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Abstract

Background: A prominent and distinctive feature of the rye (Secale cereale) chromosomes is the presence of
massive blocks of subtelomeric heterochromatin, the size of which is correlated with the copy number of tandem
arrays. The rapidity with which these regions have formed over the period of speciation remains unexplained.

Results: Using a BAC library created from the short arm telosome of rye chromosome 1R we uncovered numerous
arrays of the pSc200 and pSc250 tandem repeat families which are concentrated in subtelomeric heterochromatin
and identified the adjacent DNA sequences. The arrays show significant heterogeneity in monomer organization.
454 reads were used to gain a representation of the expansion of these tandem repeats across the whole rye
genome. The presence of multiple, relatively short monomer arrays, coupled with the mainly star-like topology of
the monomer phylogenetic trees, was taken as indicative of a rapid expansion of the pSc200 and pSc250 arrays.
The evolution of subtelomeric heterochromatin appears to have included a significant contribution of illegitimate
recombination. The composition of transposable elements (TEs) within the regions flanking the pSc200 and pSc250
arrays differed markedly from that in the genome a whole. Solo-LTRs were strongly enriched, suggestive of a history of
active ectopic exchange. Several DNA motifs were over-represented within the LTR sequences.

Conclusion: The large blocks of subtelomeric heterochromatin have arisen from the combined activity of TEs
and the expansion of the tandem repeats. The expansion was likely based on a highly complex network of

recombination mechanisms.

Keywords: Tandem repeats, Transposable elements, Subtelomeric heterochromatin, Rye, Secale cereale, 1RS
BAC library, 454 sequences, TE=tandem junctions, DNA motifs

Background

Cultivated rye (Secale cereale, 2n=2x=14) is, after
wheat and barley, a major temperate cereal species. Its
large nuclear genome of around 8 Gb/1C [1] exceeds
that of the average angiosperm (5.6 Gb) [2]. A distinctive
feature of the karyotype is that each chromosome arm
harbors one or more large blocks of subtelomeric het-
erochromatin [3], which is not the case in either wheat
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or barley chromosomes [4, 5]. Within the genus Secale,
nuclear genome size varies by some 15 % [1], consistent
with the variation in the size of the terminal heterochro-
matic blocks [6]. It would appear, therefore, that the
expansion of subtelomeric heterochromatin is fundamental
to the determination of genome size in the genus Secale.
The rye genome as a whole comprises >90 % repetitive
DNA [7]. Eukaryotic tandemly arranged repetitive se-
quences are typically based on monomers longer than
100 nt [8]; transposable elements (TEs) represent the
other major class of multi-copy sequence. In rye, unlike
in human and many plant species [9], tandem repeats
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are concentrated in the subtelomeric region rather than
around the centromere [10-12]. Notably, the size of
heterochromatic blocks in different rye species correlates
with the copy number of tandem DNA families [10].
Molecular organization of the three most abundant of
them, pSc119.2, pSc200, and pSc250, was characterized
previously [11-13]. They are composed of monomers
118, 379, and 571 bp long, correspondingly, and each
family constitutes several percent of the rye nuclear
genome [12]. Fluorescence in situ hybridization (FISH)
experiments have suggested that the pSc200 and pSc250
blocks coincide close to the telomere, while some
pScl19.2 copies are located at interstitial sites. The
pScl19.2 sequence is also represented in a number of
other cereal genomes, but pSc200 and pSc250 are largely
rye-specific [14]. Another tandem repeat family (7ail),
which is present in many Triticeae species [15], is present
on two of the seven rye chromosomes, including the short
arm of chromosome 1R (1RS) [16].

Despite a wealth of information regarding the mono-
mers’ size and sequence, their higher order structure re-
mains obscure, as do the mechanisms underlying their
amplification. Direct sequencing is hampered by their re-
petitive nature [17]. Hence their long-range organization,
mutual arrangement within arrays, and molecular features
of flanking regions between tandem arrays and neighbor-
ing non-tandem DNA remain poorly explored (except
perhaps for humans). These obstacles can be overcome by
approaches allowing one to combine long- and short-
range sequence information. These include the construc-
tion of BAC (Bacterial Artificial Chromosome) libraries
with individual BAC clones containing long (~200 kb)
stretches of DNA, and chromosome isolation [18], which
enables analysis of DNA organization in individual chro-
mosomes. In a previous work, a BAC library was con-
structed from the 1RS arm, which was purified by flow
sorting from a wheat-rye ditelosomic 1RS addition line
[18]. At least 84 % of 1RS arm was found by BAC-end
sequencing and Roche 454 sequencing to consist of
repetitive DNA and more than 5 % of the 1RS DNA was
occupied by 3121 genes [19, 20].
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With the exception of 1RS arm, DNA composition,
molecular structure of rye genome received little at-
tention, as compared to the genomes of the closest
relatives, wheat and barley. It was not until recently
that a virtual linear gene order model encompassing
over 22,000 out of 31,008 detected rye genes has been
established using a combination of high-throughput
transcript mapping, 454 sequencing DNA of flow-
sorted rye chromosomes, and synteny information of
sequenced model grass genomes [21]. Nonetheless,
large-scale molecular organization of subtelomeric
heterochromatin in rye chromosomes remains com-
pletely unknown.

Here we address a number of questions, such as
whether major families of tandem repeats are present
as a single or multiple arrays in chromosome arms,
what is the organization of monomers belonging to
each family in different arrays, whether arrays com-
posed by different family members are immediately
adjacent to each other or are separated by some DNA
sequences, what is the nature of non-tandemly repeated
DNA flanking the arrays, and whether it shows any
peculiar sequence features. This information may shed
light on the molecular organization of heterochromatic
regions as well as on the expansion mechanisms of
tandem repeat families in the genome of cultivated rye,
S.cereale.

Results

The pSc200 and pSc250 repeats are present in rye
chromosomes as multiple arrays

Multicopy tandem repeat families pSc200 and pSc250
appear as strong and homogeneous signals upon FISH
with mitotic metaphase chromosomes [12]. Meiotic
chromosomes are less condensed at early prophase
stage, than metaphase chromosomes, thereby provid-
ing higher resolution. FISH analysis of meiotic pro-
phase chromosomes sampled from the wheat-rye
monotelosomic addition line harboring 1RS (CS/1RS)
showed that both the pSc250 (fluorescing red in
Fig. 1a), and pSc200 (green) sequences are present in

Fig. 1 Multiple arrays of tandemly repeated families are present on the short arm of the rye chromosome 1R (1RS). a FISH image of early meiotic
prophase chromosomes of CS/1RS, showing the location of pSc200 (fluorescing green) and pSc250 (red) sequences. b Southern hybridization
profiles of CS/1RS probed with pSc250. The size of hybridization fragments is shown in kb
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extensive, non-overlapping domains on the rye chromo-
some arm. When the 1RS BAC library was hybridized with
pSc200 and pSc250, not one of the nearly 67,000 clones
analysed hybridized with both probes, confirming that the
two array types are not intermingled.

The FISH signal intensity varied along the length of
the rye arm (Fig. la), in line with the idea that each
family of tandem arrays is present as multiple inter-
spaced arrays. Furthermore, this is confirmed by the
results of pulsed field gel electrophoresis (PFGE) when
BstXI-digested high molecular weight CS/1RS DNA was
subjected PFGE and hybridized with pSc250. Six hybrid-
izing fragments were revealed, ranging in length from
40 kb to 270 kb (Fig. 1b). The observed variation in
hybridization intensity, taken to indicate that at least
some of the arrays harbored non-pSc250 sequence,
complicated the quantification of copy number of arrays
in 1RS. A restriction analysis, followed by sequencing of
the two 1RS BAC clones 12I5 and 122 F3, suggested
that both harbored uninterrupted pSc250 arrays (of
length, respectively, 38 kb and 57 kb) flanked on either
side by non-array sequence. The conclusion is that the
1RS arm harbors several tandem arrays of pSc200 and
pSc250 monomers.

Heterogeneity of tandem array organization

Some families of tandemly repeated DNA sequences,
such as human a-satellite DNA are known to form
higher order repeat (HOR) units that may contain
variable numbers of basic repeats (multimers) having
highly similar sequences of monomers [22, 23]. HORs
were demonstrated to form in the centers of alpha-
satellite DNA arrays, with monomeric DNA locating
towards their edges [22]. The pSc200 and pSc250
tandem arrays formed higher order multimers, as shown
by the ladder-like patterns seen in the Southern
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hybridization profiles. PstI-digested BACs 126C20 and
114110 included pSc200 hybridizing fragments consistent
with the presence of both monomers and dimers (Fig. 2),
whereas the profile of 119C15 suggested the presence of
trimers and that of 119M22 trimers and tetramers. A
HindIIl digestion of clone 114110 produced a profile
consistent with the presence of tetramers and hexam-
ers, while clone 119C15 harbored octamers (data not
shown). pSc250 multimers (up to hexamers) have
previously been identified [16]. Thus, tandem arrays are
organized into specific multimeric units within one
chromosome arm. The maximum size of these multimers
appears to be ~3 kb for pSc200 (octamer) and ~3.5 kb for
pSc250 (hexamer).

When analysing BAC clones from the 1RS library we
identified five partially overlapping clones with inserts of
different size, each containing pSc200, 7ail and pSc119.2
arrays (shown in Additional file 1, central part). Identical
non-tandem DNA was sequenced in all five clones
indicating that they originated from the same genomic
region. Differences in the hybridization patterns pro-
duced by these BACs allowed us to accurately position
multimeric units within the tandem arrays. For example,
unlike the pSc200 monomers and dimers, the tetramers
of pSc200 are absent in BAC 130H7 (Additional file 1,
right side, line 2). In contrast, other BACs with longer
segments of pSc200 array contain tetramers. As inferred
from the hybridization patterns obtained with both
pSc119.2 and pSc200 (Additional file 1, left and right
sides), pSc200 monomers and dimers, and similarly
pSc119.2 trimers and tetramers, tended to lie at the ends
of the arrays, whereas the higher order multimers were
positioned more centrally.

In order to establish the degree of identity between
consecutive monomers within a single array, we se-
quenced eleven full-length pSc200 monomers (total
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Fig. 2 PFGE separation of Pstl-restricted BAC inserts harboring pSc200 arrays. a Ethidium bromide stained gel, b Southern hybridization probed
with pSc200. Lane 1: BAC clone 126C20, lane 2: 119C15, lane 3: 119 M22, lane 4: 114110

—_— <+ tetramer
—— < trimer

— - < dimer

- Emane
1.2 3 4

<+ monomer




Evtushenko et al. BMC Genomics (2016) 17:337

length 5,700 bp) from BAC119C15 (Table 1) by creating
nested unidirectional deletions using Exolll [24].
Monomers from this region fell into two groups; the first
with 96 % identity to the first monomer in the contig
(monomer fr47-1), and the second with 89 % identity
(Table 1). The monomers from these groups alternated in
the array, as pairs suggesting their origin via duplication.

Phylogenetic relationships between the pSc200 and
pSc250 copies

Two sets of reads were extracted from the 454 dataset
[21]: one containing pSc200 (Additional file 2) and the
other containing pSc250 (Additional file 3) monomer se-
quences (see Methods for details). The unrooted max-
imum likelihood phylogenetic network constructed for
the pSc200 monomers present on each rye chromosome
comprised two major clades (Fig. 3a), consistent with a
history of at least two time-separated bursts of amplifi-
cation. The larger clade exhibited a star-like topology
while the other was branched. The pSc200 sequences
present on chromosomes 5R and 7R separated into two
recognizably distinct sub-clades. These are the only rye
chromosomes which have retained fragments from the
ancestral Triticeae chromosome a6 [21]. All of the
pSc200 monomers analysed displayed a bimodal distri-
bution of pair-wise genetic distances (Fig. 3a). The first
peak in this distribution accounted for intra-clade nu-
cleotide diversity (4 % on average), whereas the second
reflected inter-clade diversity (11 % on average). Two
groups of monomers present in clone 119C15, and orga-
nized as alternate dimers, mapped to distinct branches
of the second clade (Fig. 3a).

The pSc250 sequences formed a single clade with a
star-like topology (Fig. 3b), which arose from the overall
high level of sequence identity (85-98 %) between the
monomers. Such a situation probably reflects a relatively
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constant amplification rate over time. Differences in the
topology of phylogenetic networks derived for the
pSc200 and pSc250 monomers are consistent with their
distinct evolutionary ages: the former originated some
30 My before the latter, allowing ample time for suffi-
cient sequence divergence to have occurred to generate
branching in the pSc200 second clade.

The nature of the sequences flanking the arrays of
tandemly arranged monomers in BAC clones

To uncover the nature of DNA surrounding tandem ar-
rays of monomers, we sequenced non-tandem (non-array)
DNA from six pSc250- and five pSc200-containing BAC
clones as well as from three segments of clone 84C15
(Fig. 4) (These sequences have been deposited in GenBank
under accession numbers KT724931-48). A screen against
the RepeatMasker and TREP databases identified known
repetitive elements. The non-array sequences comprised
mostly fragments in the size range several tens to several
thousands of bp, and shared homology with various fam-
ilies of Gypsy-like and Copia-like LTR retrotransposons.
Short fragments of two LINE elements were also found.
No full length TEs were observed. Illustrative examples of
the nature of the non-array sequence are given in Fig. 4.
In clone 122 F3, the pSc250 tandem array was bordered
on the left by sequences which were, respectively, 65.3 and
66.9 % homologous to the central part of the Miuse LINE
and separated by a 375 nt stretch of anonymous sequence.
On the right side, the array was bordered by two Copia-
like sequences, one 81.1 % homologous to the BARE-2
element and the other 90.5 % homologous to the WIS-2
element (Fig. 4a). Given that BARE-2 is a chimera
between BARE-1 and WIS-2 [25], the likelihood is that
sequences adjacent to the arrays must have undergone
multiple rounds of recombination. The structure of the
non-array sequence present in clone 84C15 is consistent

Table 1 Percent identity of pSc200 monomers present in BAC clone 119C15

Sequence of the pSc200 monomers in contig ~ fr47-1  fr47-2  exo2-1  T79-1 T79-2 exo6-1 exo7-1  T713-1  ex09-1 ex09-2 T7-6
fr47-1 100 8936 9577 8856 9523  89.04 9841 88.86 9549 89.36 95.77
fr47-2 100 90.16 96.55 8933 9760 9043 99.47 89.36 96.82 89.92
exo2-1 100 90.16 9841  89.84 96.83 89.66 9841 90.69 98.94
T79-1 100 8933 9627 89.63 96.02 89.10 9761 89.92
T79-2 100 89.01 96.82 88.83 98.94 89.87 99.47
ex06-1 100 90.11 97.07 89.07 97.07 89.60
exo/-1 100 89.92 97.08 9043 97.35
T713-1 100 88.86 96.29 89.39
ex09-1 100 89.63 99.73
ex09-2 100 90.45
T7-6 100

Fragment of the pSc200 array from DNA BAC199C15 was sub-cloned in a plasmid vector pGem-5Zf(+). Then a series of deletion clones was obtained according to
[24] and their inserts were sequenced and assembled into a contig encompassing 11 full-length monomers of pSc200
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(See figure on previous page.)

Fig. 3 Phylogeny of (a) pSc200 and (b) pSc250 monomers present on each of the seven rye chromosomes. The chromosome-specific 454 libraries
obtained by Martis et al. (2013) were used to reconstruct phylogenetic networks and assign pSc200 and pSc250 monomers to each of the seven rye
chromosomes (1R and 1RS chromosomes, red color: ERX140512 ERX140519 libraries; 2R chromosome, orange: ERX140513 library; 3R and 3RS
chromosomes, yellow: ERX140514 and ERX140520 libraries; 4R chromosome, green: ERX140515 library; 5R chromosome, cyan: ERX140516
library; 6R chromosome, blue: ERX140517 library; 7R and 7RS chromosomes, violet: ERX140518 and ERX140521 libraries). The phylogenetic
trees shown represent galled phylogenetic networks generated by Dendroscope v3.2.8 software based on the trees obtained by maximum
likelihood method. Black circles at branch ends refer to sequenced pSc200 monomers present in the BAC clone 119C15 (see Table 1).
The scale bar corresponds to the weighted evolutionary distance (GTR nucleotide substitution model) and indicates the weighted number
of substitutions per alignment site. The two histograms depicting the distribution of pairwise distances are shown: the x-axis plots the sequence
pairwise distance (=100 - % of sequence identity) while the y-axis plots the occurrence frequency

with this conclusion (Fig. 4b). Here, the non-array se-
quence on the right side corresponded to a copy of a
Copia-like member of Angela family, although oriented in
the antisense direction, while the left part comprised three
copies of the Gypsy-13_TA-I element interrupted by two
short sequences (not shown), one of which was a simple
repeat, and the other sharing homology with the Laura
retrotransposon. This region was followed by a 1,100 nt
sequence homologous (82.5 %) to that of the Xalas retro-
transposon (TREP1573) and two more regions homolo-
gous to Gypsy-13_TA-I. Most of the non-array sequence
in the central part of the BAC shared homology with the
Xalax retrotransposon (TREP3344) and was embedded in
a tandem array of 7ail monomers. This heterogeneous
mosaic organization was also characteristic of the pSc200
and pSc250 monomers. Several examples reported in the
literature have documented arrays of tandem repeats
comprising segments of various TEs, predominantly LTRs
[26, 27] but such a scenario of the pSc200 and pSc250
origin from known TEs appears unlikely.

Characterization of the rye genome composition

The availability of 454 reads derived from each rye chromo-
some [21] has provided an opportunity to characterize the
sequence composition of the rye genome more globally,
and to extend the analysis of sequences flanking the
tandem arrays in single BAC clones to a genome-wide level.
After trimming the adapters and applying quality filtering,
the retained set of 14.66 million 454 reads covered about 7
Gbp (mean length: 478 nt). After a filtration step based
on RepeatMasker and TREP, two subsets were gener-
ated — one containing pSc200 and flanking DNA (314
reads) and the other (494 reads) pSc250 and flanking
DNA. These were considered to represent the junction
regions (sets “junction”) between non-array sequence
and the tandem arrays.

Table 2 shows the frequency of individual classes of TE
sequence present in the non-array sequence, of which al-
most 71 % was unambiguously identified. Among the class
II TEs (transposons), there was a notable enrichment of
the CACTA superfamily (encompassing Jorge, Pavel, Clif-
ford, Tatl and other families), a feature which has also
been noted in other Triticeae genomes [28, 29]. Other

transposon families were poorly represented (just 1.5 % of
the sequence). An analysis of the reads showed that most
of the repetitive DNA in the rye genome was represented
by class I TEs, particularly Gypsy LTR retrotransposons.
The observed frequency of Gypsy sequence was 5.2 fold
that of Copia, consistent with the estimated 5.8 fold ratio
associated with the 1RS arm [20]. Good agreement
between genome-wide and 1RS arm frequencies was also
observed for all repeated DNA elements, major trans-
poson superfamily CACTA and tandem repeats [19, 20].
Significant differences in the abundance of the major
retrotransposon families were noted in the genome as a
whole compared to that found in the vicinity of the
tandem arrays. Gypsy-like TEs were less frequently associ-
ated with tandem arrays (Table 2), but were more
common in the flanking sequence of the pSc200 arrays
than that of the pSc250 ones. The occurrence of Copia-
like TEs increased in the vicinity of the pSc200 arrays.
Most importantly, there was substantial enrichment of
solo LTRs around the pSc200 arrays (12.8 %) and pSc250
arrays (23.0 %) which exceeds the frequency of all the
Copia-like elements.

The vicinity of tandem arrays is populated by certain TE
families
According to TREP, the vast majority of the solo-LTRs
belong to the Xalax or Xalas groups of TE with minor
contribution of Ginger element (0.3 % for pSc200 flanks,
and 0.12 % for pSc250). Further analysis was conducted
in order to identify the proportions of different TE fam-
ilies present in the genome as a whole, in the junctions
between pSc200 or pSc250 arrays and in the neighboring
non-array sequence. The total length of a given TE’s
sequence across all reads was calculated, and then
normalized by overall reads’ length. In all, some 400 TE
families were identified, of which 26 most abundant
families represented 50.13 % of the identified TEs. The
abundance in the genome of the Gypsy family Sabrina
was particularly high (15.5 %), with the next most abun-
dant families ranging in occurrence from 2 to 5 % (Fig. 5).
Gypsy-13_TA-I, Xalax/Xalas and Olivia are all rela-
tively rare in the rye genome (0.5, 0.3 and 0.05 %, respect-
ively), but their abundance was noticeably higher in the
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flanking DNA of the pSc200 and pSc250 arrays, particu-
larly in the case of Xalax/Xalas. The Xalax/Xalas super-
group cannot be classified as a single family given the
level of sequence diversity present, if one follows the rules
of the unified classification [30], rather it should be
considered as two groups. Xalas elements are very homo-
geneous, while homology between Xalax and Xalas is
restricted to relatively short sequence blocks (shown in
Additional file 4). Thus, here, Xalax and Xalas were
treated as independent TEs; enrichment around the
pSc250 arrays was predominantly composed of Xalas
sequence (Fig. 5).

Several other families of TEs show behavior similar to
that of Xalax/Xalas around the pSc200 and pSc250

Table 2 Sequence composition of genome-wide 454 reads and

arrays (Fig. 5). While Gypsy-13_TA-I was more highly
enriched around the pSc250 than around the pSc200
arrays, the opposite was the case for Olivia. There was a
pronounced difference between the genome-wide and
tandem-array associated frequency of some other TEs.
For instance, Daniela was enriched 7.5 fold in the vicin-
ity of the pSc200 arrays, and Laura occurred 11.5 fold
more frequently in regions adjacent to pSc250 (Fig. 5).
At the same time, sequences around tandem arrays are
depleted with respect to Sabrina, the most abundant TE
in the genome as a whole. The differences between
genome-average and local enrichment values for some
other TE families, such as CACTA and Sabine, are small.
Several TEs were virtually absent from the tandem array

of the sequences adjacent to pSc200 and pSc250 arrays

All reads Reads with junctions of pSc200 Reads with junctions of pSc250
Type of sequence Cumulative Proportion to Cumulative length of ~ Proportion, % Cumulative length of ~ Proportion, %

length, bp cumulative length, % non-tandem DNA, bp non-tandem DNA, bp
Class I TE
Ty3/Gypsy-like 4142 315628 5084 36542 35.68 65786 4062
Ty1/Copia-like 799 492 074 9.81 14322 13.99 14677 9.06
solo-LTR 60 362 185 0.74 13119 12.81 37289 23.02
LINE 57 651 280 0.71 483 047 1212 0.75
SINE 1201 224 0.02 0 0.00 0 0.00
Class Il TE
CACTA 454679975 5.58 5544 541 5621 347
EnSpm 18661838 0.23 984 0.96 23 0.01
Harbinger 20519563 0.25 0 0.00 0 0.00
Mariner 24069442 030 370 036 147 0.09
Hat 12376913 0.15 0 0.00 268 0.17
Helitron 3779908 0.05 0 0.00 0 0.00
Others 37550591 046 124 0.12 307 0.19
Simple repeats, low complexity 27 883 202 0.34 259 0.25 383 0.24
rDNA 8782174 0.1 0 0.00 396 0.24
Tandem repeats 16 953 966 0.21 185 0.18 2420 149
Unclassified (unknown) 48 627 218 0.60 2348 2.29 2996 1.85

We computed DNA composition of all reads and compared with that in non-tandem DNA adjacent to the pSc200 and pSc250 tandem arrays. Length of all repeats

was defined according to annotations that we got in output files of RepeatMas
length of the given non-tandem DNA to the cumulative length of all reads

ker tool (see “Methods”). Columns “Proportion” denote the ration of the cumulative
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flanking sequence, namely Cereba, Derami, Sumana
around pSc250 and Fatima around pSc200. Thus, our
analysis clearly shows that the local sequence compos-
ition around tandem arrays differs dramatically from the
genome average, and displays several peculiar features.

Structural features of the TE/tandem repeat junctions

A de novo search for DNA motifs in TE/tandem repeat
junctions was conducted to determine whether there
was any uniqueness with respect to the nucleotide com-
position present in these regions. Twelve top-scoring
motifs (8—12 nt long) from the output of de novo search
tool Homer (see Methods) were selected as the most
enriched in the neighborhood of each family (Table 3).
None of these motifs featured in the vicinity of both
tandem array families. A search for motif enrichment
within junction sequences containing the commonest
junction-associated TEs was made by applying two
criteria: first that the TE was present in at least 5 % of
all junctions and second that the TE-containing junction
displayed an at least two fold enrichment for the motif.
Only eight TEs satisfied both criteria (Fig. 6): four in the
vicinity of pSc200 (Daniela, Olivia, Xalas and Xalax)
and four in the vicinity of pSc250 (Laura, Xalas, Xalax
and Gypsy-13 TA-I). As is the case for Xalas and
Xalax, Daniela and Olivia share extensive regions of
homology within their LTRs (Additional file 4). Among
various associations between the twelve motifs and the
top pSc200/250 array-enriched TEs, the strongest in-
volved Daniela and Olivia around pSc200, and Laura and
Xalas around pSc250 (Table 3). Most of the motifs were
represented in at least one of the TE families. In the
vicinity of the pSc200 arrays, five motifs were identified

in Olivia (ten motifs in total) and Daniela (five motifs).
In the non-array sequences around pSc250, six motifs
were present in Laura and eight in Xalas: five of these
were in common. Some closely related sequences were
also detected within the pSc200 and pSc250 arrays. For
example, pSc200 harbored CACAGGATCA (P<4.le”
with respect to motif 6) and CAACGCCTATG (P < 2.5e7>,
motif 10) (Table 3A), while pSc250 harbored GTAAC
CTGGCC (P < 4.9¢”°, motif 10) (Table 3B).

Next, we explored whether there is any regularity in
the localization of TEs in these regions, i.e. whether TEs
tend to break at LTRs, or at their central domains, and
whether unrelated spacer sequences may be present at
the junctions. Additional file 5 illustrates this distribution
for the four chosen TE families. The spacer sequences
between the TEs and the arrays were either absent, or at
best short (1-10 nt). About 90 % of the junctions between
pSc250 and Laura/Xalas elements fell into this category,
as did most of the junctions between pSc200 and Daniela
(70 %) and Olivia (58 %).

At the junction points, most TE copies began with the
LTR’s 5'- or 3'-terminal nucleotide, or a nucleotide very
close to the terminus (the distribution of distances is
shown in Additional file 6). Analysis based on Repeat-
Masker software showed that half of the Laura elements
present in the vicinity of pSc250 began with their first or
last 1-10 nucleotides. Similarly, 54 % of Daniela copies
and 68 % of Olivia copies in the vicinity of pSc200 began
within the first 20 nucleotides of their LTR; as for
pSc250, 69 % of adjacent Xalas copies began with nucleo-
tides 1-20 of one or other LTR. Mapping the top-scoring
motifs against the sequences of Daniela, Olivia, Laura,
and Xalas extracted from TREP database revealed the
same trend, namely the motif density was the highest
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Table 3 Enrichment estimates (t-test) for top-scoring motifs
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Table 3 Enrichment estimates (t-test) for top-scoring motifs
(Continued)

o GAGAASCETGAG o

7 KCASGIILICETG 1.96-03 14603
. SERSATITISCE o o
9 GG :EQQ%QQ%IQ 88E-04 40E-03
o COITACCTGRCC e oo
n GCTCACSsCaeT 26809
2 ACAACTIGGITL 1.4E-09 1.6E-03

Top-scoring motifs present in the (A) TE/pSc200 junctions, (B) TE/pSc250
junctions, Logo. *significance of enrichment was estimated by Fisher’s t-test as
described in “Methods” the only statistically significant values are shown

within the first 300 bp of their 5'- or 3'- LTRs (data not
shown) particularly with respect to motifs 2 and 9 in the
Daniela and Olivia LTRs.

Thus, our analysis of genomic DNA composition and
de novo identification of DNA motifs overrepresented in
the vicinity of pSc200 and pSc250 sequences uncovered
enrichment of these regions with 5'- and 3'-LTRs of
Olivia/Daniela and Laura/Xalas TEs, respectively.
These results point to the substantial role of nucleotide
context in the formation of DNA flanking tandem re-
peats, which is likely based on its involvement in the
molecular mechanisms taking place during amplification
of tandem arrays and associated recombination events.

Discussion

Multiple arrays of tandem repeats with distinct higher-order
organization are present in the chromosomes of rye

The organization of tandemly repeated sequences is poorly
understood, not just in the cereals, but in eukaryotes
generally. A notable exception is the human a-satellite,
comprising a large array at each centromere which emerged
as a paradigm for understanding the genomic organization
of other tandem DNA sequences [22, 23, 31-34]. Although
these latter arrays are mostly homogeneous, a few chromo-
somes harbour two or more distinct arrays each defined by
different HORs [31, 32]. Here, the application of FISH
clarified that the pSc200 and pSc250 arrays located close to
the 1RS telomere are organized into discrete domains, a
conclusion supported by the Southern hybridization ana-
lysis. We believe that this observation can be extrapolated
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Fig. 6 The most highly enriched TE families localizing in the vicinity of pSc200 and pSc250 arrays. The x-axis plots the percent of TE/array
junctions harboring a particular TE family, while the y-axis plots TE enrichment relative to the genome average at the junction site. Dashed
lines delimit the areas on the plot used for TE family selection. Selected TE families are indicated and are followed by their x and y values.
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to heterochromatin regions of other rye chromosomes. The
evidence for this extrapolation is supported by the size of
the set of junction site sequences (314 involving pSc200
and 494 involving pSc250), which number far more than
the number of chromosome arms. It is possible that some
of these reads arose from non-array sequence embedded in
the monomer array, but these cannot be common since
none emerged from the sequencing of several 1IRS BAC
clones. The frequency of direct junctions between pSc200
and pSc250 arrays is very low; only six reads fell into this
category, which further reinforces our conclusion that each
of these two families has its own, distinct localization
domain on the rye chromosomes. Nonetheless, the fact that
pSc200 and pSc250 FISH signals display partial overlap is
indicative of the close proximity and short junction regions
between both domains.

HORs are composed of monomers with nearly identi-
cal nucleotide sequence and are found located in the
centers of alpha-satellite DNA arrays [22]. In this work
we show that in rye, pSc200 and pSc250 sequences form
multimeric units with the number of monomers varying
from 2 to 8 and that the multimeric units map to the
centres of the arrays. Multiplicity of monomers within
these multimeric units is specific for each individual
array found in 1RS. This may argue in favor of multiple
recombination events involving distinct tandem arrays
within one chromosome arm, which led to HOR forma-
tion. Supportive evidence of active recombination within
tandem arrays is provided by the level of sequence diver-
gence (up to 7 %) observed between pSc200 monomers
arranged as dimers within a BAC119C15, which implied
that two monomers first formed a single unit, which was
later amplified as a unit. It has been suggested that,
during the evolution of tandem arrays, early duplication
events were more frequent than subsequent amplification

steps [34]. The dimeric repeat structure is universal for
alpha satellite DNA, as it is present across various Old
World monkey species [35] and is 15-20 MY old based
on the estimated evolutionary divergence of these species
[36].

A comparison of rye tandem repeat families and primate
a-satellite DNA

Most of the pSc200 and pSc250 arrays ranged in length
from 40-300 kb [13], while the human «-satellite forms
much longer arrays of up to 6 Mbp [23]. The two array
types are also located in a different part of the chromo-
some (subtelomere vs centromere). The postulated
mechanisms for the generation and maintenance of
tandem arrays include unequal sister-chromatid ex-
change, sequence conversion, translocation exchange
and transposition [8, 37, 38]. As most a-satellite subsets
are chromosome-specific, the within homologs exchange
frequency is thought likely to be significantly higher than
that occurring between non-homologs [38]. The pSc200
and pSc250 tandem arrays appear to have distinct evolu-
tionary histories. Several pSc200 copies are present in
hexaploid wheat and other Triticeae species [14, 39], but
has also been identified in the more distantly related rice
and oat. As a result, it must have arisen at least 45 Mya,
when the rice and oat lineages diverged [40], making it
more ancient than the human o-satellite, whose pres-
ence throughout the primate order dates it to some 35
Mya [38]. The pSc250 sequence is much younger; its
appearance as isolated copies in a few Triticeae species
[14] dates it to 15 Mya. Despite their representation across
multiple grass species, the expansion of both families has
postdated the divergence of Secale from its closest rela-
tives [41]. Thus, both families have been amplified over a
much shorter timescale than «-satellite DNA.



Evtushenko et al. BMC Genomics (2016) 17:337

The topology of both the pSc200 and pSc250 phyloge-
nies was largely star-like, in contrast to the tree-like
form of the human a-satellite phylogeny [33]. With the
exception of the chromosome 5R and 7R sub-clades, the
chromosomal origin of the pSc200 monomers was hetero-
geneous. The presence of multiple, relatively short arrays
on each rye chromosome, along with a predominantly
star-like phylogeny, are consistent with the rapid evo-
lution of these arrays, likely accelerated by illegitimate
recombination including interchromosomal recombin-
ation events. This model is supported by FISH-identified
presence/absence and intensity polymorphisms for both
pSc200 and pSc250 between homologs of different cereal
rye accessions [41, as well as the readiness with which
introgression occurs in S. cereale x S. montanum hybrids
[42]. Exchange of satellite sequences between chromo-
somes is not unprecedented and was demonstrated for
allopolyploid Nicotiana species [43]. The presence of the
5R- and 7R-specific pSc200 sub-clades may be connected
with the observation that it is only these chromosomes
which still harbor fragments of the ancestral Triticeae
chromosome a6 [21], but how such ancient DNA seg-
ments may have escaped interchromosomal exchanges is
not clear.

The abundance of certain TE families in the vicinity of
pSc200 and pSc250 arrays
TEs are responsible for much of the genome enlarge-
ment seen in the cereals [29, 44, 45], and their concen-
tration in heterochromatin is well-established. Thus it
was expected that TE sequence would be common in
the regions flanking the pSc200 and pSc250 arrays. The
sequences appeared as a mosaic of incomplete, heteroge-
neous TEs, likely resulting from nested insertions sub-
jected to subsequent recombination, duplication and
indel formation [46, 47]. The analyses of barley and
wheat genomic sequence has shown that most TE
families are present in relatively low copy numbers and
that just 15 families make up at least 50 % of the
genome complement [29]. Similarly in rye, the Sabrina
family constituted an estimated 15.5 % of the nuclear
genome. Why particular TE families have been able to
expand in a species-specific manner is quite unknown.
Sabrina was first identified in barley [45] but is widespread
in the Triticeae [29] including wild species of Secale [48].
Although similar to Gypsy, it contains an env-like gene, the
product of which includes predicted transmembrane
domain which may aid its horizontal transfer. Notably, in
S. cereale, Sabrina is only seldom seen in subtelomeric
regions [48], suggesting that it has not been actively
involved in the formation of the prominent heterochroma-
tin blocks.

A striking feature of pSc200 and pSc250 array flanking
sequence is that although it has been enriched for TE
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sequence, the TEs involved were not highly abundant
across the genome as a whole. The frequency of solo-
LTR elements is particularly notable around pSc250. Ec-
topic exchanges were likely commonplace in the vicinity
of the arrays as this is in line with the predictions of the
ectopic exchange model [49]. The solo-LTRs present in
the flanking sequence were largely a heterogeneous mix-
ture of Xalas and Xalax. The former element was first
identified in barley [46], and despite its relatively large
size (~4 kb), it has not been assigned to any of the LTR-
retrotransposon superfamilies, as no coding domain-like
sequences have yet been identified. Various representa-
tives of Xalas/Xalax share relatively short regions of in-
complete homology (rarely >80 %). Thus, these elements
cannot be classified as a single family according to the
80-80-80 rule [30]; a similar level of identity applied be-
tween the terminal segment of the Daniela and Olivia
LTRs. The major processes likely responsible for the for-
mation of solo-LTRs are unequal crossing over and
intrachromosomal ectopic recombination between LTRs
of the same or even different elements, when they share
the regions of homology. If recombination involves the
LTRs of different elements, a range of recombination
products may result, potentially leading to chromosome
rearrangement [25].

Multiple recombination mechanisms were likely involved
in the expansion of rye tandem repeats and their flanking
TEs

Whereas the molecular basis of recombination between
tandem repeat has long been an active research topic,
little attention has been given to resolving whether the
sequences adjacent to the arrays affect the expansion
process. The sequences flanking human a-satellite DNA
are highly heterogeneous [50] and do not seem to be
enriched for TEs [33]. Any recombination event involves
the formation of double-strand breaks and their subsequent
repair. The latter process is achieved by non-homologous
end joining (NHE]) and homologous recombination (HR)
[51]. The present analysis of the array/TE junctions indi-
cated that most of the TE sequence was integrated either
directly into the monomers or attached to it via a very
short (1-10 bp long) spacer, consistent with the NHE]
scenario. Most of the junctions between pSc250 and
Laura/Xalas and between pSc200 and either Daniela or
Olivia followed this pattern.

A degenerate 13 nt motif has been demonstrated to be
associated with ~40 % of human crossover hotspots
[52]. Currently, no such clear association between re-
combination and specific DNA sequence motifs has
been established in plants [53]. Nonetheless, the junction
regions in rye are clearly enriched with respect to several
DNA motifs, some of which may be involved in other
known DNA repair mechanisms acting independently of
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NHE] and HR [54]. The heterogeneity of DNA motifs
found in the TEs, combined with the relatively low level
of sequence similarity within the homologous regions of
Xalas/Xalax and Daniela/Olivia, fit the requirements
for microhomology-mediated break-induced replication
and gene conversion to function [54]. The length of the
motifs identified (8—12 nt) agrees well with a recognition
mechanism allowing recombinases to align single-stranded
DNA with a homologous duplex (dsDNA). Once a pre-
synaptic complex has engaged a particular 8-nt (or longer)
tract of microhomology, it may become exchanged with
other region of dsDNA bearing the same microhomology,
yet resist exchanges with unrelated sequences [55]. The
number of rearrangements induced by microhomology-
driven pathways is likely to be higher than is currently
thought [54]. The outcomes of these currently under-
appreciated repair pathways could include an increased
copy number of the sequences being repaired [56]. Conse-
quently, these mechanisms may be a significant contribu-
tor to the formation of heterochromatic blocks.

Shaping the rye genome by tandem repeats

Although the barley and wheat-rye lineages diverged ap-
proximately 10-13 Mya [57], and wheat and rye shared
a common ancestor only 6-7 Mya [57], the karyotypes
of these three species vary drastically with respect to
both their size and structure [58], although not with re-
spect to their gene content [21]. It is widely accepted
that differences in genome size between closely related
species are largely attributable to the quantity of inter-
genic DNA present, which in turn is heavily influenced
by TE copy number and composition. In the case of rye,
an increased TE content has not been the sole factor
contributing to its genome expansion; in addition there
has been a massive amplification of tandemly repeated
DNA, based on pSc200 and pSc250 (and other) mono-
mers. This conclusion is supported by the positive cor-
relation between larger heterochromatic blocks and
higher content of tandem DNA repeat families in the
cultivated rye (S. cereale) as compared to wild rye spe-
cies [10]. The high copy tandem repeats found in barley
and wheat, HVRT [59], pSc119.2 [11], dpTal [60] and
Tail [15], are significantly less abundant than are pSc200
and pSc250 in rye.

The presence of multiple copies of the repeated
DNA sequences in each subtelomeric region might be
expected to promote pairing between homologous
and non-homologous chromosomes. The termini of
rye chromosomes are known to play a key role in the
initiation of synapsis [61], and since they remain asso-
ciated for a longer period than other parts of the
chromosome, it has been suggested that this explains
why the frequency of recombination increases along
the centromere-telomere axis [62]. The recombination
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rate gradient along the centromere-telomere axis is
steeper in the wheat close relative Aegilops speltoides
(the chromosomes of which feature large subtelomeric
heterochromatic blocks) than in einkorn wheat (which
lacks major blocks) [63].

Conclusion

Early studies have noted that tandemly repeated DNA
can increase in copy number over a relatively short
evolutionary time by replication conversion-like events
or via some other unexplained mechanisms [8]. This
phenomenon has recently received further support via
analysis of the evolutionary fate of various satellite re-
peats in species from Nicotiana section Polydicliae [43].
Significant progress has been made over the past twenty
years in understanding the molecular nature of various
recombination pathways. Direct involvement of pSc200
DNA in the association of subtelomeric regions of two
or more bivalents was demonstrated by FISH [64]. It is
highly probable that the heterogeneous composition of
pSc200 and pSc250 multimeric units and the localization
of multimers to the central part of monomer arrays is a
by-product of unequal crossing over and homologous
recombination. Gene conversion and ectopic exchanges
between homologous and non-homologous chromosomes
have promoted the formation of multiple arrays of each
repeat family and contributed to a significant enrichment
of the flanking sequences with solo LTRs and several TE
families. The presence of short microhomology tracts in
these elements implies a contribution of other known
recombination pathways [54]. Thus, all the above-listed
mechanisms may have been involved in creating the
bewildering complexity of recombination events that
have ultimately resulted in expansion of tandem repeat
families pSc200 and pSc250 as well as several TEs in
the rye genome.

Methods

Plant material and FISH

The plant materials used were the bread wheat cv. Chinese
Spring (CS), the cereal rye cv. Imperial and wheat-based
ditelosome addition line involving rye chromosome arm
1IRS (CS/1RS) [65]. Chinese Spring cultivar is an inter-
national standard for wheat research, much as the rye cv
Imperial. Spikelets at the appropriate meiotic stage were
fixed and prepared for FISH as described elsewhere [66].
FISH was performed according to a protocol optimized for
rye meiotic chromosomes [66].

DNA plug preparation, PFGE and Southern hybridization

High molecular weight DNA was isolated from protoplasts
prepared from CS/1IRS seedlings [67]. The agarose plugs
containing the DNA were loaded into a CHEF-DRIII PFGE
system device (Bio-Rad) for PFGE through a 1 % agarose
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gel. The separated DNA fragments were transferred to a
Hybond-N+ membrane, which was then subjected to
Southern hybridization at 65 °C following [68], rinsed once
at 65 °C in 0.1 M Na,HPOy, 0.1 % (w/v) SDS for 30 min,
and then in 0.04 M Na,HPOy, 0.5 % (w/v) SDS for 30 min.

DNA probes and labeling

For FISH experiments, pSc200 (accession number
750039.1) and pSc250 (accession number Z50040.1)
were labeled with, respectively, digoxigenin-11-dUTP
(Roche) and biotin-11-dUTP (Roche) via PCR [66]. For
Southern hybridization experiments, pScl19.2, 7Tail,
pSc200 and pSc250 were labeled with [a->*P]dATP (GE
Healthcare, Amersham) either by PCR or by random
priming [66].

Analysis of 1RS-specific BAC library and BAC clone
sequencing

Filters with spotted BAC clones from the 1RS-specific
BAC library SccImplRShA [18] were sequentially hy-
bridized with pSc200 and pSc250 probes. Positive
clones were selected for preliminary analysis of insert
sizes and patterns of restriction fragments. Clones
displaying distinct restriction digestion patterns and
positive for pSc200 or pSc250 were chosen for finer
analyses. Namely, these clones were first subjected to a
stability analysis [69], then restriction mapped using
either partial digestion with one enzyme or a complete
digestion with two [70].

Digested BAC fragments were subjected to pulsed-field
gel electrophoresis using CHEF-DR III apparatus (BioRad)
in 1 % agarose gel on 0.5xTBE at 14 °C. The settings
used were as follows: initial switch time - 0.5 s, final
switch time — 4 s, voltage - 6 V/cm, running time 10—
12 hours, depending on the expected DNA fragment
sizes. Following gel electrophoresis, the DNA was
transferred onto Hybond-XL membrane (Amersham
Biosciences) and subjected to Southern-blotting, as
described above.

The primer walking sequencing of the BACs was per-
formed using a ABI PRISM BigDye™ Terminator Cycle
Sequencing Ready Reaction kit (Applied BioSystems); the
reaction products were separated using an ABI3730xl
capillary sequencer. Primers annealing to the ends of the
pIndigoBAC-5 vector (used to construct the SccImplR-
ShA library) were used for the initial walking step. Down-
stream sequencing reactions used primers designed from
de novo acquired sequence.

Subcloning of BAC sequences and sequencing of pSc200
arrays

The portion of the pSc200 array in BAC clone 119C15
was sequenced by initially digesting it with HindIII, Ndel
and Xbal. The products were separated by PFGE and
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probed with pSc200. A hybridizing fragment was
gel-eluted using a Min Elute Gel Extraction kit (Qiagen)
and the DNA then ligated to Ndel/Spel restricted
pGem-5Zf(+). The ligation products were transferred
into E. coli XL10-GOLD (Stratagene) competent cells
[70]. A series of deletion clones was obtained by
treatment with exonuclease III and SI nuclease (Ther-
moScientific) [24]. Protruding 5°- and 3'-ends were
generated by Sphl/Ncol digestion (Promega). The result-
ing 300-400 bp inserts were sequenced and assembled
into a contig which comprised 11 full length pSc200
monomers.

Processing of 454 reads

Chromosome-based rye genome sequence [21] was used
to characterize the flanking regions of the pSc200 and
pSc250 arrays. Adapter sequences were removed from
the reads using tagcleaner 0.12 [71], quality sorting was
performed as described in [72], and makeblastdb software
[73] was run to create a relevant reads database. Phred
quality scores were set as follows: Av(Q) —Z * o(Q), where
Av(Q) and o(Q) denoted the quality score mean and
standard deviation. The Z values were set as 2.6 and 1.6
for the phylogenetic analysis and the analysis of tandem
array/non-array junctions, respectively.

Subsampling of 454 reads for phylogeny construction
Consensus pSc200 and pSc250 sequences, established from
archival and BAC clone sequences, were used as blastn
and blastcmdsearch queries [73] to extract homologous
454 reads (length thresholds were, respectively, 95 and
80 %). In order to select only distinct monomers with the
homology level at most 98 % we run the nucmer and
show-coords routines implemented in MUMmer v3.23
[74]. A multiple alignment of the chosen sequences was
performed using sate v2.2.7 software [75].

Phylogenetic analysis of the pSc200 and pSc250 families
Jack-knife analysis [76] was performed to assess the
statistical robustness of the predicted phylogeny; this
involved the removal of 25 % random aligned regions.
This threshold was chosen based on the observation that
substitutions/deletions were infrequent and were uniformly
distributed. For each jackknifed alignment, the maximum
likelihood algorithm implemented in raxml v7.4.2 software
[77] and the GTRGAMMA model were used to construct
the phylogeny. Based on the set of 500 trees, dendroscope
v3.2.8 software [78] was used to build a Galled phylogen-
etic network of the original set of trees. Pairwise distances
were calculated based on the original (all sites intact)
alignment of repeats using the distmat program imple-
mented in the EMBOSS v6.3.1 package [79].
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Sampling of the junctions between TEs and tandem
repeats

Quantification of the various DNA families was based on
the entire set of high-quality 454 rye whole genome DNA
reads. Two subsamples of reads (termed “junction”) were
compiled: each member’s sequence included a segment
homologous to either the pSc200 or the pSc250 sequence
(E<e™®) using WUBLAST (http://blast.wustl.edu). The
non-array portions were oriented and aligned to begin at
the TE/tandem repeat junction. Both the total set of
reads and the two “junction” subsamples were scanned
using RepeatMasker (http://www.repeatmasker.org),
TREP (http://wheat.pw.usda.gov/ITMI/Repeats/) software,
applying default settings. Finer positioning of the repeats
within the reads was achieved using FASTA software [80].
The remaining reads were then filtered to retain those
harboring at least 200 nt of non-array sequence.

Analysis of nucleotide context at the TE/tandem repeat
junctions

The “junction” reads from which array sequence had
been were removed were trimmed by 80 nt at their
3’-end. We applied the threshold of sequence identity
90 % to non-array DNA in order to analyse only non-
redundant junctions. Homer software (http://homer.salk.
edu/homer/motif/) was used for the de novo identification
of enriched motifs. The required set of background se-
quences was generated by the shuffling of sequences of
the test sample. The 12 top-scoring motifs from the out-
put of Homer tool for each of the pSc200/pSc250 families
were selected, because this number was sufficient to con-
firm the hypothesis on the relationship between the most
overrepresented motifs and the most abundant TEs. This
hypothesis is based on the enrichment of tandem-
genomic DNA junction with certain types of TEs. For
each top-scoring motif a position weight matrix was ob-
tained from the matrix of nucleotide frequencies using
log-odds weights [81]. Each of these matrices was based
on the threshold values computed as in [82] applying a
P value of 5¢°. The statistical significance of association
between the motif hit occurrence and TE mapping in a
read (the “DNA motif — TE” association) was estimated
by Fischer’s t-test for angular (arcsine square root) trans-
form proportions [83]. The proportions were computed
from the ratio between the number of junctions with hits
of motif to the total number of junctions. The first propor-
tion A/(A + C) referred to the total set of junctions, and
the second B/(B + D) to the subset of junctions which
included a TE, where A through D represented the
relevant number of reads (the details are described in
Additional file 7). According to Bonferroni’s correction
only “DNA motif — TE” associations for which P value
was <0.00417 (0.05/12) were considered as significant.
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Data availability
The sequence data described are available in GenBank
under accession numbers KT724931-48.
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Additional file 1: Multimeric repeat units present in the central portion
of the arrays. PFGE separation of BAC clones containing pSc119.2, Tail and
pSc200 arrays. Southern hybridizations probed with (left panel) pSc119.2
and (right panel) pSc200. Lane 1: BAC clone 84C15, lane 2: 130H7, lane 3:
230C21, lane 4: 230N4, lane 5: 241H2. The central panel illustrates the structure
of the BAC clones. Black rectangles: non-array sequences. (PDF 90 kb)

Additional file 2: Set of pSc200 family monomers used for reconstruction
of phylogenetic network. File can be opened in BioEdit Sequence Alignment
Editor. The name of each sequence consists of two parts: the right part from
the dot points the chromosome-specific library, the left part from the dot
points the read number in library. (TXT 115 kb)

Additional file 3: Set of pSc250 family monomers used for reconstruction
of phylogenetic network. File can be opened in BioEdit Sequence Alignment
Editor. The name of each sequence consists of two parts: the right part from
the dot points the chromosome-specific library, the left part from the dot
points the read number in library. (TXT 550 kb)

Additional file 4: Dot-plot alignment of TE sequences most highly
enriched in the TE/tandem array junctions. (A) Xalas (TREP1571) vs Xalax
(TREP3344), (B) Olivia (TREP3219) vs. Daniela (TREP796). Lines indicate regions
of sequence homology. (PDF 375 kb)

Additional file 5: Distribution of distances (shown in nt) between the
terminal monomer of the tandem array and the TE present at the TE/
tandem array junction (x-axis). (A) TE/pSc200 junctions, (B) TE/pSc250
junctions. The y-axis plots the ratio between the number of junctions
harboring a given size of spacer DNA and the total number of junctions
harboring the same TE. (PDF 341 kb)

Additional file 6: Distribution of distances (shown in nt) between the
first nucleotide of the TE and the closest full length TE (5'- or 3'-end)
present at the TE/tandem array junction (x-axis). (A) TE/pSc200 junctions,
(B) TE/pSc250 junctions. The y-axis plots the ratio between the number
of junctions harboring a given size of spacer DNA and the total number
of junctions harboring the same TE. (PDF 416 kb)

Additional file 7: DNA motif detection vs. TE occurrence in junctions
“genomic DNA — tandem”. Example of the contingency table used to
compute Fischer's t-test for evaluation of the reads dataset containing
junctions of tandem arrays with genomic DNA T-test checked the association
between (a) detection of the certain DNA motif and (b) mapping of certain
TE. Values A, B C, D denote the numbers of reads. (DOC 25 kb)
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