the 46 differentially
expressed MYB genes to be up-regulated one and eight
hours after heat stress, respectively, suggesting a central
role of these genes in the transcriptional response to HS.
Plant MYB transcription factors, most of the R2R3 type,
regulate numerous processes during the plant life cycle in-
cluding responses to environmental stresses [27]. Despite
the large number of MYB genes in plant species, only few
have been proposed to have a role in heat tolerance. In
Arabidopsis, mutants for the MYB68 gene show reduced
growth under high temperature compared to WT [28].
Recently, it has been reported that constitutive expression
of the tomato LeAN2 gene encoding a MYB transcription
factor causes anthocyanin accumulation and confers en-
hanced tolerance to HS by maintaining a functional
photosynthetic apparatus and a higher non-enzymatic
antioxidant activity [29]. In a previous study, our group
described that over-expression of OsMYBS5S5 in rice stimu-
lated amino acid metabolic pathways crucial for normal
plant growth and development, resulting in improved
plant tolerance to HS during vegetative growth and de-
creasing the negative effect of high temperature on grain
yield [30].

In this work, we analyzed the effect of over-expressing
OsMYBS5S in maize, an important crop with different
photosynthetic mechanism than rice (C4 vs. C3) but
adapted to a similar climate. We performed a wide tran-
scriptome analysis to investigate the genes and pathways
affected by HS and OsMYBS55 over-expression. In addition,
because a combination of HS and drought better resembles
a predicted scenario of climate change, we assessed the in-
dividual and additive effects of these stress conditions on
the growth of WT and transgenic plants.

Results

Phenotypic responses to heat stress

Maize plants over-expressing the full-length ¢cDNA of the
OsMYBSS gene and representing ten single-copy transgenic
lines were generated. Four transgenic lines were randomly
chosen to carry out the experiments described in this study
and the expression levels of the transgene were determined
(Additional file 1). Seedlings from WT and two OsMYB55
transgenic lines were used to make an initial assessment of
their growth in response to high temperature. Plants
entering the three leaf-stage were moved from 29 to
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42 °C (daylight temperature) and response to HS was
evaluated by determining total dry biomass, plant height,
stem diameter and chlorophyll content. Growth reduction
of transgenic plants was less affected than WT after five
days of heat treatment, reflected by a small reduction
of dry biomass, plant height, and stem diameter (Fig. 1).
In addition, smaller decrease in chlorophyll content in
OsMYB55 lines indicated reduced initial leaf damage to
the leaves compared to WT (Fig. 1).

Transcriptome analysis of transgenic maize under heat

Because of the significant growth differences observed in
response to high temperature, a similar experiment was
devised to compare the transcriptomes of one transgenic
line (P4, which presented median levels of transgene ex-
pression among the selected lines; Additional file 1) and
WT plants. Transcript profiling (RNA-Seq) was performed
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Fig. 1 Tolerance to high temperature of maize seedlings over-expressing
OsMYB55. a Wild type (WT) and over-expression transgenic (P1, P5) plants
were grown at control temperature (29 °C / 23 °C day/night) until
the second leaf stage. Plants were then moved to high temperature
regime (42 °C /35 °Q) for five days. Control plants were maintained at
normal temperature. b Measurement of total dry biomass, plant
height, stem diameter and chlorophyll content after five days of
heat treatment, expressed as reduction compared to control
plants. Bars represent means + SE. Asterisks indicate significant
differences between transgenic (P1, P5) and wild type (WT) plants
(t-test, * P<0.05,** P<0.01)
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using mRNA from leaves, stems and roots of plants grown
under normal and high temperature conditions. Over 80 %
of the filtered reads aligning to the reference genome
(Additional file 2). Of 36,603 genes, 23,778 genes remained
after filtering. Comparisons were made within leaf, stem
and root samples of each genotype between control and
HS conditions and between genotypes. These datasets are
listed in Additional files 3, 4 and 5. The number of differ-
entially expressed genes (DEG; fold-change greater than 2,
P <0.05) is summarized in Additional file 6. With these
criteria, in all three tissues, more than half of the DEG
between control and HS were common for WT and the
OsMYB55 line. In leaves, 885 and 946 were significantly
differentially expressed only in WT and only in the trans-
genic line, respectively, and 2,070 were common DEG for
both genotypes (Additional file 6a). Lower number of
up- and down-regulated entities was found for stems
(Additional file 6b) and roots (Additional file 6¢). Compar-
isons between the genotypes showed reduced number of
DEG for plants under control or HS (Additional file 7).

Gene Ontology (GO) functional enrichment analysis
was performed with the gene lists for each tissue from
the comparisons between conditions (control and heat)
and between genotypes (WT and OsMYB55 line). GO
terms for biological processes are shown in Fig. 2 and are
plotted as a heat map to easily visualize common func-
tionality across experimental conditions. In leaf samples,
six GO terms were enriched in the control condition
when comparing OsMYB55 line with WT, whereas only
one GO term (metabolic process) was enriched in the
heat treatment comparison. When analyzing the genes
up-regulated in leaves in response to heat, 15 GO terms
were enriched in WT whereas 17 GO terms were enriched
in the transgenic line. Of those, 11 were common in both
genotypes (response to heat, response to stress, response
to hydrogen peroxide, response to light intensity, oxida-
tion reduction process, phosphate starvation, respiratory
electron transport chain, aerobic electron transport chain,
carboxylic acid metabolic process, photosynthesis and
protein folding). Most of these terms were also enriched
in the same comparisons for the stem and root samples,
in either genotype or both (Fig. 2). Other enriched terms
in stem samples were associated with carbon fixation, lipid
metabolic process, DNA replication and lipid transport
in both genotypes, plus those related to lignin catabolic
process and to nucleosome assembly in the transgenic
line. GO terms specifically enriched in roots included
carbohydrate metabolic process, trehalose biosynthetic
process, nicotianamine biosynthetic process, ion trans-
port, phosphate transport, transmembrane transport,
sexual reproduction, with the last four only enriched in
the transgenic line (Fig. 2).

To have a general idea of the pathways affected by dif-
ferences in gene expression, we used GOseq and the
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Fig. 2 Enrichment of Biological Process GO Terms for DEG. Enriched terms by tissue and category (C, control; H, heat stress; W, wild type; T, transgenic
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same methodology for GO Term enrichment to identify
enriched pathways. In leaves, two pathways related to
synthesis of gibberellins were enriched in both conditions,
and pathways associated with biosynthesis of conjugated
cytokinin and branched amino acids were also enriched
under HS. In addition, heat treatment caused enrichment
of sulfate assimilatory pathways and phosphate acquisi-
tion in the transgenic line (Additional file 8). In stems,
a triaglycerol degradation pathway was enriched in the
transgenic line. In roots, the transgenic line presented
significant representation of pathways associated to
photosynthesis, carbon reduction and gluconeogenesis
in either treatment condition and five enriched biosyn-
thetic pathways for flavonoids and anthocyanidins when
the OsMYB55 line was compared to WT in the HS
condition (Additional file 8).

Several heat-induced genes in WT plants are constitutively
up-regulated in OsMYBS55 transgenic maize

The response to heat treatment by the two genotypes was
further analyzed by focusing in the transcriptome obtained
from leaf samples. Evaluation of the DEG lists for treat-
ment and genotype comparisons revealed that most of the
significantly up-regulated genes in the transgenic line
under control conditions are also highly up-regulated in
WT plants in response to HS, though only about half of
them presented significant P-value (Additional file 9). In
addition, six of those genes were significantly up-regulated
in the transgenic line by HS. Annotation for most of these
entities obtained from the MaizeGDB shows that several
of them are associated to stress responses or regulation of
transcription (e.g. transcription factors). Comparison of
DEG in the OsMYB55 line with those in WT under
control conditions showed that 47 entities displayed sig-
nificant differential expression in at least two of the organs
sampled (considering a fold-change>2 in at least one
sample; Additional file 10).

A group of genes from tables in Additional files 9 and
10 were selected to validate their expression in two inde-
pendent OsMYB55 lines. They encode a thaumatin, a
patatin-like phospholipase, a heat shock protein, two lipid
transfer protein family members, a phosphoadenosine
phosphosulfate reductase, a wall associated kinase receptor-
like protein, an F-box and leucine-rich repeat protein, a
heat shock transcription factor, four MYB transcription fac-
tors, a WRKY transcription factor and an AP2-like ethylene
responsive transcription factor. Of those 15 selected genes,
13 showed significant up-regulation in both transgenic lines
compared to WT in the control condition, whereas only 7
in the heat treatment condition (Fig. 3). Two MYB tran-
scription factors (MYB63 and MYBR104) were induced in
the WT in response to heat. Also, in concurrence with the
RNAseq data (Additional file 3), some genes up-regulated
in one transgenic line (compared to WT) in the heat stress
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comparison displayed decreased expression when compar-
ing heat and control samples (of the same transgenic line).
Despite this, most genes showed higher expression in both
transgenic lines compared to WT under HS (Fig. 3). These
results confirm the transcript abundance of DEG from the
RNAseq assay and suggest that the profile of induced genes
in the OsMYB55 lines may be related to the improved heat
tolerance.

Several genes up-regulated in OsMYB55 transgenic maize
are also associated with drought responses

The possible role of OsMYB55 in modulating expression
of genes involved in responses to abiotic stress especially
drought was further investigated by analyzing GO termin-
ology of the DEG comparison under control conditions.
Out of the 173 genes up-regulated in the transgenic maize
line (Additional file 7), 18 genes were classified by AgriGO
as belonging to GO:0009628 (response to abiotic stimulus;
Additional file 11). In addition, 24 genes were identified as
being up-regulated at least in one drought transcriptome
study in maize reported in the literature (Additional
file 11). Moreover, a literature search provided further
information for 21 genes in maize or for their orthologs in
rice or other species. In those cases, a significant number
of genes have been described to be induced by drought
or to confer stress tolerance when over-expressed
(Additional file 11). In that gene list, nine of them encode
transcription factors and 11 encode chromatin-related
proteins (e.g. histones and minichromosome maintenance
complex subunits). Other genes are associated with
hormone signaling, oxidative stress and defense responses.

OsMYB55 transgenic maize shows tolerance to heat and
drought stress

The above results of the transcriptome analysis led us
to further evaluate the response of plants expressing
OsMYBS55 to HS, drought and the combination of these
stresses. Five-week-old plants of three independent
lines and WT plants grown under controlled conditions
were subjected to water withholding or high temperature
treatment or both for five days before evaluation of growth
and physiological parameters. Even though visual differ-
ences were noticeable between the genotypes (Fig. 4a-d),
variations in some parameters were statistically significant
only in certain cases. All three treatments caused reduction
of water content in WT plants however less significant re-
duction was observed in transgenic lines under HS (Fig. 4e).
Plant growth and chlorophyll content were also reduced in
all genotypes in all three conditions (Table 1). Significant
differences in plant height and leaf damage were observed
between the transgenic lines and WT under HS, whereas
significant differences in stem diameter, chlorophyll con-
tent and leaf damage were observed between all three ge-
notypes under combined stress. Only one transgenic line
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Fig. 3 Expression of selected genes identified by RNAseq in transgenic lines. Relative transcript levels (qRT-PCR) of GRMZM2G038490 (Thaumatin);
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(P1) displayed more fresh and dry biomass than WT under ~ Consistent with the observed leaf damage, all three trans-
HS. In the drought treatment, all lines presented higher genic lines accumulated less malondihaldehyde (MDA)
chlorophyll content and dry biomass than WT (Table 1).  than WT in all stress conditions, although differences were
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Fig. 4 Phenotype of maize OsMYB55 transgenic plants subjected to drought and heat stress. Five-week old wild type (WT) and over-expression plants
(P1, P4, P5) were grown under a control conditions, b water withholding, ¢ high temperature (42 °C/ 35 °C) or d subjected to water withholding and
high temperature as described in methods. Picture was taken five days after treatments. Control plants were watered and maintained at
normal temperatures (29 °C / 23 °C) during the experiment. e Relative water content at the end of the treatment. f Malondihaldehyde
(MDA) accumulation in leaves as indication of stress-induced oxidative damage. Bars represent mean values + SE (n = 6). P-values (Student’s
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only significant under HS and combined stress (Fig. 4f).
After the treatments, the remaining plants from the
drought and HS groups were allowed and were able to re-
cover (transferred to control temperature and re-watered
for seven days). While all genotypes presented similar
growth in the control group, the three transgenic lines
exhibited higher biomass than WT in both the drought
and HS groups (Additional file 12), magnifying the ef-
fects of the stress treatments and the differences be-
tween the genotypes. Plants in the combined HS and
drought treatment group were not considered in this
case because the additive effect of the same intensity
and duration of stresses was too severe to allow plants
to fully recover.

To further characterize the phenotype of the trans-
genic plants in response to drought in more advanced
vegetative stages, an experiment was designed where the
control of water availability was privileged over that of
ambient temperature (i.e. greenhouse conditions). Eight-
week-old plants were subjected to water withholding for
five days and then allowed to fully recover, which was

attained by all genotypes after 3—4 days. To assess the
plants’ physiological condition, water potential (to de-
termine water status), leaf temperature (indicative of
leaf transpiration) and normalized difference vegetation
index (NDVIL as an indicator of plant greenness or
photosynthetic activity) were measured. Reduction of water
potential occurred gradually in all genotypes but was
slower in the OsMYB55 lines which lost between 30 and
50 % of water potential compared to that of well-watered
plants after 4 days without irrigation, whereas WT plants
lost twice as much water potential as their respective
controls. This difference in water status remained sig-
nificant in all three transgenic lines one day after recov-
ery (Fig. 5a). The superior water status of the transgenic
lines could be an indication of a higher transpiration
rate compared to WT. This was further evaluated by
measuring the depression of temperature in fully ex-
panded leaves relative to well-watered plants. The
OsMYB55 lines exhibited better evaporative cooling of
the leaves than WT from the start of the water stress
regime and presented up to 1.5 °C less increment in
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Table 1 Growth and damage parameters measured in plants subjected to heat and combined heat and drought stress

Treatment  Genotype Height* (cm)  Stem diameter* (mm) Damaged leaves*  Chlorophyll Content*  Fresh biomass* (g)  Dry biomass* (g)
(index units)

Control WT 59141070 82+016° 00 +0.00° 1934045 90+053° 0.74 +005°
P1 502+143%  81+017° 0.0 %000 19.9+0.70° 92+076° 075 +0.06°
P4 588+1.12%  84+050°° 0.0 +0.00° 217+1.12° 11.0+039° 0.85 + 0.06”
PS5 602+110°  89+038° 0.0 +000° 206+ 136° 109+ 0.36° 0.80 +0.05°

Heat WT 448+161° 59+031° 21+035° 7.7 £081°¢ 53+047° 041 +005°
P1 496+160°  65+025 0.8+032° 100+ 1.155 74+ 056° 061 +0.06°
P4 489+114°  67+025¢ 04+0.18° 83+099° 57+052° 045 +0.05°
P5 4724079  69+036° 09+020° 90+132° 57+073° 044 +0.05°

Drought  WT 490+117° 58015 0.0 +0.00° 1274067 4240234 031+002¢
P1 530+101°  65+0.15° 0.0+000° 18.1+068° 50+030° 044 +003°
P4 513+060°  66+037° 0.0 +000° 165+1.12° 444039 038+002°
P5 516+107°  61+0.17° 0.0 +000° 189+ 1.08° 47+030° 044 +0.06°

Heat + WT 39340904 35+024° 42+022° 39+053¢ 11+011° 0.16 +0.02°

Drought  P1 410+£104°  42+021 26+029° 6.3 +0.94° 12+008° 0.16+0.03¢
P4 393+0879  43+012° 20+017° 6.6 +045° 10+ 0.09° 0.16 £ 0.03°
P5 417+082% 474014 23+017° 59+039° 10+ 009° 0.12+002°

WT wild-type; P1, P4 and P5, over-expression plants. Plants are those shown in Fig. 4 and measurements were performed five days after treatment

*Within each parameter, means + SE P<de
temperature compared to WT. This difference was less
evident after recovery (Fig. 5b).

For assessing senescence and green area affected by
stress, foliar reflectance was measured as another non-
destructive phenotyping parameter. Based on the light
absorbed in the visible versus the near infrared bands of
the spectrum, several vegetation indices were calculated
including simple ratio index, normalized difference vege-
tation index (NDVI), green NDVI, soil adjusted vegeta-
tion index, and triangular vegetation index. Because
NDVI is the most common vegetation index used and is
considered a sensitive indicator of green biomass, green
leaf area and vigor [31], it was selected to illustrate the
results (Fig. 5¢). Reduction of the NDVI occurred right
from the start of the experiment and was lower in the
transgenic lines compared to WT. Those lines with sig-
nificant less affected NDVI also exhibited better index
during the early recovery phase (Fig. 5c). All four calcu-
lated indices produced similar trends and differences be-
tween the genotypes and throughout the treatment (not
shown). Overall, the physiological parameters indicated
that the water stress treatment affected WT plants more
than OsMYB55 lines, suggesting increased tolerance to
water deficit of the latter group.

Discussion

Plant transcription factors are key regulators of almost
all aspects of plant growth and development as well as
for responses to stress conditions. HSFs are the major
group of transcription regulators involved in HS response

f Same letter after values indicate that they are not significantly different from each other at p < 0.05

[8] however independent studies have consistently
identified other groups of transcription factors that re-
spond to HS in cereals, including the MYB-type family
[25, 26, 32]. In this work, we show that over-expression
of OsMYBSS5 in maize improves plant tolerance to high
temperature and water stress during vegetative growth
and whole-genome transcript profiling identified tran-
scripts and physiological processes that may contribute
to their performance under stress.

Heat stress and drought tolerant phenotype of OsMYB55
transgenic maize

Plant growth and yield depend on the efficiency of
photosynthesis and metabolism to produce biomass.
Under HS or drought, the integrity of the plant’s physi-
ology is compromised by the onset of oxidative stress
and alteration of water relations, causing reduction of
photosynthesis and impairment of redox homeostasis
[7]. The reduced leaf damage and MDA accumulation
in OsMYB55 lines (Figs. 1 and 4) suggest that these
transgenic plants may have enhanced cell membrane
stability and ROS scavenging ability under HS condi-
tions. This is likely due to the activation of endogenous
ROS-scavenging systems or other defense responses
(see below). Compared to C3 plants, maize is generally
more capable of sustaining growth under high tempera-
tures due to a greater antioxidant capacity. It has been
reported that the expression and activities of ascorbate
peroxidase, catalase, glutathione reductase and superoxide
dismutase, as well as contents of reduced ascorbate and
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Fig. 5 Physiological parameters of maize OsMYB55 transgenic plants
subjected to drought stress in greenhouse conditions. Eight-week-old
wild type (WT) and OsMYBS55 lines (P3, P4, P5) grown in greenhouse
were subjected to water withholding for five days and then re-watered
as described in methods. a Reduction in water potential of stressed
plants compared to well-watered controls. b Difference of leaf
temperature in stressed and control plants. ¢ Reduction of the
normalized difference vegetation index (NDVI) values in stressed
plants compared to controls. All measurements were performed
in the upper, fully expanded leaves. Data shown are for 0, 1 and
4 days of no irrigation and 1 day after recovery. Bars represent
mean values + SE (n = 15). P-values (Student’s t-test) are indicated:
**P < 0.005 and *P < 0.05

glutathione, are higher in maize plants compared to those
in wheat and rice, before and after being exposed to HS
[33, 34]. However, as for rice [30], an increase of 12—13 °C
in temperature decelerated growth of maize plants. It
should be noted that even though leaf damage was more
pronounced in WT under combined HS and drought
(Table 1), such conditions were exceedingly harsh for all
genotypes, making recovery impossible. During HS, plants
open their stomata to reduce leaf temperature through tran-
spiration. However, when HS is combined with water deficit,
plants tend to close stomata and the leaf temperature re-
mains high [21]. Under drought, we found that OsMYB55
plants were able to maintain cooler leaves with a better
water potential status than WT plants (Fig. 5), which would
be a desired trait when both heat and drought are present in
field conditions. The better capacity of the OsMYB55 trans-
genic lines to preserve a functional photosynthetic apparatus
under a single stress condition may also reflect an improved
antioxidant defense system against abiotic stresses.

The effects of HS and drought treatments were consist-
ent in each case among all transgenic lines tested. How-
ever more significant differences in growth parameters
and leaf damage were apparent between the OsMYB55
lines and WT plants under HS than in the drought assay
(Table 1). It is possible that some of the genes activated by
OsMYB55 are associated more with cellular functions for
overcoming HS than with water deficit; although signifi-
cantly less water loss was observed in the transgenic lines
under HS (Fig. 4e). Nonetheless, reduced MDA accumula-
tion in transgenic lines occurred in all stress conditions
and the difference with WT plants was more pronounced
under combined stress (Fig. 4f). This observation together
with the regulation and possible roles of DEG in the trans-
genic lines suggest that both treatments may be triggering
common physiological responses.

In general, cereals are more sensitive to environmental
changes at the reproductive stage; hence more studies
are focused on the mechanisms of heat response in re-
productive tissues. Interestingly, a transcriptome analysis
of rice panicle at anther developmental stage after heat
treatment revealed that the response involve similar
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processes to those occurring in vegetative tissues (e.g.
cellular homeostasis, transport, stress response and tran-
scriptional regulation; [32]). The study also shows that
in addition to the regulation of ROS-related genes,
maintenance of ROS levels in rice panicles is also relevant
to maintain ROS balance [32]. It would be interesting to
evaluate the effect of HS in the reproductive tissues of
OsMYB55 maize lines. Unfortunately, maize yield param-
eters are frequently unable to be assessed under green-
house conditions and we were not able to field test these
lines due to regulatory restraints.

Transcriptome analysis of OsMYB55 maize: interpreting
possible functional elements

GO analysis determined similar enrichment of stress-
related biological processes in both transgenic and WT
maize in response to HS (Fig. 2). To understand the im-
proved tolerance in these lines, the genes associated with
stress responses were analyzed. The analysis revealed
that several up-regulated genes under normal conditions
in transgenic maize were also highly up-regulated in WT
plants in response to HS, and other stress-related genes
were also significantly up-regulated in the transgenic line
in the heat treatment comparison (Additional file 9). One
essential group comprised transcription factors. Most type
A and type B HSFs respond to HS, however some also are
induced by drought, cold or salt stress [35, 36]. Analysis of
DEG in the OsMYB55 transgenic line only identified
one type B2 HSF (HSFTF19, AC216247.3_FG001) to be
up-regulated both in control conditions and by HS
(Additional file 9; Fig. 3). The same gene was reported
to be induced by heat, drought and salt stress [36]. HSFs
can also be activated by other transcription factors. It has
been shown that a heat-induced HSFA3 in Arabidopsis is
regulated by the AP2-type transcription factors DREB2A
and DREB2B [37]. Despite a typical association of DREB
transcription factors with dehydration and cold responses,
cross regulation of DREBs with other signals seem to un-
ravel new links between heat responses with drought and
osmotic stress [37]. Among the DEG in the OsMYB55
transgenic line (Additional files 9 and 12), a C2H2 zinc
finger protein, (ZOS11-01) has been shown to be induced
by drought and to regulate DREB1b [38]. The list of DEG
also includes three members of the AP2/EREBP transcrip-
tion factor family (Additional file 10). WRKY transcription
factors have also been described to contribute to tolerance
to heat, drought, cold and salt stress in rice, wheat, barley
and soybean (reviewed in [39]). In the OsMYB55 line, two
WRKY proteins were up-regulated, but orthologs of only
one (ZmWRKY120) have been described to be induced
by stress and to confer drought tolerance when overex-
pressed [40]. But perhaps the most represented family
of transcription factors that distinguishes the transgenic
maize line from WT was the MYB group. Five genes
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encoding MYB proteins were up-regulated in the trans-
genic line in control conditions and four of them when
the heat treatment was compared (Additional file 9),
suggesting important participation of these regulators
in the response to HS. Besides OsMYB55, only three
other examples (in Arabidopsis, tomato and Quercus)
have identified MYB factors as mediators of responses
to HS [28, 29, 41]. MYBs have also been included among
transcription factors affecting responses to water deficit
[42]. Interestingly, none of the MYBs up-regulated in
OsMYB55 maize or putative orthologs have been impli-
cated in drought responses (Additional file 12). It is
reasonable to presume that OsMYB55-induced protect-
ive actions against oxidative stress are also contributing
against the negative effects caused by water deficit.
Among other gene classes, only one gene related to
HSP (GRMZM2G032547) was identified as differentially
expressed in the OsMYB55 line compared to WT, indi-
cating that expression of most HSPs in response to HS
were similar in both genotypes. GRMZM2G032547 en-
codes an ATP-dependent Clp protease which is related to
chaperone HSP104 with a weak similarity to AtHSP101, a
ClpB chaperonin required for thermotolerance [43]. A
thaumatin (GRMZM2G038490) was highly up-regulated
in OsMYB55 maize. Thaumatins are usually implied in
plant biotic stress interactions but have also been reported
to be induced by abiotic stress including heat [44]. Over-
expression of a cotton thaumatin gene, GbTLPI, with a
potential role in secondary cell wall development, showed
enhanced resistance against different stresses including
drought and salinity [45]. Another up-regulated gene
encodes a wall-associated receptor-like kinase (WAK,
AC217293.3_FG007). WAKs can function as links be-
tween intracellular compartments and the extracellular
environment and are thought to have a role in cell
elongation, development and stress responses [46]. Down-
regulation of WAK1 in rice affects root growth and pro-
duces dwarf plants and male sterility [47] whereas in barley
it also affects root phenotypes in plants grown under con-
trol and stress conditions [48]. Other group of up-regulated
genes in OsMYB55 maize may be more implicated in re-
sponses to oxidative stress, such as two lipid transfer pro-
teins (LTPs, AC194203.3_FG003 and AC155352.2_FG010).
LTPs are known for their involvement in stresses as well as
biological processes such as cutin biosynthesis [49] though
evidence on their role in heat stress is limited. A wheat
LTP3 gene has been shown to enhance oxidative stress and
thermotolerance of Arabidopsis plants [50]. Transcript
levels of a gene encoding an adenosine 5'-phosphosulfate
reductase (APR, GRMZM2G028010) were also up-
regulated in OsMYB55 maize and furthermore sulfate
assimilation and phosphate acquisition were among the
pathways enriched in the transgenic line under HS
(Additional file 8). APR is a key enzyme of sulfate
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assimilation and its mRNA levels increases upon oxidative
stress and salt treatment in a gibberellin-dependent man-
ner [51]. Sulfur-containing compounds are involved in
plant stress defense however little is known about the
mechanisms of stress-regulated sulfate metabolism. It is
plausible that sulfate metabolism may play a role in heat
stress tolerance of OsMYB55 transgenic maize. The tran-
scriptome analysis did not detect specific activation of the
genes involved in amino acid metabolism reported for rice
over-expressing OsMYBS55 [30], which points to differ-
ences in gene regulatory networks relevant for heat stress
response between these two species.

Pathways involving hormones, antioxidants and
osmo-solutes also contribute to thermotolerance [8].
For example, treatments with ABA, SA and 1-amino-
cyclopropane 1-carboxylic acid (ACC, an ethylene precur-
sor) can reduce heat-induced reduce ROS accumulation
and lipid peroxidation [52] and cytokinin levels also can
modify the enzymatic antioxidant defenses against heat
stress and drought [53]. It was shown that modulation of
cytokinin levels influences the control of leaf water poten-
tial and stomatal conductance and leads to an enhanced
heat and drought tolerance in tobacco plants [13]. In
addition, expression of a cytokinin glycosyltransferase has
been shown to improve drought stress adaptation [54].
GO terms related to cytokinin signaling (Fig. 2) and conju-
gation (glycosylation; Additional file 8) were among those
enriched in OsMYB55 transgenic maize. Whether
OsMYB55 mediates gene expression of hormonal sig-
nals that respond to stress remains to be investigated.
Lastly, one of the highly heat-induced genes in
OsMYB55 maize encodes a patatin-like phospholipase
(AC194158.3_FG005) which belongs to a group of phos-
pholipases that have been described as mediators of
hormone signaling associated to responses to abiotic
stress [55].

An interesting finding in the transcriptome analysis
was the enrichment of GO terms related to DNA repli-
cation, nucleosome assembly and microtubule-based
processes in the transgenic line (Fig. 2). These are im-
portant processes for cell division and gene regulation.
Chromatin remodeling involving histone dynamics in
nucleosomes can trigger transcriptional regulation of ther-
mal response in plants (reviewed in [56]). A significant
study on this topic described that, under high temperature,
eviction of the histone H2A.Z from nucleosomes facilitates
transcription of target genes involved in the thermosensory
activation of flowering [57]. It is still unclear however,
whether expression of heat-induced genes required for
thermo-tolerance (e.g. HSFs and HSPs) can be regulated in
the same fashion. Nonetheless, it was established that the
same H2A.Z gene determines heat stress effects on grain
yield in Brachypodium [58]. Recently, a gene encoding a
tRNAHis guanylyl transferase (Ical) was identified to be
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required for plant growth at high temperatures in Ara-
bidopsis. ical mutants present enhanced sensitivity to
DNA damage, a defect in G2/M transition and down
regulation of cell cycle genes under high temperatures
[59]. Perhaps not surprisingly, of 52 up-regulated genes
in OsMYB55 maize and with possible roles in drought
tolerance (Additional file 12), five of them encode his-
tones previously identified as drought responsive and
six encode minichromosome maintenance complex (MCM)
subunits which are involved in assuring complete and
accurate DNA replication during each cell cycle and
also implicated in abiotic stress responses [60].

Conclusions

The transcriptome analysis of maize over-expressing
OsMYBS5S revealed up-regulation of genes encoding pro-
teins involved in general defense responses and abiotic
stress, including HS and drought, suggesting that those
plants may be using signaling pathways and genetic and
epigenetic regulations common to responses to various
stress conditions. Deciphering the molecular mechanisms
underlying these functional genes will aid to better under-
stand stress tolerance and to select strategies for improv-
ing crop productivity facing climate change scenarios.

Methods

Plant growth and treatments

Seeds of wild-type elite maize (Zea mays) inbred (SRG200,
Syngenta) and transgenic lines over-expressing OsMYB55
were germinated in Turface (calcined clay grains; Inter-
national Minerals and Chemical, ON, Canada) for 7 days.
Heat stress, drought and combined stress treatments were
carried out in growth chambers. For these experiments,
ten-day-old seedlings of similar height (48 seedlings per
genotype) were transplanted into 1 L pots filled with peat
moss and perlite (3:1; SunGro Horticulture, BC, Canada)
and grown at 29 °C / 23 °C (12 h light, ~500 ymol m2s™)
for three more weeks. When the plants were about 5 week
old, they were divided in four groups: two groups, each
with 12 plants per genotype, were placed at 40 °C/34 °C for
five days (HS treatment) and the other two groups (also 12
plants each) were left at 29 °C / 23 °C as controls. At the
same time, one group in each temperature condition
was subjected to water withholding for the same five-
day period (drought treatment). After measurements
were done, the remaining plants that were not sampled
or destroyed were re-watered to observe recovery. To
evaluate plant responses to drought at advanced vegetative
stages (before they enter reproductive stage), a separate
experiment was performed in greenhouse conditions.
Thirty plants per genotype were grown in 5 gal pails
filled with Turface for 8 weeks before the start of the
drought experiment. This consisted in withholding water
to half of the plants for five days and then they were
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re-watered to allow them to fully recover. Control
plants were kept under well-watered conditions (15
plants per genotype). Plants were watered daily with a
fertilized solution containing: 400 mg/L 15-15-30 High
K soluble fertilizer, 400 mg/L 28-14-14 High N soluble
fertilizer, 200 mg/L NH4NO3, 200 mg/L MgSO,4.7H,0
and 30 mg/L of chelated micronutrient mix (all nutrients
supplied by Plant Products, ON, Canada). Plants were
grown in a greenhouse under long-day regime with
supplemented light (16 h light, ~500 pmol m2s™") at
29 °C, and 8 h dark at 23 °C. In each experiment, the
same initial volume of substrate and the same volume
of water was applied to all pots.

Construct preparation and plant transformation

A genetic construct to over-express OsMYBSS was gener-
ated by cloning its full-length ¢cDNA into a binary vector
containing the Ubil promoter [30]. Generation of trans-
genic lines was performed by Syngenta through Agrobac-
terium tumefaciens-mediated transformation and positive
transformed plants were selected by the phosphomannose
isomerase (PMI) test [61].

Next generation sequencing

For RNAseq analysis, WT and transgenic (P4 line) plants
were grown in chambers for 14 days and then half of
them (the heat treatment group) were moved to 40 °C/
34 °C for one week before collecting samples. Harvest of
leaves (2nd and 3rd), stems (lower 4 cm) and whole
roots was carried out at noon. Samples were collected
separately from nine plants and pooled to obtain three
pooled sample replicates. The plant materials were sub-
merged in RNAlater (Ambion Inc., TX, USA) and stored
at —80 °C until further analysis. All tissues were ground
in liquid nitrogen and RNA was extracted using TRI-
Reagent (Sigma-Aldrich, MO, USA) following the manu-
facturer’s instructions. Samples were treated with RQ1
RNase-free DNase (Promega, WI, USA) and total RNA
was quantified using a Nanodrop 2000c spectrophotom-
eter (Thermo Fisher Scientific, MA, USA). Samples were
further processed at Syngenta for Next-Generation Se-
quencing (NGS) on an Illumina Hi-Seq 2000 platform.
Single end reads of length 101 base pairs (bps) were col-
lected. Reads were not trimmed and instead were filtered
based on adapter contamination (i.e., if a read contained
adapter sequences it was discarded). Reads were aligned
to the Maize reference genome ZmB73_RefGen_v2 using
GSNAP [62] with a set of known splice sites taken from
Maize annotations 5b.60/ZmB73_5b_FGS. The alignment
resulted in roughly >80 % of the filtered reads aligning to
the reference genome. Next, reads aligned to annotated
regions were counted. If a read overlapped with an anno-
tated region of the genome it was counted. Lastly, the read
counts were filtered using a reads-per-million strategy to
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reduce computation by excluding genes with no or very
low signal. A minimum library size of approximately 19
million reads was used. Genes were filtered based on if a
sample had less than a quarter of the reads per million,
i.e., greater than 19/4 =5 reads per million aligned to it. If
at least 3 samples (three replicates) had more than 5 reads,
then it remained in the dataset, otherwise it was removed.
For data normalization, first, hierarchical clustering was
used to analyze dissimilarities between samples. Next, full-
quantile normalization (R package EDASeq version 1.4.0)
that correct for GC content bias within and between
samples was used to improve sensitivity without loss of
specificity [63].

Differential gene expression

Fold-change of DEG was calculated from normalized
values using the R package edgeR version 3.0.4 [64]. This
resulted in a set of P-values per gene indicating the stat-
istical significance. To control the family wise error rate,
P-values were then adjusted for multiple comparisons
using the Benjamini-Hochberg method to produce a false
discovery rate (FDR). Adjusted p-values or FDRs lower
than 0.05 were considered statistically significant. Lists of
DEG considered those with an FDR < 0.05 and a log2 fold
change greater than 1 or less than -1.

GO terms and pathway enrichment analyses

GO Term enrichment was performed using the R Bio-
conductor package GOseq (http://bioconductor.org/
packages/release/bioc/html/goseq.html) which corrects
for any bias induced by long, highly expressed transcripts
[65]. Gene lengths were calculated using the maize
ZmB73_5b_FGS gff3 file from maizegdb.org. In addition
to gene lengths, GO Terms associated to Gramene gene
IDs were pulled from Uniprot and Interpro databases.
Once significant GO terms were identified, the P-values
were corrected for family wise errors using the Benjamini-
Hochberg method to calculate a FDR. FDRs less than 0.05
were considered significant. GOseq and the same method-
ology for GO Term enrichment was used to identify
enriched pathways and pathways names were taken from
MaizeCyc version 2.0.1. In this case, FDRs less than 0.1
were considered significant in order to capture more
pathways.

Real-time RT-PCR analysis

Total RNA was isolated from 100 mg of flash-frozen,
pulverized leaves using the RNeasy Plant Mini Kit (Qiagen,
CA, USA) and then treated with RQ1 RNase-free DNase
(Promega). cDNA was synthesized using the qScript™
c¢DNA Synthesis kit (Quanta Biosciences, MD, USA).
Quantitative real-time expression was performed using Per-
feCTa SYBR Green SuperMix ROX (Quanta Biosciences)
on an ABI7300 system (Applied Biosystems, CA, USA)
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using specific primers for selected genes (Additional
file 13). Relative expression was calculated by the >*2Ct
method [66] using the maize 185 RNA gene (accession
AF168884.1) as constitutive control. Analyses were per-
formed with two technical and three biological replicates.

Physiological and phenotypic parameters

For growth parameters (shoot height, root length, and
plant biomass), twelve replicates were used for each meas-
urement. Leaves were considered damaged when they pre-
sented dried or burnt tissue areas of any size. Other
measurements included:

(a) Chlorophyll content: Total chlorophyll levels were
measured in the middle section of a fully extended leaf
of the same age using both the CCM-200 Chlorophyll
Content Meter (Opti-Sciences, NH, USA) as well as the
standard acetone extraction and spectrophotometeric
quantification technique as described in [67].

(b) Water status measurements: Relative water content
(RWC) was determined as RWC = (fresh weight -
dry weight)/(turgid weight - dry weight) x 100. Fresh
weight was measured using a scale; turgid weight
was determined by soaking leaf samples in distilled
water, in darkness in a cold room (4 °C) for 24 h.
Dry weight was determined by placing the same
samples in an air oven at 70 °C until constant weight
was reached. Leaf water potential was measured at
midday in the first and second youngest fully
expanded leaves using a potentiometer (model WP4,
Decagon Devices, WA, USA) and leaf discs of 1-in.
diameter that were removed with a leaf punch about
15 cm from the tip, avoiding the mid-vein.

(c) Leaf temperature: Leaf temperature was measured
with a handheld infrared camera (model E60, FLIR,
MA, USA). Measurements were taken around
midday (11:00-14:00 h) in the same fully expanded
leaves and consisted in the average temperature in a
5 cm square section of the mid-section of each leaf.
The instrument was held at an angle of 30° to the
horizontal plane and approximately 30 cm away
from the target. Results are shown as temperature
differences between stressed and well-watered plants.

(d)Spectral reflectance: An active canopy sensor, Crop
Circle ACS-470 (Holland Scientific, NE, USA) with
three interference filters covering green (550 nm),
red (670 nm) and near infrared (NIR; 760 nm)
wavebands regions was used to collect reflectance from
the same leaves used for measuring other parameters.
Output reflectance data of the sensor was set at a
rate of 5 readings per second and approximately 30
readings were obtained to compute the average per
individual leaf sample. The sensor was positioned
perpendicular and at a distance of approximately
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50 cm over the middle of the leaf. Reflectance data
were recorded in a GeoSCOUT GLS-400 data logger
(Holland Scientific) connected to the sensor and were
used to compute the normalized difference vegetation
index (NDVI) according to the formula: NDVI =
(Ryr-Rp)/(Rnr + Rp), where Ry and Ry represents
the fraction of emitted NIR and red radiation returned
from the sensed leaf area, respectively [68]. The
three-channel reflectance data were also used to
calculate other vegetation indices such as simple
ratio index, green NDVI, soil adjusted vegetation
index and triangular vegetation index [69].

(e) Malondialdehyde (MDA) content: MDA was
determined by means of the thiobarbituric acid
(TBA) reaction following the method described
elsewhere [70] using 0.2 g of leaf tissue.

Statistical analysis

Analysis of variance was performed using SigmaStat (SPSS
Inc., IL, USA). Significant differences between treatment
means were separated using the Tukey’s Honestly Signifi-
cant Difference (HSD) test at a = 0.05.
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