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Abstract

Background: Sporisorium scitamineum causes the sugarcane smut disease, one of the most serious constraints to
global sugarcane production. S. scitamineum possesses a sexual mating system composed of two mating-type loci,
a and b locus. We previously identified and deleted the b locus in S. scitamineum, and found that the resultant
SsAMAT-1b mutant was defective in mating and pathogenicity.

Results: To further understand the function of b-mating locus, we carried out transcriptome analysis by comparing
the transcripts of the mutant strain SsAMAT-1b, from which the SsbE1 and SsbW1 homeodomain transcription
factors have previously been deleted, with those from the wild-type MAT-T strain. Also the transcripts from
SSAMAT-16 X MAT-2 were compared with those from wild-type MAT-1 X MAT-2 mating. A total of 209 genes were
up-regulated (p < 0.05) in the SsAMAT-1b mutant, compared to the wild-type MAT-1 strain, while 148 genes
down-regulated (p < 0.05). In the mixture, 120 genes were up-regulated (p < 0.05) in SSAMAT-1b6 X MAT-2, which
failed to mate, compared to the wild-type MAT-1 X MAT-2 mating, and 271 genes down-regulated (p < 0.05).

By comparing the up- and down-regulated genes in these two sets, it was found that 15 up-regulated and 37
down-regulated genes were common in non-mating haploid and mating mixture, which indeed could be genes
regulated by b-locus. Furthermore, GO and KEGG enrichment analysis suggested that carbon metabolism pathway
and stress response mediated by Hog1 MAPK signaling pathway were altered in the non-mating sets.

Conclusions: Experimental validation results indicate that the bE/bW heterodimeric transcriptional factor, encoded
by the b-locus, could regulate S. scitamineum sexual mating and/or filamentous growth via modulating glucose

metabolism and Hog1-mediating oxidative response.
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Background

Sugarcane smut is a devastating disease in sugarcane
growing areas globally. The characteristic symptom of
the disease is a black or gray growth that is referred to
as a “smut whip” [1]. Sugarcane smut is caused by the
fungus S. scitamineum, a bipolar species [2, 3] with two
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mating type strains MAT-1 and MAT-2 [4] producing
haploid sporidia by budding. The compatible sporidia
fuse to develop pathogenic dikaryotic hyphae, which
grow within the stalk of sugarcane and form diploid
teliospores to complete the pathogenic life cycle [3]. The
teliospores are disseminated by wind or rain splashes
and germinate to form four sporidia, and initiate next
round of life cycle by mating. The sexual mating process
of S. scitamineum is similar to the maize pathogen Ustilago
maydis, which is regulated by two unlinked mating type
loci, a locus and b locus [5-7]. The bi-allelic a loci that
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encode a pheromone/pheromone receptor system that is
responsible for recognition of the opposite haploid sporidia
and formation of conjugation tubes [8]. The b locus com-
posed of the bE and bW genes, encoding a heterodimeric
transcription factor to maintain the dikaryotic filament and
promote subsequent penetration of the host plant, after
fusion of the sporidia [8—10].

It has been reported that in U. maydis, the bE/bW
transcription factor acts through a regulatory cascade to
affect various pathways in triggering pathogenic develop-
ment, including cell cycle regulation, mitosis and DNA
replication [11]. However, the physiology of S. scitami-
neum mating is largely unknown, due to unavailability of
genome sequence and effective method of genetic
manipulation, previously. Recently, with the genome
sequencing performed by Que et al. [2] and Taniguti et
al. [12], and optimizing of the ATMT transformation
procedure for S. scitamineum [13], investigation on S.
scitamineum differentiation and pathogenesis on mo-
lecular level becomes feasible. Recently, we identified
and characterized a b-locus homolog in S. scitamineum,
and found that it is essential for sexual mating and fila-
mentous growth [14], but the underlying mechanism
remained unclear. Given that b-locus encodes a homeodo-
main transcription complex, comparative transcriptome
analysis may provide useful clues to possible b-locus
target gene(s) and functional study of such candidate
gene(s) may reveal the molecular basis of b-locus regu-
lating S. scitamineum sexual mating and/or filamentous
growth. Therefore, we carried out transcriptome ana-
lysis with wild-type MAT-1 and SsAMAT-1b mutant,
and with mating and non-mating mixtures of S. scita-
mineum haploids. Our study identified several potential
target genes of b-locus encoding transcriptional factor,
that are likely involved in S. scitamineum sexual mating
and/or filamentous growth, and further reveals two
critical endogenous/environmental cues: nutrient and
redox homeostasis, for mating and/or filementous growth
in S. scitamineum.

Methods

Growth conditions and strains used in this study
Teliospores of sugarcane smut were collected from the
fields in Guangdong province of China (21°12" 36"" N;
101°10" 12°" E), and no specific permissions were re-
quired for sampling diseased plants in this location.
Haploid colonies of MAT-1 and MAT-2 were isolated
from these teliospores by serial dilution and plating on
YePSA medium, as previously described [15]. Synthetic
complete dextrose (SCD) medium is consisted of 0.7 %
(wt/vol) yeast nitrogen base without amino acids, 0.17 %
complete amino acids powder, and 2 % (wt/vol) glucose
[16]. Synthetic complete (SC) medium was formulated
as SCD medium without addition of glucose [16].
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RNA extraction and sequencing strategies
TRIzol Reagent (Life Technologies, UK) was used for
Total RNA extraction from haploid MAT-1 and SsSAMAT-
1b mutant. MAT-1 and MAT-2 haploids were mixed and
plated on YePSA medium for 24 h before total RNA
extraction with TRIzol Reagent. Similarly, SSAMAT-1b
and MAT-2 haploids were mixed and inoculated on
YePSA medium for 24 h before total RNA extraction.
Libraries were constructed following Illumina manu-
facturer’s protocol of the “TruSeq RNA Sample Prep
v2 Low Throughput (LT)” kit. Paired-end sequencing
was performed on the Illumina HiSeq™2000. Reads
were analyzed by FASTQC (http://www.bioinforma-
tics.babraham.ac.uk/projects/fastqc/) and low quality
bases (phred >20), Illumina adapters and poly-A tails
were removed using the NGS QC Toolkit v2.3.3
(http://59.163.192.90:8080/ngsqctoolkit/) [17].

Transcriptome assembly and annotations

De novo short read assembly was performed using
tophat and cufflinks softwares [18]. The assembled reads
were mapped to the complete genome of S. scitamineum
SSC39B  strain  (ftp://ftp.ncbinlm.nih.gov/genomes/gen-
bank/fungi/Sporisorium_scitamineum/latest_assembly_ver-
sions/GCA_000772675.1_Sporisorium_scitamineum_v1)
using Tophat and Bowtie2 [19].

Unigene generated by De novo short read assembly
was aligned to NCBI NR Database (ftp://ftp.ncbi.
nih.gov/blast/db), SWISSPROT Database (http://www.
uniprot.org/downloads), and KOG Database (Clusters of
orthologous groups for eukaryotic complete genomes,
ftp://ftp.ncbi.nih.gov/pub/COG/KOG/kyva), respectively.
Unigene encoding proteins with high similarity (e <le-5)
to the known proteins in aforementioned databases were
used to annotate the corresponding Unigene. GO anno-
tation was performed by Blast2GO software [20] and the
database http://www.geneontology.org/. KEGG annota-
tion was performed with the database http://www.geno-
me.jp/kegg/pathway.html [21].

Transcriptome analysis
Differential transcript accumulation among treatments
(SSAMAT-1b vs MAT1, SSAMAT-1b X MAT-2 vs MAT-1
X MAT-2) was observed using bowtie2 (http://bowtie-
bio.sourceforge. net/bowtie2/manual.shtml) [19] and eX-
press [22]. The gene expression level is calculated by
using FPKM method (fragments Per kb per Million
reads) [22]. Baggerley’s test and the false discovery rate
(FDR) with a significance level of <0.05 and the absolute
value of Log2Ratio >1 was set as the threshold to judge
the significance of gene expression difference.

GO enrichment analysis was performed as firstly
mapping all DEGs (Differential Expressed Genes) to GO
terms in the database (http://www.geneontology.org/),
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calculating gene numbers for every term, then using
hypergeometric test to find significantly enriched GO
terms in the input list of DEGs, based on GO::TermFinder
(http://smd.stanford.edu/help/GOTermFinder/GO_ Term
Finder_help.shtml/). P value was calculated using the
following formula:

(DC)

< ()

Where N is the number of all genes with GO annota-
tion; n is the number of DEGs in N; M is the number of
all genes that are annotated to certain GO terms; m is
the number of DEGs in M. The calculated p-value goes
through Bonferroni Correction [23], taking corrected
p-value £0.05 as a threshold. GO score was calculated
as follows: Enrichmentscore = / u

—

P=1-

-

KEGG database is used to perform pathway enrich-
ment analysis of DEGs. The calculating formula is the
same as that in GO analysis. Here N is the number of all
genes that with KEGG annotation, n is the number of
DEGs in N, M is the number of all genes annotated to
specific pathways, and m is the number of DEGs in M.

Results

Unigenes identification and gene annotation

Our RNAseq analysis produced a total length of
17.8344 Mb (Table 1) for all the transcripts, out of 2G
clean sequencing data, representing about 100 X cover-
age of the transcriptome. Compared to previous pub-
lished genomic sequence of S. scitamineum [2, 12], the
total length of sequence is slightly low, likely due to the
fact that only transcripts (with poly-A tails) were an-
chored and sequenced in this study. De novo assembly
of transcripts was performed as described in Methods.
We identified 7341 unigenes in total, with length from
145 bp to 16628 bp (Table 1). Most of the identified
unigenes are of 200—-2000 bp (Fig. 1a), and GC content
is within the range of 50-60 % (Fig. 1b). The unigenes
were mapped to NR, SWISSPROT, and KOG Database
for annotation, as listed in Additional file 1: Table S1.

Table 1 Unigene statistics
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Transcriptome analysis identified differentially expressed
genes between mating and non-mating strains/conditions
In this study, we compared two sets of non-mating vs
mating strain/condition, with an aim to identify the
genes related to S. scitamineum mating and likely regu-
lated by b-locus. Differentially Expressed Genes (DEGs)
were identified in the SSAMAT-1b mutant compared to
the wild-type MAT-1 strain, as well as in the non-mating
mixture, SSAMAT-1b X MAT-2, compared to the mating
mixture of MAT-1 X MAT-2. DEGs of significance
(p<0.05) in the haploid and mating set were listed in
Additional file 2: Table S2 and Additional file 3: Table S3
respectively. In total, there are 357 DEGs identified in the
SSAMAT-1b mutant, among which 209 genes were
up-regulated and 148 down-regulated (Table 2). Under
mating condition, a total of 391 genes were differentially
expressed in the non-mating mixture, with 120 up-
regulated and 271 down-regulated (Table 2). By comparing
the up- and down-regulated genes in these two conditions,
we found that 15 up-regulated and 37 down-regulated
genes were common in non-mating haploid and mating
mixture. We listed in Table 3 for those with annotation in
SWISSPROT Database.

Among the 12 up-regulated and 16 down-regulated
genes listed in Table 3, we noticed that genes encoding
components of signaling pathway, e.g. MAPK Cekl
(involved in mitosis in yeast [24] and fungicidal activity in
Candida albicans [25]) and Hogl (oxidative or osmotic
stress response [26-28]), GTPase-activating protein
BEM2/IPL2 (for cellular morphogenesis and interacting
with mitosis regulator in yeast [29]), or histidine kinase
(possibly involved in two-component signal pathway [30])
were up-regulated with deletion of b-locus. Also, proteins
involved vesicular trafficking (AP-3 complex subunit)
or metal-nicotianamine transporter YSL2 were possibly
repressed by b-locus transcriptional factor (Table 3).
Another transcriptional factor, RFX4, and an RNA heli-
case were potentially repressed by b-locus too (Table 3).
This result indicates that b-locus may negatively regulate
some signaling pathway and repressed transcription of a
set of downstream genes, directly or indirectly, after sexual
mating induced and during filamentous growth. On
the other hand, genes induced, directly or indirectly,
by b-locus include several other transcriptional factors, e.g.
ATHB-54 [31], MKL/myocardin-like protein [32], Short

All > =200 bp > =500 bp >=1000 bp Total Length (Mb) Max Length Min Length Avg Length
PRINA240344 - - - 19.7235
PRJEB5169 7711 194279
PRINA275631 6677 20.0676
Unigene 7341 7338 7131 6123 17.8344 16628 145 242942
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distribution of All-Unigene of this study




Yan et al. BMC Genomics (2016) 17:354

Table 2 DEGs statistics

Control Case Up_diff Down_diff Total_diff
MAT-1 b-deletion 209 148 357
MAT-1 b-deletion + MAT-2  MAT-1+ MAT-2 120 271 391

stature homeobox protein 2 (Shox2; related to growth and
development in human [33]; Table 3). b-locus may also in-
duce regulators involved in biosynthesis, including polyol
transporter 5, Rhamnolipids biosynthesis 3-oxoacyl-[acyl-
carrier-protein] reductase, MFS-type transporter, and sev-
eral hydrolases or Glucoamylase, during mating and/or
filamentous growth (Table 3). PKA and MAPK signaling
pathway were found to be involved in b-locus regulating
sexual mating and/or filamentous growth in U. maydis
[11]. Here in our study, we also identified component of
MAPK pathway, Cekl and Hogl, that was potentially
regulated by S. scitamineum b-locus, but not among
those identified in U. maydis. Our finding indicates that
S. scitamineum b-locus may regulate small molecular
(e.g. metal-nicotianamine, polyol) transport, vesicular traf-
ficking, biosynthesis, stress-response mediated by MAPK
signaling (Hogl), and a cascade of transcriptional net-
work, during mating and/or filamentous growth. The
candidate genes listed in Table 3 are of great interest
in our future investigation, in terms of elucidating
physiology and molecular mechanism of S. scitamineum
differentiation and pathogenesis.

Identification of starch/sucrose metabolism and Hog1
MAPK pathway in fungal mating

As an international standard gene functional classification
system, Gene Ontology (GO), offers a dynamic-updated
controlled vocabulary, as well as a strictly defined concept
to comprehensively describe properties of genes and their
products in any organism [34]. Therefore GO enrichment
analysis of the aforementioned DEGs may further reveal
the functional relevance of b-locus regulating genes and S.
scitamineum mating. Enriched GO (for both up- and
down- regulated) in the haploid and mating sets were
listed in Additional file 4: Table S4 and Additional file 5:
Table S5 respectively, and schematically represented fol-
lowing three ontologies (molecular function, cellular com-
ponent and biological process) as in Fig. 2. Among them,
we noticed that the genes involved in membrane trans-
port, oxidation-reduction process and ATP-binding were
overall differentially regulated in non-mating haploid
(SSAMAT-1b mutant), as well as in non-mating mixture
(SSAMAT-1b X MAT-2, Fig. 2). However, some particular
genes associated with the membrane transport process
(GO: 0055085) were up-regulated, while some others,
enriched in the same GO term, were down-regulated,
in both non-mating haploid and non-mating mixture
(Additional file 4: Table S4 and Additional file 5: Table S5).
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Similar situation occurred for oxidation-reduction
process (GO: 0055114; Additional file 4: Table S4 and
Additional file 5: Table S5) as well as ATP-binding (GO:
0005524; Additional file 4: Table S4 and Additional file 5:
Table S5). On the other hand, ATP catabolic process
(GO: 0006200) was up-regulated in both SSAMAT-1b mu-
tant and SSAMAT-1b X MAT-2 mixture (Additional file 4:
Table S4 and Additional file 5: Table S5), indicating that
S. scitamineum mating may repress ATP catabolism. In
summary, GO terms enrichment analysis further veri-
fies that metabolism, biosynthsis, transmembrane trans-
port and redox homeostasis would be tightly regulated
by b-locus during S. scitamineum mating and/or fila-
mentous growth.

Genes usually interact with each other to play roles in
certain biological functions. Pathway-based analysis
helps to further understand the biological functions of
unigenes. KEGG-enrichment analysis thus was carried
out to identify significantly enriched metabolic pathways
or signal transduction pathways in DEGs comparing
with the whole genome background [21]. Enriched
KEGG terms were listed in Additional file 6: Table S6
and Additional file 7: Table S7, for SSAMAT-1b vs wild-
type MAT-1 and the non-mating mixture of SSAMAT-1b
X MAT-2 vs wild-tyype MAT-1 X MAT-2, respectively.
Among the enriched pathways, we observed that starch
and sucrose metabolism pathway (ko00500; Additional
file 8: Figure S1) was commonly found in both haploid
and mating sets. The predicted outcome of differentially
regulation of this pathway was that glucose production
would be reduced, while accumulation of 1,3-B-glucan
would be increased (Additional file 8: Figure S1), in
SSAMAT-1b or non-mating mixture. Another commonly
up-regulated gene, Hogl (p38), was also found in
enriched KEGG pathway (ko04010, MAPK signaling) in
both SSAMAT-1b or non-mating mixture (Additional file 9:
Figure S2). Hogl mediates osmo- and oxidative stress
response in yeast and fungi [26-28], and is important
for mating capacity in Candida albicans [16]. We
infer that carbohydrate metabolism as well as redox
homeostasis may play important roles in S. scitamineum
mating, and be subjective to regulation (directly or
indirectly) by the b-locus.

Starch/sucrose metabolism and Hog1 MAPK pathway may
regulate S. scitamineum mating

To verity the involvement of starch/sucrose metabolism
and Hogl MAPK pathway in S. scitamineum mating, we
tested the growth of the wild-type MAT-1, MAT-2 and
SSAMAT-1b mutant, as well as mating MAT-1 X MAT-2
mixtures, under osmotic and oxidative stresses. The re-
sults showed that SSAMAT-1b was more resistant to oxi-
dative stress, compared to the wild-type MAT-1 as well
as mating mixture (Fig. 3a middle panel). However, wild-
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Table 3 List of Up- and Down- regulated genes common in SsAMAT-1b vs wild-type MAT-1 and SSAMAT-1b X MAT-2 vs wild-type

MAT-1 X MAT-2 comparing sets

Swiss ID Length Fold p value  Fold change p value  swiss.Description
(bp) change
SSAMAT-1b SSAMAT-1b X
vs MAT-1 MAT-2 vs MAT-1
X MAT-2

sp|P38938|CEKT_SCHPO 13208 1342056  168E-06 3.44586 0.01867  Serine/threonine-protein kinase cek1 OS = Schizosaccharomyces
pombe (strain 972/ATCC 24843) GN=cekl PE=1SV=3

sp|P39960|BEM2_YEAST 8330 1796835  0.023621 1.718937 0.023855 GTPase-activating protein BEM2/IPL2 OS = Saccharomyces
cerevisiae (strain ATCC 204508/5288c) GN =BEM2 PE=1SV=1

sp|Q6R3KI|YSL2_ARATH 2834 1946333  0.003032 1.913564 0.010979 Metal-nicotianamine transporter YSL2 OS = Arabidopsis
thaliana GN=YSL2 PE=2 SV =1

sp|Q9JMESIAP3B2_MOUSE 9407 1237208  9.87E-06 4.222222 2.16E-05  AP-3 complex subunit beta-2 OS = Mus musculus GN = Ap3b2
PE=1SV=2

sp|Q12019|[MDN1_YEAST 16628 1.87115 0.005704 2.001882 0.002886 Midasin OS = Saccharomyces cerevisiae (strain ATCC 204508/
$288c) GN=MDN1 PE=1SV=1

sp|Q54YH4|DHKB_DICDI 6828  Inf 0.007605 10.75 0.005969 Hybrid signal transduction histidine kinase B OS = Dictyostelium
discoideum GN =dhkB PE=1SV=1

Sp|[A2BGAO|RFX4_DANRE 4929 6911589  1.76E-06 1937224 0.015736 Transcription factor RFX4 OS = Danio rerio GN =rfx4 PE=2 SV =1

sp|Q4P3W3|DBP10_USTMA 3384 1241402 0025351 4.851852 0.046387 ATP-dependent RNA helicase DBP10 OS = Ustilago maydis
(strain 521/FGSC 9021) GN=DBP10 PE=3 SV =1

sp|P56584(SID1_USTMA 2399 1764062 0017173 2524876 0016416 L-ornithine 5-monooxygenase OS = Ustilago maydis
(strain 521/FGSC 9021) GN=SID1 PE=2 SV =2

splP36619PMD1_SCHPO 7057 2328467 001718  2.990596 0.006957  Leptomycin B resistance protein pmd1 OS = Schizosaccharomyces
pombe (strain 972/ATCC 24843) GN =pmd1 PE=3 SV=2

sp|Q4PCO6JHOGT_USTMA 5538 3.954272 0001332 2294118 0.037876 Mitogen-activated protein kinase HOG1 OS = Ustilago
maydis (strain 521/FGSC 9021) GN=HOG1 PE=3 SV =1

sp|POCJE5|ATBS4_ARATH 2265 0.02171 6.20E-19 0.178523 340E-06 Homeobox-leucine zipper protein ATHB-54 OS = Arabidopsis
thaliana GN = ATHB-54 PE=2 SV =1

Sp|P22943|HSP12_YEAST 1053 0.168388  9.19E-15 0.552964 001578 12 kDa heat shock protein OS = Saccharomyces cerevisiae
(strain ATCC 204508/5288c) GN=HSP12 PE=1 SV =1

sp|O14094|PPX1_SCHPO 2702 036517 0.002301 0.144718 0.000202 Putative exopolyphosphatase OS = Schizosaccharomyces pombe
(strain 972/ATCC 24843) GN = SPAC2F3.11 PE=3 SV =1

splQ6CHPY|ICCMIT_YARLI 2835 0451759 0010845 0.049724 1.68E-07  Mitochondrial group | intron splicing factor CCM1 OS = Yarrowia
lipolytica (strain CLIB 122/E 150) GN=CCM1 PE=3 SV =1

sp|P22018|B4_USTMD 1539 0 9.33E-23 0.325834 0.001866 Mating-type locus allele B4 protein OS = Ustilago maydis
PE=3SV=1

sp|Q8VZ80|PLT5_ARATH 2427 0452944  0.022087 0493914 0.003544 Polyol transporter 5 OS = Arabidopsis thaliana GN = PLT5
PE=1SV=2

SPIQ4WFXI|LAP2_ASPFU 2169 0053682 000954 0337114 4.19E-05 Probable leucine aminopeptidase 2 OS = Neosartorya
fumigata (strain ATCC MYA-4609/Af293/CBS 101355/
FGSC A1100) GN =lap2 PE=3 SV =2

splQSUP73|YR614_MIMIV 1884 0353454  2.79E-06 0.340428 1.15E-05  Putative band 7 family protein R614 OS = Acanthamoeba
polyphaga mimivirus GN=MIMI_R614 PE=3 SV =1

sp|Q8K4J6IMKLT_MOUSE 736 0600119 0.019664 0.330712 5.01E-06 MKL/myocardin-like protein 1 OS=Mus musculus GN = Mkl1
PE=1SV=2

Sp|Q9RPT1|RHLG_PSEAE 1073 0337766  0.035915 0.16568 0.019132  Rhamnolipids biosynthesis 3-oxoacyl-[acyl-carrier-protein]
reductase OS = Pseudomonas aeruginosa (strain ATCC 15692/
PAO1/1C/PRS 101/LMG 12228) GN=rhIG PE=1 SV=1

sp|PBO299|HYES_RAT 1160 0467807  0.005301 0.425344 0.024971 Bifunctional epoxide hydrolase 2 OS = Rattus norvegicus
GN=Ephx2 PE=1SV=1

sp|P36914/AMYG_ASPOR 2852 0569668  0.010942 0419058 0.010065  Glucoamylase OS = Aspergillus oryzae (strain ATCC 42149/RIB 40)
GN=glaAPE=2SV=2

sp|P34211|YUAR_ECOLI 2743 0.226761 3.58E-06 0318024 3.27E-05 Putative hydrolase YuaR OS = Escherichia coli (strain K12)

GN=yuaRPE=3SV=3
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Table 3 List of Up- and Down- regulated genes common in SsAMAT-1b vs wild-type MAT-1 and SsAMAT-1b X MAT-2 vs wild-type

MAT-1 X MAT-2 comparing sets (Continued)

sp|035750]SHOX2_RAT 3616 0490521  0.005405 0.55
sp|Q767C8|IH5GT_IRHO 2482 0263235 353E-09 0630828
sp|042922|YBIH_SCHPO 4584 0240982  571E-10 061912

0.023074 Short stature homeobox protein 2 (Fragment) OS = Rattus

norvegicus GN =Shox2 PE=2 SV =2

0.048192 Cyanidin 3-O-rutinoside 5-O-glucosyltransferase OS = Iris

hollandica GN=5GT PE=1 SV =1

0.037253 Uncharacterized MFS-type transporter C16A3.17¢

OS = Schizosaccharomyces pombe (strain 972 / ATCC 24843)
GN=SPBC16A3.17c PE=3 SV =1

type MAT-2 also showed higher resistance to H202
when cultured alone but not in mating condition (Fig. 3a
middle panel). Osmotic stress imposed by 500 mM NaCl
repressed the filamentous growth in the mating mixture
of MAT-1 X MAT-2 (Table 3A right panel). However,
the colonial growth was indistinguishable between the
wild-type MAT-1 and SsSAMAT-1b mutant strain, under
the same osmotic stress (Fig. 3a right panel). On the
other hand, the YePSA medium supplemented with high
concentration (10 %, wt/vol) of glucose repressed fila-
mentous growth in the mating mixture of MAT-1 X
MAT-2 (Fig. 3b). In contrast, glucose-depleted medium
(SC) was more favorable for filamentous growth in

mating mixture of MAT-1 X MAT-2, compared to the
SCD medium containing 2 % glucose (Fig. 3c). As 1,3-p-
glucan is an effective anti-oxidant, the significant enhance-
ment of Hogl transcripts in non-mating haploid/mixture
may be an indirect consequence of elevated intracellular
oxidative level in non-mating S. scitamineum haploid and
mixture. Furthermore, we tested the effect of anti-
oxidant, Glutathione (GSH) on colonial and filamentous
growth of haploid and mating strains. All the strains were
more resistant to GSH on SC (glucose-deplete) medium
compared to SCD (glucose-containing) medium (Fig. 3c).
This indicates that the glucose may indeed be utilized for
synthesis of anti-oxidant 1,3-B-glucan, therefore depletion
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SC medium, with T mM or 5 mM GSH

1 mM GSH

Fig. 3 Starch/sucrose metabolism and Hog1 MAPK pathway are likely involved in S. scitamineum mating, and subject to regulation of the b-locus.
a Serially diluted cells of MAT-1, MAT-2, MAT-T X MAT-2, and SsAMAT-1b, were spotted onto YePSA medium supplemented with 2.5 mM hydrogen
peroxide or 500 mM NaCl. b Cells of MAT-1, SSAMAT-1b, MAT-1 X MAT-2, and SsAMAT-1b X MAT-2, were spotted onto YePSA medium with or
without 10 % (wt/vol) of glucose. ¢ Serially diluted cells of MAT-1, SSAMAT-1b, MAT-1 X MAT-2, and SsAMAT-1b X MAT-2, were spotted onto SCD or

5 mM GSH

of glucose resulted in more resistance to GSH, another
anti-oxidant. Overall, these results indicate that glucose
may play a negative role in promoting S. scitamineum mat-
ing and/or filamentous growth, and the b-locus encoding
heterodimeric transcriptional factor may regulate starch/
sucrose metabolism on transcriptional level. We further
predicted, based on transcriptome analysis, that the b-locus

encoded heterodimeric transcriptional factor may regulate
S. scitamineum mating and/or filamentous growth by
promoting synthesis of 1,3-B-glucan (probably from D-
glucose) and meanwhile repressed the stress response sig-
naling pathway mediated by Hogl MAPK. A working
model, adopted and modified from b-locus regulatory net-
work proposed in U. maydis [11], is depicted in Fig. 4.
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Fig. 4 Proposed Model. bE and bW proteins derived from opposite mating type form functional transcriptional complex to activate or repress
Class 1 (direct) target genes. Class 2, indirect targets, are in turn activated or repressed by products encoded by Class 1 targets. Starch/sucrose
metabolism genes as well as HOGT may be indirectly repressed by the bE/bW transcriptional complex, during mating. b-repressed glucose
metabolism gene may promote production of glucose, which may repress mating and/or filamentous growth. Meanwhile, glucose production may
lead to elevated intracellular oxidative level, and thus induce Hog1 MAPK pathway, which also negatively regulates mating and/or filamentous growth.

Overall, b-locus may act in shutting down mating/filamentous growth inhibitors, including high level of glucose and Hog1 MAPK signaling

Discussion

Investigation on molecular mechanism on S. scitami-
neum mating and/pathogenicity was impeded due to
lack of S. scitamineum genome sequence, until 2014,
when Que et al., published the first genome sequence of
the pathogen [2]. More recently, a Brazil group pub-
lished a complete genome assembly of S. scitamineum,
as well as the fungal transcriptome profiles revealing the
candidate genes unique to interaction with sugarcane
[12]. Such genomic and transcriptome analyses have
provided enormous convenience for functional study of
mating and pathogenic genes in S. scitamineum. In
current study, we conducted transcriptome analysis and
comparison between mating vs non-mating haploid/mix-
ture, which present useful information on the b-regu-
lated gene expression cascade during S. scitamineum
mating and/or filamentous growth. Our transcriptome
analysis predicted 7341 unigenes (transcripts), which is
similar to the predicted genome sizes of the three pub-
lished S. scitamineum strains (http://www.ncbi.nlm.nih.-
gov/assembly/organism/49012/all/; Table 1). The GC-
content of our identified unigenes is ranged from 50 to
60 %, peaking at 55 % (Fig. 1b), which is also consistent
with the GC-content of these three genome projects
(54.9, 54.8 and 55.04 % respectively). These data suggest
that our de novo assembly of transcripts in S. scitami-
neum is valid for the identification of DEGs as well as
GO and KEGG enrichment.

Our transcriptome analyses identified 357 DEGs in
SSAMAT-1b mutant compared to the wild-type MAT-1,
and 391 DEGs in non-mating (SSAMAT-1b X MAT-2)
mixture compared to mating (MAT-1 X MAT-2) mix-
ture. Among them, 28 annotated genes (12 up-regulated
and 16 down-regulated, Table 3) were common in these
two sets of comparisons, thus are most likely associated
with mating/filamentous growth and subject to regula-
tion by bE/bW heterodimeric transcription factor.

In the enriched KEGG pathway, we noticed that su-
crose/starch metabolism pathway was altered in the
SSAMAT-1b mutant in a way that intracellular glucose is
predicted to be reduced and 1,3 pB-glucan elevated. Also,

glucoamylase encoded gene was identified as potentially
b-locus induced (Table 3). Our results (Fig. 3b) showed
in contrast to our prediction, that elevated glucose level
repressed, but not promoted, filamentous growth and/or
mating. We infer that the timing (24 h post mating) for
detecting glucoamylase transcription might not be suit-
able, when at this time point the transcripts started
translating into proteins. Therefore, the apparent low
level of glucoamylase in non-mating sets would reflect
active glucose production, and b-locus may actually re-
press glucoamylase during mating and/or filamentous
growth. We further hypothesize that glucose may be
channeled to synthesis of 1,3-B-glucan during S. scitami-
neum filamentous growth after mating and likely regulated
by b-locus, through repression of glucoamylase. As 1,3-B-
glucan is an anti-oxidant, its production may relief the cell
from endogenous oxidative stress therefore Hogl was not
induced in wild-type condition. In b-deletion condition,
glucose level may elevated and therefore repress filament-
ous growth; meanwhile the reducedl,3-p-glucan level re-
sulted in endogenous oxidative stress and induction of
Hogl as a response. SSAMAT-1b mutant was slightly more
resistant to H202, likely due to hyper-induced Hogl. Our
hypothesis was supported by the observation that glucose-
depleted medium (SC) promoted filamentous growth in
the mating mixture of MAT-1 X MAT-2 spores (Fig. 3¢). It
has been reported that glucose plays an important role in
asexual/sexual sporulation in other pathogenic/filamentous
fungi, including Magnaporthe oryzae [35], U. maydis [36],
and Fusarium graminearum [37]. Also, glucose was re-
ported to suppress mating competency in Candida albi-
cans [16]. Our results fit well with the established notion
that glucose promotes unicellular spore/cell production
while represses filamentous growth, thus acting as a switch
between dimorphic transition.

Another interesting observation from common DEGs
and KEGG enrichment is that the stress-activating MAPK
signaling pathway mediated by Hogl was significantly up-
regulated, in both SSAMAT-1b mutant and SSAMAT-1b X
MAT-2 mixture. One possibility is that, elevated glucose
production in SSAMAT-1b haploid resulted in reduced
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production of 1, 3-p-glucan, which is also known as an
anti-oxidant. As a result, HOGI was transcriptionally in-
duced in response to elevated intracellular oxidative level.
Alternatively, HOGI may be repressed by the bE/bW tran-
scriptional complex, directly or indirectly, during mating.
Our tests showed that SSAMAT-1b is less sensitive to oxi-
dative stress. Meanwhile, repression on colonial growth
caused by anti-oxidant GSH was more prominent with
presence of glucose. Overall, these results suggest that
Hogl MAPK signaling may be repressed by the bE/bW
transcriptional complex. Such observation is consistent
with the reported function of the Hogl ortholog in Can-
dida albicans that negatively regulates its mating capacity
[16]. However, we are not aware of whether SsSHOGI is
one of the direct targets (class I) genes of the bE/bW
transcriptional complex, or among the indirect (class II)
targets, as no obvious b-locus binding site (bbs [38, 39])
was predicted in the promoter region of SSHOGI.

It has been reported in U. maydis that GO categories
“Cell Cycle”, “Chromosome” and “DNA metabolic
process” were significantly enriched as b-down-regulated
genes [40]. However, we observed that “DNA replica-
tion” was enriched as up-regulated GO terms in non-
mating mixture (Fig. 2; Additional file 5: Table S5; GO:
0006260), and mitosis regulator Cekl [24] and GAP
Bem?2 that related to mitosis [29] were up-regulated in
non-mating sets, which may also account for the failure
of mating, with deletion of b-locus in MAT-1.

Conclusions

Overall, our transcriptome analysis contributes to pre-
diction of candidate genes of the regulatory cascade of S.
scitamineum b-locus, in terms of mating and/or fila-
mentous growth after recognition of opposite sex medi-
ated by the a-locus. In future, further investigation on
such candidate genes would help elucidate molecular
mechanism of S. scitamineum mating, including but not
limited to, b-locus regulating cell fate decision, morpho-
genesis, carbon/nitrogen metabolism, mitosis, stress
(oxidative) response, etc. This would certainly enrich our
knowledge in fungal sexual differentiation and/or patho-
genesis, and likely of great potential towards develop-
ment/design of anti-fungal pathogen strategy.
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