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Abstract

Background: The assembly of Next Generation Sequencing (NGS) reads remains a challenging task. This is especially true
for the assembly of metagenomics data that originate from environmental samples potentially containing hundreds to
thousands of unique species. The principle objective of current assembly tools is to assemble NGS reads into contiguous
stretches of sequence called contigs while maximizing for both accuracy and contig length. The end goal of this process
is to produce longer contigs with the major focus being on assembly only. Sequence read assembly is an aggregative
process, during which read overlap relationship information is lost as reads are merged into longer sequences or contigs.
The assembly graph is information rich and capable of capturing the genomic architecture of an input read data set. We
have developed a novel hybrid graph in which nodes represent sequence regions at different levels of granularity. This
model, utilized in the assembly and analysis pipeline Focus, presents a concise yet feature rich view of a given input data
set, allowing for the extraction of biologically relevant graph structures for graph mining purposes.

Results: Focus was used to create hybrid graphs to model metagenomics data sets obtained from the gut microbiomes
of five individuals with Crohn’s disease and eight healthy individuals. Repetitive and mobile genetic elements are found
to be associated with hybrid graph structure. Using graph mining techniques, a comparative study of the Crohn’s disease
and healthy data sets was conducted with focus on antibiotics resistance genes associated with transposase genes.
Results demonstrated significant differences in the phylogenetic distribution of categories of antibiotics resistance genes
in the healthy and diseased patients. Focus was also evaluated as a pure assembly tool and produced excellent results
when compared against the Meta-velvet, Omega, and UD-IDBA assemblers.

Conclusions: Mining the hybrid graph can reveal biological phenomena captured by its structure. We demonstrate the
advantages of considering assembly graphs as data-mining support in addition to their role as frameworks for assembly.
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Background
Next Generation Sequencing (NGS) technologies have
made it possible to directly sequence environmental
samples to detect and analyze the components of bio-
logical communities. As a growing number of exciting dis-
coveries are being made in this field of metagenomics, it is
becoming increasingly clear that we are intricately con-
nected to and influenced by the host of microorganisms
known as the human microbiome. The importance of the

human microbiome has been recognized, so much so
that it has been referred to as the forgotten organ of
the human body [1]. The commensal and pathogenic
microorganisms populating the human body have been
found to play major roles in metabolism [2, 3], immune
system maturation and modulation [4, 5], and even in
the development of various types of cancers [6, 7].
In metagenomics studies, NGS machines produce

short DNA sequences called reads which are randomly
sampled at a very high coverage from environmental
DNA. These reads are extremely short in comparison to
the bulk DNA amount in environmental samples. Illumina
technologies currently are capable of producing NGS
reads anywhere from 125 bps to 300 bps in length with
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output capabilities ranging from 25 million to 3 billion
reads per run [8]. Reads produced by the 454 technologies
are up to 1000 bps in length with data set sizes reaching 1
million reads [9]. More recently introduced technologies
such as PacBio are able to produce reads at longer read
lengths exceeding 10 k bps in length [10].
The short length of current NGS reads makes it difficult

to extract any useful information from any read individu-
ally. Therefore, multiple analytical approaches have been
developed to organize, aggregate, and analyze short read
sequences. The high coverage of next generation sequen-
cing technologies means that the reads in a data set will
be sampled from a biological sample such that many of
them overlap. These overlap relationships can be used to
order the reads into a representation of the original se-
quence region. For the purpose of facilitating downstream
analysis, many applications require that read sets are as-
sembled into longer stretches of sequence called contigs.
Assembly tools often rely on the mathematical structure
called a graph to organize and model the short sequencing
reads. Two graph theoretic approaches are typically
followed in assembly, overlap graph based approaches
and de Bruijn graph based approaches [11]. In the over-
lap graph based approaches, each read is mapped to a
unique node in the overlap graph. If two reads overlap,
then their corresponding nodes will be connected by an
edge. An ordering of the reads is found by traversing the
nodes in the overlap graph. The second graph-based ap-
proach relies on the de Bruijn graph as its graph theoret-
ical foundation. In this approach each read is broken into
all possible k-mers. The k-mers become edges in the de
Bruijn graph. For each k-mer, its left and right k-1-mers
become nodes in the de Bruijn graph. In this approach, a
read ordering is found by traversing the edges in the de
Bruijn graph.
Numerous different assembly tools have expanded on

these two graph theoretic foundations introduced in the
previous paragraph. The assemblers IDBA [12] and
SPAdes [13] build and integrate de Bruijn graphs for
multiple values of k. When k is too small this often re-
sults in many branches in the de Bruijn graph; however,
when it is too large this results in gaps in the de Bruijn
graph [12]. These iterative de Bruijn graph approaches
mitigate this problem by taking advantage of all values
of k, resulting in longer produced contigs [12, 13]. Simi-
larly, other assemblers such as SGA [14] have made use
of the string graph, which simplifies the overlap graph
by eliminating redundant edges [15, 16].
Assemblers optimized for single genome assembly are

unlikely able to handle the complexities of metagenomics
data sets. Metagenomics-specific assembly tools have been
developed to address some of the challenges of metage-
nomics assembly including the presence of conserved and
repetitive sequence regions, which introduce branching

paths and tangles within the assembly graph. Assembly
tools typically extend contigs along a maximal non-
branching path in the assembly graph. A branch point
in a path forces an assembler to either terminate contig
extension or to select a branch with which to continue
extension - the branch selected may or may not be cor-
rect, introducing error into the assembled contig. The
metagenomics assemblers Omega and UD-IDBA analyze
the read and kmer coverage differences between paths
that compose branch points in the assembly graph for the
purpose of resolving them [17, 18]. The assembler MAP
integrates mate-pair information into the assembly graph
to resolve these branch points [19]. Machine learning has
been used by the assembler MetaVelvet-SL to distinguish
chimeric nodes from non-chimeric nodes [20].
The assembly of short reads is an aggregative process

during which the global and local read relationship and
therefore global and local genome architecture information
is lost as reads are merged into flat contigs. In contrast, as-
sembly graphs are information rich models that can capture
features of the global architecture of the input genomic
sequence [16] and have been mentioned in passing to be
capable of capturing biological features such as conserved
regions, rRNA operons, and horizontally transferred se-
quences [21]. However, there have been a very limited
number of studies demonstrating the assembly graph’s
power as an information rich data-mining support es-
pecially in metagenomics. Instead, the primary goal of
most assembly tools is to improve the assembly process
to produce longer and more complete assemblies. In this
research, an expanded assembly graph, which is called the
hybrid graph, is shown to be an excellent data-mining
support that can be used to extract structural signatures
associated with biological features and make novel bio-
logical discoveries.
We have developed a novel hybrid graph model that

represents different regions of sequence data at different
levels of granularity [22]. This hybrid graph model forms
the foundation of the assembly and analysis pipeline called
Focus. The model is constructed by creating a set of
graphs produced by successive graph coarsening initial-
ized on the original overlap graph. Nodes are integrated
from different levels of the graph set into a hybrid graph
to create a concise yet feature rich view of the input data
set. Repeats and conserved intergenomic regions are re-
duced within the hybrid graph, while global architecture is
preserved. Local read overlap relationships are maintained
in earlier levels of the coarsened graph set.
The Focus algorithm was applied for a study on read

data sets obtained from the gut microbiomes of healthy
individuals and individuals with Crohn’s disease. The
overarching goal of this research was to explore the dis-
tribution of transposase genes and associated antibiotic
resistance genes across bacterial genera in the gut
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microbiomes of healthy individuals and individuals with
Crohn’s disease. The approach and results in this manu-
script might provide insights into candidate genera for
which horizontal gene transfer of transposon sequences
and associated antibiotic resistance genes has occurred.
We divide our study into three specific aims.

1. Demonstrate that repetitive and transposable
elements are associated with node characteristics.
To facilitate efficient extraction of meaningful graph
structures in this study, each node in the hybrid
graph is assigned a Shannon’s index score to reflect
the local diversity of the various species or sequence
regions in which the sequence represented by the
given node is conserved or repeated. The Shannon’s
index captures the number of edges incident to a
given node as well as their evenness or how equally
their weights are distributed. In the hybrid graph,
each node represents a contiguous sequence region.
Edges represent overlap relationships that this
sequence region has with other contiguous sequence
regions. An edge between two given nodes is
weighted according to the summation of the read
overlap lengths between reads composing the first
sequence region with the reads composing the other
sequence region. If a sequence region is repeated
multiple times in a single genome or is present in
multiple species, it might follow that its representative
node in the assembly graph will have multiple in and
out edges representing different sequence regions or
species. In contrast, a node that is part of a single path
in the assembly graph might be representative of a
unique genomic region.
Bacterial transposons are mobile DNA segments
that can independently replicate and insert
themselves within the same chromosome or plasmid
or into a different chromosome or plasmid [23].

They have been implicated in the horizontal transfer
of genes between different bacterial species.
Transposase and integrase sequences are often a
part of transposable elements and are commonly
involved in their transfer. The simplest of bacterial
transposons is the insertion sequence (IS) element
shown in Fig. 1a, which is composed of two inverted
repeats flanking genes necessary for transposition.
The rDNA operon is a prevalent large repeat class in
microbial genomes, ranging from 1–15 copies per
genome [24]. In this manuscript, it is shown that
nodes assigned with transposase/integrase genes and
rRNA operon DNA had a greater proportion of high
Shannon’s index scores in comparison to nodes
assigned with other gene categories from the SEED
subsystems (q = 2.44 × 10−04; paired Wilcoxon tests).

2. Identify and characterize the phylogenetic
distribution of antibiotic resistance gene classes
associated with transposase/integrase sequences in
healthy individuals and individuals with Crohn’s
disease. The human microbiome has been described
as a reservoir for antibiotic resistance genes [25, 26]
and as a hot spot for horizontal gene transfer [27]
between bacterial taxa. Antibiotic resistance genes
are often found in bacterial composite transposons,
which are composed of two IS elements flanking a
protein coding sequence region as shown in Fig. 1b
[28], allowing their rapid spread between bacterial
groups. Crohn’s disease is a chronic disorder where
the gastrointestinal tract is inflamed [29]. Horizontal
gene transfer has been suggested to be increased
between pathogenic and commensal bacteria in
inflamed gastrointestinal systems [30]. Furthermore,
this population is more likely to be treated with
antibiotic regimens for secondary complications
such as bacterial overgrowth and abscesses [31].
Antibiotic use has been shown to increase antibiotic

a)

b)

Fig. 1 a The insertion sequence (IS) is the smallest transposon present in bacterial chromosomes and plasmids. It is composed of two inverted
repeats flanking genes necessary for transposition. b The composite transposon is composed of two IS elements flanking a central protein coding
DNA region. This central region often contains genes for antibiotics resistance
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resistance in those to whom it is prescribed [32].
Due to these issues, it is important to understand
the antibiotic resistance genes present in populations
affected by Crohn’s disease.
In a novel graph-mining approach, the structure of
the hybrid graph is used to identify transposase/
integrases sequences that might be located in multiple
sequence regions (i.e. repeated in the same genome or
distributed across multiple species) according to their
assigned Shannon’s index score. Local graph
exploration of the neighborhood surrounding
these transposase and integrase sequences reveal
associated antibiotic resistance genes. Clustering
transposase sequences based upon their phylogenetic
distribution obtained from the hybrid graph revealed
several differences between the Crohn’s disease and
healthy data set. Most transposase genes in the healthy
data sets were clustered into a large Bacteroides group
significantly enriched for tetracycline, macrolide-linco-
samide-streptogramin B, and beta-lactamase anti-
biotic resistance genes. Transposase genes in the
Crohn’s disease data sets were more diverse across
phylogenetic groups including an Enterococcus cluster
significantly enriched for aminoglycoside, macrolide,
and streptogramin antibiotics resistance genes. This
approach reveals clusters of genera for which transpo-
sase associated antibiotic classes are enriched and
may provide insight into candidate bacterial groups
in which horizontal gene transfer has occurred.

3. Perform a competitive assembly evaluation of the
assembler against other well-known assembly tools.
In addition to being a data-mining support, Focus is
a strong assembly algorithm. In this study, a subset
of the metagenomics data sets is assembled with
Focus in a comparative study against the Omega [17],
IDBA-UD [18], and MetaVelvet [21] assemblers.
These assemblers were chosen for the comparison
because they were metagenomics-specific assemblers.
Furthermore, two of the assemblers, IDBA-UD and
MetaVelvet, were based on the de Bruijn graph
approach for assembly. One of these assemblers,
IDBA-UD, is based on an iterative de Bruijn graph
approach. The final assembler, Omega, is an overlap
graph based assembler. These assemblers represent a
wide range of graph-based approaches to which we
compared Focus.
Results demonstrate the knowledge that can be
obtained from structural features of the assembly
graph. Nodes annotated with several genetic features
that are distributed across multiple species or are
often present in multiple copies (rRNA) have a
significantly greater proportion of high Shannon’s
index scores than other nodes in the hybrid graph.
This reflects a greater number of unique sequences

that overlap with the genomic regions of these
particular nodes. Graph mining is also useful for
comparative studies, allowing for the identification
of distinct differences in composition of transposase
associated antibiotic resistance genes in the Crohn’s
disease and healthy data sets. The ability of the
hybrid graph to reveal multiple genera that a given
transposase sequence is present within may provide
insights into the flow of horizontal gene transfer and
antibiotic resistance gene spread in metagenomics
samples. Graph mining is a powerful method of next
generation sequencing data analysis in addition to
assembly and read mapping methods.

Methods
The Focus algorithm consists of five steps including read
preprocessing, pairwise read alignment, multilevel graph
set generation, multilevel graph set integration and gen-
eration of the hybrid graph, and hybrid graph trimming.
Here we provide a brief overview.

1. Read preprocessor: The Focus preprocessor
generates reverse complements of the input read
data set and splits the reads into subsets for parallel
read alignment. The preprocessor also provides
options for fixed-length and quality based read
trimming.

2. Pairwise read alignment: In the read alignment step
of algorithm, Focus performs pairwise comparison of
the read subsets generated by the preprocessor to
search for potential alignments. Any overlap
alignments found in the pairwise read alignment
stage are used to create the initial overlap graph.

3. Multilevel graph set: The next step of the algorithm
is the construction of the multilevel graph set. In
this step, Focus uses heavy edge matching and node
merging to create a set of graphs G0, G1 …
Gnrepresenting increasingly coarser levels of
information granularity.

4. Hybrid graph: In the fourth step, Focus backtracks
through the multilevel graph set starting with the
most reduced graph Gn to select nodes that have
been determined to be the best representatives of
their corresponding read clusters by local assembly
analysis. These representative nodes are used to
construct a hybrid graph set G’

n, G
’
n-1 … G’

0 where
G’

0 contains all of the representative nodes selected
and integrated from the multilevel set Gn, Gn-1 …
G0 . We call G’

0 the hybrid graph.
5. Hybrid graph trimming: The hybrid graph G’0 is

processed with a graph-filtering algorithm to remove
transitive edges and nodes whose corresponding
read clusters assemble into contigs that are con-
tained in or are identical to other contigs
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represented in the hybrid graph. The final trimmed
hybrid graph G’

0 provides a concise but highly accur-
ate and feature rich representation of the structure
of the read data set [22].

Once we have obtained the trimmed hybrid graph G’
0

for a read data set we assign Shannon’s index scores to
each node to reflect local regions of sequence diversity.
A simplified overview of our workflow for the Focus al-
gorithm can be found in Fig. 2. This methods section is
organized into five subsections describing each assembly
step in detail with figures, followed by a subsection de-
scribing the graph mining techniques used in this paper.

Read preprocessor and input format
Focus accepts both fasta and fastq formatted reads.
Focus requires the user to specify the number of subsets
to divide the read file into for parallel read alignment.
Once Focus receives the input reads and specified num-
ber of subsets, it generates the reverse complements of
the input reads. The preprocessor also includes both fix-
length and quality based read trimming. While generat-
ing the reverse complements, the preprocessor will first
trim the 5’ and 3’ ends of each read and the correspond-
ing 3’ and 5’ ends of its generated reverse complement
with fixed lengths l1 and l2 respectively that have been
provided by the user. We provide this option so that the

user can remove any known adapters or tags, which may
or may not be the same length, present on the 5’ or 3’
end of the reads. After fixed length trimming is com-
pleted on a read, the preprocessor will then apply quality
based trimming to its 3’ end and to the corresponding 5’
end of its generated reverse complement. Given a user-
provided window length of w and minimum average qual-
ity value q, the preprocessor will slide the window from
the 3’ end to the 5’ end of the read until the average qual-
ity value of the window is greater than q. The read will be
trimmed from the right endpoint of the sliding window to
its 3’end. Following read trimming, the input reads and
their generated reverse complements are divided evenly
into the specified number of subsets. The reads in the sub-
sets are then concatenated and indexed by a succinct dic-
tionary structure [33]. In this structure, each nucleotide
and corresponding quality value are compressed into a
single byte. The read subsets are now ready for processing
by the parallel read aligner.

Parallel pairwise read alignment
The read aligner processes pairs of read subsets at a time.
One of the read subsets Rq is designated as the query sub-
set and the other Rr is designated as the reference read
set. The reference read subset Rr is indexed by a suffix
array [34] to facilitate the search for short seed matches
shared between reads. Each read in Rq is visited

a) c) d)

e)

b)

Fig. 2 Focus assembly and analysis pipeline general overview. a Read preprocessor. The 5’ and 3’ read ends are trimmed using quality values
and/or by a fixed length specified by the user. Reverse complements of reads are generated and the processed read data set is split into subsets
for processing by the parallel read aligner. b Parallel pairwise read alignment. The reads subsets are pairwise aligned using a suffix-array seed based
search and extend method. c Multilevel graph set. Iterative heavy edge matching and node merging is used to create a set of graphs. d Hybrid graph.
Best representative nodes are selected at each graph level using partial assembly to create the hybrid graph G0. e Hybrid graph trimming. Transitive
edges and redundant nodes are trimmed from G’

0. Figure 2 (a-e) are a simplified overview, please see Figs. 3 and 4 and corresponding methods sec-
tion for more details regarding the construction of the multilevel graph set, hybrid graph, and trimming of the hybrid graph
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sequentially and is scanned with a window of size k at step
size w specified by the user to generate k-mer seeds. These
seeds are used to query the reference read data set for
exact matches. These exact matches are used to seed a
banded Needleman alignment between the query read and
reference reads. If an overlap relationship meeting user
criteria for identity and length is found, the query read
and reference read ids, overlap length, and overlap identity
are recorded for the construction of the initial overlap
graph. This process can be conducted in parallel, with dif-
ferent pairs of read subsets being sent to multiple proces-
sors for independent read alignment.

Multilevel graph Set
The initial overlap graph constructed from the read
overlaps produced during the parallel read alignment
process may be extremely large if there are several hun-
dreds of thousands to several millions of reads repre-
sented in the overlap graph. This would make the data
mining process very difficult, as the resulting graph
would be very complex. Heavy edge matching and node
merging is applied to reduce the overlap graph, creating
multiple graph levels representing different levels of
granularity. This section describes the multilevel graph
set construction in greater detail. An illustration of this
process can also be found in Fig. 3. First, parallel merge
sort orders the initial edges produced by the alignment
algorithm by query read id; edges with the same query
read id are ordered by descending overlap length. Any
duplicate edges with the same edge points as other edges
in this sorted edge list are removed during the merge-
sort process. This edge list is loaded by a graph data
structure. For more information regarding the time-space
complexity of the multilevel graph set construction and
implementation of the foundational data structures used
by Focus please see [35]. This initial overlap graph is de-
noted as G0. In this graph, each node represents a single
read. An edge between two nodes in this graph represents
an overlap relationship between their corresponding reads.
Each edge in G0 maintains the overlap length and identity
score of its corresponding read overlap relationship. The
weight of the edges in G0 is defined to be the overlap
length. This graph is the least reduced and most granular
graph in the graph set G0, G1 … Gn and is the foundation
on which the other graphs in the set are built. Each node
in G1, G2 … Gn represents a cluster of nodes in G0. Two
values are recorded for each node in the multilevel graph
set to reflect the characteristics of its corresponding clus-
ter in G0. The cluster node weight of a given node in G1,

G2 … Gn is the number of nodes belonging to its corre-
sponding cluster in G0. The cluster edge weight of a node
in G1, G2 … Gn is the sum of the weights of the edges in-
duced by the nodes in its corresponding cluster in G0.
The nodes in G0 are assigned a cluster node weight of one

and a cluster edge weight of zero since each node in G0

corresponds to an individual read.
Heavy edge matching and node merging are used to

create the multilevel graph set. The heavy edge matching
heuristic [36] forms a maximal matching with preference
for edges with larger edge weight by matching each node
vi to an adjacent unmatched node neighbor vj, such that
the edge (vi, vj) has the largest edge weight in the set of
edges incident to vi that are not already part of the
matching. Focus employs a modified heavy edge match-
ing scheme to reduce the overlap graph. During the
heavy edge matching process, the graph is iterated over
in a user-defined number of passes such that all nodes
in the graph are visited and nodes with larger maximum
edge weights are visited in earlier passes. Let vi be a
node that the algorithm is currently visiting. The algo-
rithm will iterate through the edges of vi in the order of
decreasing edge weight vi to find a potential match. Let
vj be a node adjacent to vi. If vj has not been matched to
any previous node, the algorithm will examine the edge
(vi, vj) to see if it meets user-defined thresholds, dis-
cussed next, for inclusion in the heavy edge matching.
First it examines the weight of the edge, which in G0 is
defined as the overlap length. If the weight of (vi, vj)
does not meet user requirements for minimum edge
weight, then the search through the edges of vi is termi-
nated and vi is left unmatched. If the weight of (vi, vj) is
greater than the user defined threshold for minimum
edge weight, then vj passes the first test. The second
threshold is the density of the super node vz that would
result from the merging of vi and vj. The density of vz is
defined as follows.

density vi; vj
� � ¼ density vzð Þ

¼ ew vi½ � þ ew vj
� �þ w vi; ; vj

� �� �
nw vi½ � þ nw vi½ �ð Þ � nw vi½ � þ nw vj

� �� �
−1

� �� �
=2

¼ 2 � ew vi½ � þ ew vj
� �þ w vi; ; vj

� �� �
nw vi½ � þ nw vj

� �� � � nw vi½ � þ nw vj
� �� �

−1
� � ;

where ew is the cluster edge weight, nw is the cluster
node weight, and w is the weight of the edge (vi, vj).
Here the density is the summed weights of the intra-
cluster edges of the cluster in G0 represented by vz di-
vided by the total number of potential edges in that clus-
ter if it was complete. This parameter controls the
compactness of the merged cluster and ensures that
many of the reads represented by that cluster overlap
with one another. If the density of the super node that
would be produced by merging vi and vj is greater then
the user-provided threshold, then vi is matched to vj. If
the minimum threshold is not met, then the search
through the edges of vi for a node neighbor that meets
the minimum overlap and density thresholds continues.
If none are found, then vi remains unmatched.
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After the matching process is completed on G0, nodes
that are a part of the matching are merged to their se-
lected partners to form super nodes in the graph G1.
Nodes that were unmatched in G0 are also mapped to
new nodes in G1. Edges that were selected during the

matching process are removed in G1 since their end-
points are merged into a single super node. Any parallel
edges in G1 are combined into a single edge and their
edge weights are added together. As follows, each edge
in the multilevel graph set will represent the summed

a)

b)

Fig. 3 Multilevel graph set and hybrid graph. a Multilevel graph set. G0 is the most granular graph created from all of the read overlap
relationships generated during read alignment. Each read is assigned to a node in G0 and overlap relationships are assigned to edges. Weights
on edges reflect the length of the overlap relationship. Heavy edge matching and node merging is applied to create a spectrum of graphs.
Clusters of reads are formed as nodes are merged at each graph level. b Hybrid graph. Starting with the simplest graph, in this case G3, Focus
attempts to assemble the read clusters represented by each node. If the reads assemble into a single contig, then their corresponding node is
selected as that cluster’s best representative. All nodes that are selected by Focus in G3 as well as nodes not selected are used to create G’

3 of the
hybrid graph spectrum. If a node is not selected in G3, then its children nodes in the next graph level, in this case G2, will be evaluated. The
graph G’

2 will be created from the nodes selected from G3 and G2 as well as from the nodes that were not selected in G2.. We denote the final
graph G’

0 as the hybrid graph as it will contain all of the best representatives from Gn … G0. In (b), graph level integration of G3 … G1 better
represents a split in the overlap graph
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weight of the inter-cluster edges of the clusters in G0

represented by the endpoints of that edge. Heavy edge
matching and node merging is applied on G1 to produce
G2. This process continues until the ratio of nodes
matched to graph size falls beneath a user threshold,
producing a multilevel set of graphs G0, G1 … Gn. The
graph Gn is used to relabel the nodes in G0 to form a
new overlap graph Gfinal: any nodes co-occurring in a
cluster represented by a super node in G1, G2 … Gn will
be consecutively labeled in Gfinal. This allows the nodes
in Gfinal belonging to a cluster represented by a super
node in G1, G2 … Gn to be loaded into memory concur-
rently by the algorithm for processing.

Hybrid graph
After the graph coarsening process is completed, the al-
gorithm will have produced a graph set G0, G1 … Gn

representing the original read data set at different levels
of information. However, not all sequence regions will
be best represented at all graph levels. A node from a re-
duced graph found later in the multilevel graph set
might be sufficient for representing a simple unique gen-
omic region. In contrast, more complex genomic struc-
tures might be better represented by the more detailed
graphs earlier in the graph set. For example in Fig. 3a, a
branch point in original overlap graph is over reduced in
graph G3 in the multilevel graph set. However, this
branch point is captured at more granular graph levels.
To address this issue, best representative super nodes
are selected and integrated from multiple graph levels to
create a new hybrid graph that is a highly concise yet ac-
curate representation of the input data set. This section
describes how a hybrid graph set G’

0, G
’
1 … G’

n is con-
structed from the multilevel graph set G0, G1 … Gn. The
algorithm creates the hybrid graph set by selecting best
representative super nodes from the original multilevel
graph set beginning with Gn and iterating to G0. A best
representative super node is defined as a node selected
from the most reduced graph level as possible whose
corresponding cluster of reads assemble into a single
contiguous contig. If a read cluster does not assemble
into a single contig, it might not be well represented by
its current graph level. Backtracking to earlier graph
levels may provide better node representatives of the
reads in that cluster. To select the best representatives,
the algorithm first iterates through Gn. For each super
node in Gn, its corresponding cluster subgraph in Gfinal

is loaded into memory. Focus employs graph-cleaning
techniques first introduced by [37] and used commonly
by many assembly tools. Short dead-end branches that
are shorter than a user provided threshold are removed
from the subgraph. Small bubbles in the graph, which
are two distinct paths in the graph that have the same
beginning and ending nodes, are also removed by

eliminating the least weighted path. The subgraph is
then transitively reduced following the approach in [16].
If the resulting graph is a single path representing a con-
tiguous contig, then the super node is selected as the
best representative of that read cluster. The read cluster
is assembled into a contig and recorded on file. After
the iteration through the nodes of Gn is complete, all se-
lected best representatives are mapped to nodes in G’

n.
Nodes that were not selected as best representatives are
also mapped to nodes in G’

n. After the best representa-
tive selection on G’

n is complete, the algorithm begins
the super node iteration and assembly evaluation process
on Gn-1. If a node in Gn-1 is a component node of a
merged super node in Gn that was previously selected by
the assembly algorithm as a best representative, it will
not be evaluated or included in G’n-1 since its parent
was already chosen as the best possible representative.
The graph G’

n-1 is created from all of the best represen-
tatives selected from Gn and Gn-1 as well as from the
nodes that were not selected in Gn-1. Contigs assembled
from the best representatives in Gn-1 are recorded to file.
The graph G’

n-2 will be composed of best representative
nodes selected from Gn, Gn-1, Gn-2 and the nodes that
were not selected in Gn-2. This process is continued for
Gn-3 … G0. The final graph G’

0 will contain all best rep-
resentatives selected from Gn, Gn-1 … G0. We call this
graph the hybrid graph since it is the integration of all
graph information levels. As in the multilevel graph set,
each edge in the hybrid graph set represents the summed
total of the edge weights of the inter-cluster edges of the
two clusters in Gfinal corresponding to the endpoints of
that edge. Please see Fig. 3b for an example and [22] for
more algorithmic details regarding the construction of the
multilevel graph set and hybrid graph set.

Hybrid graph filter
Once the hybrid graph G’

0 is created, it is filtered to
remove any redundant nodes whose corresponding
contigs are contained within other contigs represented
in the hybrid graph. For each node in G’

0, the graph-
filtering algorithm will load its corresponding contig
into memory. If the length of the contig is less then a
user provided threshold, then the filter will load each
adjacent node’s contig into memory. The current con-
tig is aligned against its neighboring contigs. If the
current contig can be mapped to any of its neighbor-
ing contigs, then its corresponding node along with its
incident edges will be removed from the hybrid graph
as shown in Fig. 4. Any transitive edges in the hybrid
graph are also removed. After the filtering algorithm is
complete, each node in the hybrid graph will represent
either a homologous region shared between species, a
sequence repeat, or a unique genomic region.
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Hybrid graph data-mining
The hybrid graph is used for mining and extraction of
biologically significant features, since it provides the
most concise, yet accurate structural view of the read
data set that could be obtained from integrating the
multilevel graph set. In this graph, the degree of a given
node can provide much information about the charac-
teristics of the sequence region from which its corre-
sponding reads were derived. If a node has a single pair
of in and out edges, it is possible that this node is from a
uniquely represented genomic region. In contrast, if a
node has several in and out edges, this might indicate
that the node represents a sequence region that is re-
peated throughout a genome or is shared between mul-
tiple species. The number of edges incident to a node
might reflect the number of diverse sequences that its
corresponding genomic region is present within.
The first aim of this manuscript is to show that repeti-

tive and mobile elements are associated with node charac-
teristics. Shannon’s index is very popular for measuring
biological diversity [38], however; it has not yet been ap-
plied for characterizing sequence diversity captured by
graph structures in assembly graphs. Shannon’s index en-
compasses both the edge richness and edge weight even-
ness of a given node. Edge richness refers to the number
of edges incident to a node. Edge evenness measures the
distribution of weight across the edges. The formula for
Shannon’s index is given by

H ¼ −
Xn

i¼1

wi

wtotal
ln

wi

wtotal

� �
;

where n is the number of incident edges, wi is the weight
of the ith edge, and Wtotal is the total weight of all inci-
dent edges. As seen in Fig. 5, a greater number of edges
and an equal distribution of edge weights increases a
node’s Shannon index score. The maximum Shannon’s
index score that can be assigned to a node v is ln(n),
where n is the number of edges incident to v. The score
of a node that has two edges with similar large weights
and multiple edges with very small weights will not be
very different from the score of a node with only two
edges with similar weights. Thus any possible spurious
edges with small edge weights relative to the edge
weights of the other incident edges will not greatly impact
a node’s Shannon index score. In the results section, it is
demonstrated that repetitive and mobile elements are as-
sociated with graph structure that is captured by the
Shannon’s index. Figure 6a provides an example illustrat-
ing homologous regions shared between two genomes and
corresponding graph structure.
The second aim of this paper is to extract transpo-

sase genes that are present in multiple sequence
regions and to identify which genera they are distrib-
uted in. Antibiotic resistance genes associated with
these transposase sequences are also mined from the
hybrid graph. In this section, it is discussed how, for

Fig. 4 Hybrid graph trimming. For each node, if its corresponding contig can be mapped to a neighboring node’s contig, then that node is
removed from the hybrid graph. Transitive edges are also removed from the hybrid graph

Fig. 5 Shannon’s index scores. Calculation of Shannon’s index scores. Notice that nodes with a greater degree have a higher Shannon’s index score
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each given transposase gene present in multiple se-
quence regions, the hybrid graph can be used to
identify which genera the transposase gene is distrib-
uted in. This section also discusses how the hybrid
graph can be used to obtain transposase associated
antibiotic resistance genes through local exploration
in the hybrid graph. Observe that in Fig. 6a, the dis-
tribution of genera that a transposase sequence is
shared across can be obtained by taxonomically clas-
sifying the sequences of the adjacent node neighbors
of its corresponding node in the hybrid graph. Simi-
larly, any antibiotics resistance genes that are associ-
ated with a given transposase sequence can be found
by exploring the graph locally around its corresponding
node. Figure 6b provides an example of how local graph
exploration can reveal antibiotics resistance genes associ-
ated with transposase sequences.

Results
In this section the distribution of transposase genes and
associated antibiotic resistance genes across bacterial
genera in the gut microbiomes of healthy individuals
and individuals with Crohn’s disease is characterized
using graph mining techniques. To achieve this goal this
study has been divided into three specific aims discussed
previously in the background.

1) Demonstrate that repetitive and transposable
elements are associated with node characteristics

2) Identify and characterize the phylogenetic distribution
of antibiotic resistance gene classes associated with
transposase/integrase sequences in healthy individuals
and individuals with Crohn’s disease.

3) Perform a competitive assembly evaluation of the
assembler against other well-known assembly tools.

The results are divided into four sections. First, a gen-
eral overview of the data sets and an analysis of the dis-
tribution of genera present in the Crohn’s disease and
healthy data sets are provided. This study was conducted
to evaluate the characteristics of the data sets in the
context of previous research. Statistically significant dif-
ferences were found in the relative abundances of preva-
lent genera in the Crohn’s and healthy data sets.
Second, aim 1 is addressed. For aim 1, it is shown that

a greater proportion of nodes annotated with repetitive
and mobile elements are assigned high Shannon’s index
scores compared to nodes annotated with other gene
categories. First an analysis and discussion regarding the
distribution of Shannon’s index scores across the nodes
of the hybrid graphs of the thirteen data sets is pre-
sented. This is followed by briefly exploring the charac-
teristics of features associated with nodes with high
Shannon’s index scores. The most common blastx hits
to the NCBI blast database [39] for extremely high scor-
ing nodes (the two highest scoring nodes for each data
set) were to transposases and integrases (33.3 % of all
predicted genes). We then used gene and rRNA operon

a) b)

Fig. 6 Genomic features and related graph structure. a Genomes one and two share a region of sequence homology. In the hybrid graph this
homologous region will be reduced to a single node (purple). Two paths representing the unique regions in genomes one and two preceding
the 5’ end of the homologous region enter the reduced node. The two paths exiting the node represent the unique genomic regions in genomes one
and two following the 3’ end of the homologous region. Blue represents genome one and red represents genome two. Observe that we can identify
which species a given region is present in by analyzing its representative node’s neighbors in the hybrid graph. For example, obtaining species level
classification for the nodes adjacent to purple node would identify in which species the region represented by the purple node was present. b Genomes
one and two share a homologous transposase sequence. Each of these genomes also contains a transposase associated antibiotics resistance gene. As in
(A), the homologous region containing the transposase sequence is reduced to a single node shown here in purple. The nodes corresponding to the
antibiotics resistance genes are colored black and blue represents genome one and red represents genome two. Graph exploration of the node
neighborhood of the node representing the homologous transposase sequences will reveal antibiotics resistance genes associated with them
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predictions, SEED subsystems [40], and ACLAME li-
brary [41] to examine biological features associated with
the remaining graph nodes. Nodes assigned with trans-
posase/integrase genes and rRNA operon DNA had a
greater proportion of high Shannon’s index scores in
comparison to nodes assigned with other gene categories
from the SEED subsystems (q = 2.44 × 10-04; paired
Wilcoxon tests).
Third, addressing aim 2, a comparative study of antibi-

otics resistance genes associated with transposase/integrase
sequences present in multiple sequence regions in the
Crohn’s and healthy data sets was conducted. In aim 1, it is
demonstrated that a greater proportion of nodes annotated
with mobile genetic elements and rDNA operons had high
Shannon’s index scores compared to nodes annotated with
other gene categories. For aim 2, transposase/integrase se-
quences found on nodes with high Shannon’s index scores
are analyzed since they are likely to be present in multiple
sequence regions. We identify all high degree nodes with
Shannon’s index scores greater than one that had hits to
transposases, identify which genera their corresponding
contig sequences are present in, cluster the transposases ac-
cording to their phylogenetic distribution, and determine if
sequence regions associated with the transposases in the
resulting clusters are enriched for antibiotic resistance
genes. The transposase nodes in the Crohn’s data sets clus-
tered into twenty sets and the nodes in the healthy data set
clustered into ten sets. For each of these clustered sets,
predicted genes in associated contigs were extracted and
DIAMOND [42] was used to align the predicted genes to
the CARD database of antibacterial resistance genes [43].
Fisher’s exact test with FDR corrected p-values was applied
to determine if any clusters were enriched with classes of
antibiotics. Several of the transposase clusters generated in
the Crohn’s disease and healthy control data sets were

enriched with various classes of antibiotic resistance genes.
This comparative study provides insight into the differences
in the distribution and species composition of resistance
genes in healthy individuals and Crohn’s patients,
whose disease is associated with gut microbiome per-
turbation [44] and is often treated with antibiotic regi-
mens for secondary complications such as bacterial
overgrowth and abscesses [31].
Finally the results are concluded by a competitive as-

sembly evaluation of Focus against metagenomics as-
semblers, IDBA-UD, Omega, and MetaVelvet.

Data sets
Thirteen data sets were downloaded from the NCBI se-
quence read archive [45]. Five of the data sets were se-
quenced from the gut microbiome of individuals with
Crohn’s disease and eight of the data sets were sequenced
from the gut microbiomes of healthy individuals. Table 1
shows the subject ids for each data sets and their pheno-
type information. Table 1 also displays the number of
reads in each data set prior to read trimming as well as
the number of processed reads produced by the Focus
read preprocessor, which includes generated reverse com-
plement reads. The Focus preprocessor was set to trim
20 bps off of the 5’ read ends and 50 bps off of the 3’ read
ends to remove tags and adaptors. The minimum quality
value for the quality based trimming was set to 25. Any
read whose length fell below 75 bps was discarded from
the processed data set. A hybrid graph was constructed
for each individual data set.
For the purpose of examining the characteristics of the

read data sets, the BWA [46] aligner was used to align the
sequence reads against the Human Microbiome Project
microbiome reference sequences [47]. Each read was classi-
fied to a genus by its best alignment hit (Additional file 1).

Table 1 Data set characteristics

Subject ID Phenotype Sample Runs Total Reads Processed Reads Mapped (%) Shannon’s Index

33 Female, Crohn’s SAMN00829176 SRR49544 SRR497943 SRR497952 1775071 3478940 80.6 % 1.91

58 Female, Crohn’s SAMN00829163 SRR497643 SRR497648 SRR497650 2049784 4025328 68.4 % 1.64

92 Female, Crohn’s SAMN00829171 SRR497646 SRR497657 SRR504939 1950395 3848348 61.4 % 1.73

104 Male, Crohn’s SAMN0082172 SRR497946 SRR497948 SRR497949 2175693 4284474 72.1 % 1.97

68 Male, Crohn’s SAMN00829168 SRR497645 SRR497652 SRR497654 2084020 4113996 79.0 % 1.49

763820215 Female, Healthy SAMN00078732 SRR063543 SRR063544 SRR063545 2395215 4744426 88.9 % 0.59

764042746 Female, Healthy SAMN0036587 SRR063587 SRR063588 SRR063589 2260051 4463710 81.5 % 0.56

809635352 Female, Healthy SAMN00043742 SRR063903 SRR063904 2820502 5533454 64.0 % 1.33

638754422 Female, Healthy SAMN0075991 SRR061730 SRR061731 2944584 5823782 77.7 % 0.96

764143897 Female, Healthy SAMN00071891 SRR063539 SRR063548 SRR063549 2496427 4945024 70.6 % 1.27

604812005 Male, Healthy SAMN0006554 SRR063905 SRR063906 2680706 5287590 79.6 % 0.75

763435843 Male, Healthy SAMN00037012 SRR063553 SRR063554 SRR063555 2513710 4962822 73.1 % 1.11

763961826 Male, Healthy SAMN00040248 SRR063583 SRR063584 SRR063585 2436744 4798677 77.4 % 0.98
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Table 1 displays the percentage of reads that could be
mapped back to a reference genome for each data set.
Figure 7 shows the median read percentages assigned
to highly abundant genera that at least 0.5 % of reads
were assigned to in at least three samples. This thresh-
old was selected to eliminate low abundance genera as
well as genera that were highly abundant in only one or
two individuals. We also downloaded Illumina data sets
sequences from the same set of healthy individuals to
show that the genera distribution in the samples is con-
sistent. Figure 7 shows that the median percentage of
reads for highly abundant genera is very similar be-
tween the Illumina and 454 read data sets, providing
confidence that the sequence process was able to cor-
rectly capture the abundance ratios. Figure 7 also shows
distinct differences in the abundances of major genera
present in the Crohn’s and healthy individuals with statisti-
cally significant decreases in Alistipes, Bacteroides, Faecali-
bacterium, and Parabacteroides in Crohn’s disease samples.
The genera Bifidobacterium, Blautia, Clostridium, Copro-
coccus, Dorea, Enterococcus, Lactobacillus, Ruminococcus,
Streptococcus, and Veillonella were significantly increased
in Crohn’s disease samples. The Mann–Whitney U test was
used to calculate p-values. Previous studies have found a
wide range of alterations in the microbiome of Crohn’s dis-
ease patients versus healthy individuals [48]. Examples of
frequent shifts found previously in Crohn’s disease
microbiota composition are decreases in Faecalibac-
terium prausnitzii, increases in Ruminococcus gnavus,

and increases in Enterococcus faecium [49–52]. The
consistency between Illumina and 454 data sets and
observations of microbiota shifts found in previous lit-
erature provides evidence that our selected data sets
provide an appropriate view of biological differences
between the microbiome of healthy individuals and in-
dividuals with Crohn’s disease.

Repetitive and transposable elements are associated with
node characteristics
Shannon’s index score distribution and functional gene
categories
This section provides an overview of the distribution of
Shannon’s index scores found across the nodes in the
hybrid graphs of the Crohn’s disease and healthy data
sets. Figure 8 displays the distribution of node counts
for the Shannon’s index scores. Notice that the Shannon’s
index scores that have the greatest node counts fall in the
range of .6 to .7. If a node had a single in and out edge
representing a single unique path and the in and out edges
were evenly weighted, then its corresponding Shannon’s
score would be ln(2)≈.69. Thus, nodes whose corre-
sponding sequence is a unique genomic region will
have Shannon’s index scores in this score range.
The SEED [41] is an organizational database system

that provides five levels of hierarchical gene functional
categorization with the first level being the most general
level of classification. The FigFams, which form the
leaves of this hierarchy, are sets of proteins that share

Fig. 7 Taxonomic read classification. Median percentage of reads assigned to major genera present in the Crohn’s disease and healthy read data
sets. A ‘*’ denotes a significant difference in the median read percentages in the Crohn’s and healthy samples
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the same function and are similar at the sequence level.
FragGeneScan [53] was used to predict genes in contigs
for all data sets. We downloaded the SEED protein data-
base and used DIAMOND, which was chosen because
of its scalability to large data sets and similar degree of
sensitivity as BLASTX, to align the predicted genes to
the SEED FigFams at a 40 % identity threshold. The
SEED subsystems database was used to assign each gene
to a level 1 functional categorization if possible. Most of
the predicted genes were located on contigs whose cor-
responding nodes fell into the .6 - .7 score range as well,
as shown by Fig. 8. However, there are many outlier genes
that have a much greater Shannon’s index score, indicat-
ing that they might be found on contigs whose nodes rep-
resent repetitive sequence or sequence that is shared
between two or more species. In the following section, we
first provide a brief characterization of the most extreme
outlier genes, showing that many of these genes are trans-
posase and integrases. We then demonstrate that nodes
annotated with repetitive and mobile genetic elements
have a greater proportion of high Shannon index scores
compared to nodes annotated with other gene categories.

Characterization of biological features on outlier nodes
Here we briefly examine the biological features on nodes
with the most extreme Shannon’s index scores. The two
highest scoring nodes in each data set that had at least
one edge with minimum edge weight of 5000 were ob-
tained from the hybrid graphs. The minimum edge
weight was set to filter low coverage nodes in the data
set. Blastx against the NCBI non-redundant protein
database was used to identify biological features on the
contigs corresponding to the selected nodes. Table 2

displays the results of the feature hits found on the con-
tig sequences. The most frequent hits that were not to
hypothetical or uncharacterized proteins were to trans-
posase and integrase related elements. A total of 33.3 %
of the hits were to transposases and integrases.

Selection of a threshold for high Shannon’s index scores
In the previous section we examined the biological fea-
tures on a small subset of nodes with extreme Shannon’s
index scores. Next, we demonstrate that nodes annotated
with repetitive and mobile elements have a greater pro-
portion of high Shannon’s index scores. However, mini-
mum threshold for a Shannon’s index score to be
considered high must be defined. Recall that for a given
node with n edges, the maximum Shannon’s index score
that can be assigned to that node is ln(n). An appropriate
threshold will exclude nodes that possess a single entering
and exiting edge as these nodes might be more likely to be
part of unique genomic region. The minimum threshold
that would eliminate these nodes is ln(2) ≈ .69 as this is
the maximum Shannon’s index score that could be
assigned to a node with two edges. However, a node could
possess two evenly weighted edges and a third spurious
edge that has a small edge weight, pushing this node past
the minimum threshold. Thus the minimum threshold is
raised to ln(3), which is the maximum score a node with
three evenly weighted edges could be assigned. For the
sake of simplicity ln(3) ≈ 1.1 is rounded to one.

Characterization of biological features on high scoring
nodes
In this section, we demonstrate that nodes annotated with
repetitive and mobile genetic elements have a greater

a) b)

Fig. 8 Shannon’s index score distribution and Seed subsystem assignment. Node count distribution for assigned Shannon’s index scores. Boxplots
display the range of scores for predicted genes assigned to level 1 classifications in the SEED subsystems. a Shannon’s index score distribution of the
nodes of the hybrid graphs generated from the Crohn’s disease data sets. b Shannon’s index score distribution of the nodes of the hybrid graphs
generated from the healthy data sets. Note that the highest node counts and predicted genes fall into the same score range for both sample types

Warnke-Sommer and Ali BMC Genomics  (2016) 17:340 Page 13 of 20



proportion of high Shannon’s index scores. To achieve this,
we compare the proportion of nodes assigned high Shannon
index scores for each of the SEED functional categories to
the proportion of nodes assigned high Shannon index scores
for rRNA operon and transposase/integrase sequences.
The Meta-RNA [54] software tool was used to predict

rDNA operon sequences in all of our contig sets. Meta-
RNA was chosen because of its ability to detect rRNA
sequences in fragmented metagenomics data. To further
investigate the distribution of transposase and integrase
sequences across nodes, the protein sequences of all
transposases and integrases were downloaded from the
ACLAME database. We used DIAMOND to align the
predicted genes to the transposase and integrase protein
sequences from both the ACLAME library and SEED
FigFams at a 40 % identity threshold. For each read
set in the Crohn’s disease and healthy control data
sets, the proportion of nodes with Shannon’s index
scores greater than one for each of the SEED

functional categories, the rRNA operon sequences,
and the transposase and integrase sequences was de-
termined. The paired Wilcoxon test was applied to
compare the high scoring node proportions for each
SEED functional category pooled from the Crohn’s
and healthy data sets against the pooled rRNA operon
high scoring node proportions followed by the pooled
transposase and integrase sequence high scoring node
proportions. The paired Wilcoxon tests with FDR cor-
rection showed that both the transposases and inte-
grases and rRNA operons had a significantly higher
proportion of nodes with Shannon’s index scores
greater than one than the SEED functional categories
(q = 2.44 × 10−04; Additional file 2).

Mining and characterization of transposase associated
antibiotics resistance genes
As reviewed in the background, in addition to transpo-
sases, bacterial transposons often carry genes for

Table 2 Sequence features found on nodes with the highest Shannon’s index scores

Sample Shannon's Index Score Sequence Feature(s) Blast E-Values

Female 33 3.69 Transporter, RelB/DinJ, Transposase 5e-15, 5e-32, 4e-32

Female 33 3.66 Transposase 1.00e-45

Female 58 2.58 Hypothetical protein 6.00e-04

Female 58 2.46 TonB-dependent receptor 6.00e-51

Female 92 2.82 Delta-lactam-biosynthetic de-N-acetylase 3.00e-57

Female 92 2.74 Resolvase 4.00e-87

Male 104 2.53 Transposase, Cbl 3e-32, 7e-27

Male 104 2.47 Phosphatase, Histidine phosphotransferase 2e-108, 4e-72

Male 68 2.86 PG1 protein 1.00e-32

Male 68 2.43 Transposase 1.00e-45

Female 638754422 3.75 Transposase, IS4 family 8.00e-61

Female 638754422 3.68 Transposase 2.00e-22

Female 763820215 3.26 Major facilitator transporter 0.00e + 00

Female 763820215 2.51 ATPase AAA 1.00e-120

Female 764042746 2.69 Transposase 1.00e-34

Female 764042746 2.64 DEAD/DEAH box helicase 1.00e-172

Female 809635352 4.65 30S ribosomal protein S12 1.00e-26

Female 809635352 4.58 Uracil phosphoribosyltransferase 7.00e-05

Female 764143897 3.90 None NA

Female 764143897 3.63 None NA

Male 604812005 2.96 Tetratricopeptide repeat protein 6.00e-47

Male 604812005 2.71 ATP-dependent DNA helicase RecQ 2.00e-149

Male 763435843 3.65 Putative transposase, Major Facilitator Superfamily protein,
Glycosyltransferase, Group 1 family protein

5e-12, 1e-24, 8e-13

Male 763435843 3.47 Transposase 1.00e-43

Male 763961826 2.72 None NA

Male 763961826 2.65 Transposase family protein, DNA polymerase IV 4e-67, 2e-51
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antibiotics resistance allowing for the spread of anti-
biotic resistance mechanisms [23]. In this section, for
each transposase-associated node with a Shannon’s index
score greater than one, the genera of the sequences that
contain that transposase are identified. For a given node,
the contigs corresponding to each of the node’s adjacent
neighbors in the hybrid graph are obtained. Majority
read vote was used to assign each contig to a genus by
the Human Microbiome Project microbiome reference
sequences. If a contig could not be classified to a genus
then it was classified as unknown. For each transposase-
associated node, a vector v = (x1,x2, …xn) was created,
where xi is the summed length of the neighboring con-
tigs assigned to genus i normalized by the total length of
all of the neighboring contigs. K-means clustering was
used to cluster the high scoring transposase nodes into
groups based on the Euclidean distance of these vectors,
which represent the distribution of the genus level clas-
sifications of the sequences containing each transposase
region. Transposase nodes that had more than 20 % of
adjacent sequence classified as unknown were not in-
cluded in the clustering. Multiple iterations of k-means
clustering and the generated elbow plots shown in Fig. 9
were used to select ten as the number for k for the
transposase nodes from the healthy data set and twenty
for the transposase nodes from the Crohn’s disease data
set. For the purpose of examining the occurrence of
antibacterial resistance genes among phylogenetically
conserved transponsases, all of the antibacterial resist-
ance gene protein sequences were downloaded from the
CARD database. Any resistance gene tagged as a gene
variant was removed from the set to avoid false positive
hits. DIAMOND was used to align the predicted genes
in the contigs for each data set against the antibiotic

resistance gene proteins at a 90 % identity threshold. For
each transposase node we extracted all of the contigs
from its 5-neighborhood node set to search for hits to
antibacterial resistance genes localized near transposase
sequences. The 5-neighborhood of a given node is the
set of nodes no further than a path distance of five from
that node. Fischer’s test was used to determine if the
number of hits to classes of antibiotics resistance genes
in the neighborhoods of the transposase nodes was
enriched in comparison to the total number of hits in
the total nodes set. Figure 10 shows the phylogenetic
transposase clusters for the Crohn’s disease A) and the
healthy data sets B). Each pie chart displays the average
distribution of the abundant genera (at least 5 % of the
total composition; Additional file 3) of the contigs of the
neighboring nodes of each transposase-associated node
in that cluster. For each cluster we list the number of 5-
neighborhood node set hits to antibacterial resistance
gene classes. FDR corrected enrichments at the .05, .01,
and .001 significance levels are indicated and can also be
found in Additional file 4. The number of transposase-
associated nodes in each cluster are listed above each pie
chart. If a transposase cluster had less than twenty
members, then it was not included in Fig. 10 or sub-
sequent analysis. Also, two clusters from the Crohn’s
disease data set had redundant phylogenetic distribu-
tions of highly abundant genera; the larger cluster
was used for further analysis.
In the transposase clusters generated from the Crohn’s

disease data sets, there were several clusters that were
enriched for antibiotic resistance gene classes. In par-
ticular, there was an Enterococcus phylogenetic transpo-
sase cluster that was not found in the healthy control
data set, shown in Fig. 10a (c). The node set obtained

a) b)

Fig. 9 K-means clustering elbow plots. Elbow plots for the k-means clustering of the transposases nodes for the Crohn’s disease and healthy data set.
The left plot (a) shows the within groups sum of squares for the Crohn’s disease data sets and the right plot (b) shows the sum of squares for the
healthy data sets. The within sum of squares was much higher for the Crohn’s disease data sets versus the healthy data sets. The number of clusters
for the Crohn’s disease data sets (20) and the healthy data sets (10) were chosen such that their sum of squares were roughly equivalent
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a)

b)

Fig. 10 (See legend on next page.)
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from the 5-neighborhood of all of the transposase asso-
ciated nodes in the Enterococcus cluster was enriched
with aminoglycoside, macrolide, and streptogramin re-
sistance gene classes. The aminoglycoside resistance
gene class was enriched at the .001 significance level and
represented hits to the intrinsic Enterococcus Faecium
aac(6')-Ii gene. The macrolide and streptogramin classes
were enriched at the .01 level of significance and
represented hits to the intrinsic Enterococcus Faecium
msrC gene. A single hit to the tetracycline resistance
gene class was most similar to the tet(L) gene and
aligned to a Enterococcus plasmid. Two clusters
whose transposase-associated nodes had many neigh-
bors with contigs classified to Lactobacillus were also
significantly enriched with antibacterial resistance
gene classes, shown in Fig. 10a (d,e). The tetracycline
class hits were most similar to tet(W) genes found in
Bifidobacterium, Lactobacillus, and Streptococcus. The
streptogramin class hits were to the vat(E) gene found
in Enterococcus Faecium and some Lactobacillus plasmids.
The Ruminococcus group shown in Fig. 10a (i) was
enriched with tetracycline resistance genes with hits to
tet(O) and tet(W).
In the healthy control data sets, resistance genes were

most prevalent in transposase clusters associated with Bac-
teroides and Prevotella. The Bacteroides cluster, Fig. 10b (h)
was also the largest cluster in the group. Figure 10b (d, e, h,
i, j) were all enriched resistance genes from the beta-lactam,
lincosamide, macrolide, streptogramin, and tetracycline re-
sistance gene classes. The enrichments for the lincosamide,
macrolide, streptogramin resistance gene classes were due
to hits to the ermG and ermF macrolide-lincosamide-
streptogramin B resistance proteins. The ermB, ermF,
ermG, and ermS genes are common sources of resistance
in Bacteroidales strains found in the intestine [55]. The en-
richments for the beta-lactam class of resistance genes were
due to hits to class A beta-lactamases which are found in
strains of Bacteroides and Prevotella. Tetracycline class en-
richments were from hits to the tet(Q) resistance gene, also
found in Bacteroides and Prevotella. The transposase clus-
ter associated with Bacteroides and Alistipes, Fig. 10b (b),
was enriched for class A beta-lactamase and tet(Q) resist-
ance genes. Antibiotics resistance gene hits with gene de-
scriptions can be found in Additional file 5.

Comparative assembly
For the purpose of demonstrating Focus’s performance
as a pure assembly tool, we applied Focus and three

other popular assemblers, IDBA-UD, Omega, and Meta-
Velvet, to four selected data sets from the healthy and
Crohn’s disease individuals. Two data sets were chosen
from the healthy individuals and two data sets were
chosen from individuals with Crohn’s disease. These data
sets had the highest calculated Shannon’s index for each
of their respective groups (Table 1). Results from the
comparative assembly are shown in Table 3. Statistics
used to evaluate the assemblies included the number of
contigs produced by each assembler, N50 statistic, and
percentage of reads successfully mapped back to each
assembly. The N50 length is a commonly used statistic
to assess assembly quality [56]. It is the length of the
longest contig such that the sum of the lengths of con-
tigs larger or equal to the length of that sequence covers
at least half of the estimated genome size. In the case
that reference genome lengths are unavailable, the as-
sembly length is often used as an approximation. Previ-
ous research has mentioned several challenges with
applying the N50 statistic for assembly evaluation; par-
ticularly in metagenomics where sequence abundances
vary [15] and where total assembly lengths are different
between assemblers [56]. To address this issue we also
include the NG50 [56], which is analogous to the N50
except the estimated genome size is used instead of as-
sembly size. Since the reference sequences for these data
sets are unknown, we sum the average genome lengths
of the complete genomes available through the NCBI
RefSeq for the most abundant genera, shown in Fig. 7,
present in the Crohn’s and healthy data sets as a rea-
sonable estimate of total genome length present in
the data sets. The calculation of the average genome
lengths and estimated total genome length can be found
in Additional file 6. The estimated total genome length
was calculated to be 46,498,455 bps by the above method.
The Focus and IDBA-UD assemblers performed the

best on these data sets in terms of N50 length, NG50
length, and percentage of reads that were successfully
mapped back to their assemblies. Read mapping was
conducted with BWA. Omega had the largest N50
length; however, the percentage of reads that were suc-
cessfully mapped back to contigs was very low. This in-
dicates that Omega only assembled a very small fraction
of the input data set. The size of each of the Omega as-
semblies was so small that the NG50 statistic could not
be calculated for any of the data sets using the estimated
total genome length. MetaVelvet had a smaller N50 stat-
istic and a lower percentage of mapped reads indicating

(See figure on previous page.)
Fig. 10 Phylogenetic clusters of transposases with antibiotic class enrichments. Transposase associated nodes were clustered using k-means clustering
according to the distribution of genera that the contigs of their neighboring nodes were assigned to. a Phylogenetic clusters of transposases in the
Crohn’s disease data sets. b Phylogenetic clusters of transposases in the healthy control data sets. Enrichments of antibiotic resistance gene classes for
the 5-neigborhood of the transposase nodes are indicated at the .05, .01, and .001 significance level (*, **, ***)
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that a low percentage of the input data set was assem-
bled into small fragmented contigs. Focus and IDBA-UD
had similar N50 statistics and percentage of reads suc-
cessfully mapped back to contigs. For three of the data
sets, Focus had a slightly larger N50 length than IDBA.
Focus had larger NG50 lengths than IDBA for two of
the data sets. Chimeric contigs are contigs in which at
least 25 % of the reads do not map to the genus to which
the contig was assigned. Results in Table 3 show that
each assembler had a very small fraction of detectable
chimeric contigs. A large number of the contigs pro-
duced by each assembler could not be assigned to any
genus. These results demonstrate that Focus is capable
of producing assembly results that are competitive with
and exceed existing tools.

Discussion
We have developed a novel graph mining and assembly
algorithm that is capable of extracting useful biological
information and producing high quality assembly results.
Our algorithm captures genome structural information
using a hybrid graph. The initial overlap graph is incre-
mentally reduced using heavy edge matching and node
merging to create a graph spectrum, G0, G1, … Gn that
represents a read data set at multiple levels of informa-
tion. To provide the most accurate yet succinct repre-
sentation of the input data set, nodes from each graph
level are selected as best representatives of their corre-
sponding read clusters and combined into a single hy-
brid graph G’

0. Each node in this graph represents either

a unique region, repetitive element, or region conserved
between multiple species. We assigned a Shannon’s index
score to each node to numerically describe the number of
incident edges and the evenness of their weights. We
show that repetitive elements, in particular rRNA operons
and transposase genes, are associated with higher
Shannon’s index scores. We then extract transposase
genes whose corresponding nodes had high Shannon’s
index scores in five read data sets obtained from the
gut microbiome of individuals with Crohn’s disease
and eight read data sets obtained from the gut micro-
biome of healthy controls. We clustered the resulting
transposase genes into groups determined by the dis-
tribution of genera that the contigs obtained from the
adjacent neighbors of their corresponding nodes were
classified too. We then test for enrichment of anti-
biotic resistance genes in the 5-neighborhood of the
nodes in each transposase cluster. Distinct differences
were apparent in the Crohn’s disease and control data
set clustering results. An enterococcal transposase
cluster that was enriched with various antibacterial
resistance gene classes was present in the Crohn’s dis-
ease clustering results while being absent from the
healthy control clustering results. Enterococcus species
are often overrepresented in Crohn’s disease data sets.
Other sources of antibacterial resistance genes were
from Lactobacillus associated transposase clusters. Or-
igins of antibiotic resistance in healthy individuals
were heavily biased towards Bacteroidales species.
The distribution of the number of transposases was

Table 3 Comparative assembly results

Subject ID Assembler Number of Contigs
≥500 bps

N50 (bps) NG50
Abundant
Genera (bps)

(%) reads mapped
to contigs

Chimeric
contigs

Contigs with
taxonomic
assignment

Contigs with
unknown
assignemnt

33 Focus 89994 1310 2050 95.5 % 445 68037 21512

IDBA-UD 33932 1267 1040 89.7 % 56 24534 9342

MetaVelvet 18355 709 N/A 15.0 % 30 13250 5075

Omega 1887 2037 N/A 12.5 % 74 156 1657

104 Focus 150930 1286 2371 95.7 % 720 102618 47592

IDBA-UD 61848 1236 1759 87.3 % 70 42383 19395

MetaVelvet 34011 702 513 17.2 % 41 22556 11414

Omega 2579 2652 N/A 14.8 % 45 532 2002

764143897 Focus 159196 1599 2595 95.2 % 1383 94968 62845

IDBA-UD 60679 1736 4009 92.1 % 265 34174 26240

MetaVelvet 46123 723 626 30.4 % 140 24367 21616

Omega 3433 2531 N/A 15.9 % 78 1637 816

809635352 Focus 251461 1296 2653 91.0 % 2819 127846 120796

IDBA-UD 106962 1199 2976 85.2 % 571 51458 54933

MetaVelvet 76809 719 774 30.7 % 269 33762 42778

Omega 2546 2681 N/A 8.3 % 92 1815 639
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relatively even across the Crohn’s disease clusters,
while in the healthy disease data sets most transpo-
sases were found in a Bacteroides associated cluster.
This paper highlights the ability of the assembly graph to

be a powerful data-mining support that can capture mean-
ingful biological information and patterns in its structural
features. Our graph theoretic model is concise yet feature
rich, allowing for the efficient detection of biologically
meaningful graph structures. We foresee the expansion of
our model and the development of novel domain-specific
graph mining techniques for other next generation sequen-
cing applications. For example, in cancer research genomic
rearrangements, copy number variations, and fusion genes
are prevalent [57]. These biological features are likely to be
reflected in the structure of the assembly graph for input
data sets. We are also exploring further applications of our
model for metagenomics data, such as graph-based read
filtering of target species from metagenomics samples.

Conclusions
In conclusion, we have developed a powerful graph the-
oretic model that is capable of capturing key biological
information. We applied our model on five gut micro-
biome read data sets from patients with Crohn’s disease
and eight gut microbiome data sets from healthy indi-
viduals. Focus produced excellent assembly results in an
assembly comparison against the IDBA-UD, MetaVelvet,
and Omega metagenomics assemblers. Graph mining re-
vealed graph structural characteristics associated with
biological features including rRNA operons and transpo-
sase sequences. A comparative study between the Crohn’s
disease and healthy data sets revealed considerable differ-
ences in the phylogenetic distribution of conserved trans-
posase sequences and associated antibiotics resistance
genes. Previously the assembly graph has predominantly
been used as a scaffold for the assembly process. In this
study, we demonstrate that there is rich structural infor-
mation contained within the overlap graph that can be ex-
tracted to make novel biological discoveries.
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