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Abstract

Background: Genome-wide association studies (GWASs) are powerful in identifying genetic loci which cause
complex traits of common diseases. However, it is well known that inappropriately accounting for pedigree or
population structure leads to spurious associations. GWASs have often encountered increased type I error rates due
to the correlated genotypes of cryptically related individuals or subgroups. Therefore, accurate pedigree information
is crucial for successful GWASs.

Results: We propose a distance-based method KIND to estimate kinship coefficients among individuals. Our
method utilizes the spatial distribution of SNPs in the genome that represents how far each minor-allele variant is
located from its neighboring minor-allele variants. The SNP distribution of each individual was presented in a
feature vector in Euclidean space, and then the kinship coefficient was inferred from the two vectors of each
individual pair. We demonstrate that the distance information can measure the similarity of genetic variants of
individuals accurately and efficiently. We applied our method to a synthetic data set and two real data sets (i.e. the
HapMap phase III and the 1000 genomes data). We investigated the estimation accuracy of kinship coefficients not
only within homogeneous populations but also for a population with extreme stratification.

Conclusions: Our method KIND usually produces more accurate and more robust kinship coefficient estimates
than existing methods especially for populations with extreme stratification. It can serve as an important and very
efficient tool for GWASs.
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Background
Deciphering cryptic individual relatedness is crucial in
genome-wide association studies (GWASs) because hid-
den population structure or cryptically related individ-
uals result in false positives [1–6]. High-throughput
technologies have enriched GWASs with millions of
SNPs, and consequently pedigree errors can be corrected
and cryptic familial relationships among samples can be
detected. Those erroneous relationships could have been
caused by the duplication of the genotypes at the time of
data collection, artifacts, or undocumented relationships.
Unexpected relationships were detected in the HapMap
phase III data [7, 8]. Therefore, the relatedness inference

should be performed in the data preprocessing step and
be incorporated in GWAS algorithms.
Several methods have been proposed for relationship

inference. These methods are mainly categorized into
two types of approaches, likelihood methods [4, 9–11]
and the kinship coefficient estimation methods [12–17].
The likelihood methods categorize pairwise relationships
by choosing the most likely relationship among multiple
relationships (i.e. monozygotic twin, parent-offspring,
full sibling, kth-degree, or unrelated) while the kinship
coefficient estimation methods quantify the pairwise
relationship by calculating specific kinship coefficients.
For example, the kinship coefficient is 0.25 for parent-
offspring or full sibling relationship (note that the coeffi-
cient of relatedness is different and equals to 0.5 for the
two cases). In the likelihood methods, the relationships
of individuals are inferred using the likelihood of the
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Cotterman’s k-coefficients [9], the joint probability of the
observed marker genotypes conditional on each poten-
tial relationship [10, 11], the conditional probabilities of
identical-by-state (IBS) modes [4], or the conditional
expected identical-by-descent (IBD) and adjusted identical-
by-state (IBS) test [18]. For the kinship coefficient estima-
tion methods, two sets of methods have been proposed.
One set of methods attempts to reproduce the theoretical
kinship coefficients [12–14]. The other set of methods
produced their own kinship coefficients using IBD or
IBS, and users could then specify coefficient cutoffs to
declare relationships [15–17]. Our proposed method
estimates the theoretical kinship coefficients as the former
set of methods do, and it satisfies the urgent need of
methods with high computational efficiency to handle the
enormous number of SNPs from next-generation sequen-
cing platforms.
Specifically, we propose an efficient method for kinship

inference based on distance (KIND) to infer individual re-
lationships. The proposed method is based on the SNP
spatial distributions which show how far minor-allele vari-
ants are located one another. To the best of our know-
ledge, this is first time that the distance information of
minor alleles was used in inferring pairwise relationships.
We evaluated our model by comparing with KING
(KING-robust version) [13] and REAP [14]. KING is a
recently proposed kinship coefficient estimation method
in the presence of population substructure. REAP is an-
other recently proposed kinship estimation method for
an admixed population. Note that many other kinship
inference methods have the weakness of assuming
homogeneous population structure. KING requires a
full specification of pedigree structure for relationship
estimation. The pedigree structure is then adjusted or
corrected according to the inference. REAP does not
need the family structure information and our KIND
needs only a very small portion of the information. We
studied a synthetic data set and two real data sets (i.e.
the HapMap phase III and the 1000 genomes data).

Methods
KIND is based on the spatial distribution of SNPs. For a
specific individual, if there are two SNP sites both
displaying minor alleles and there is no other SNP site
displaying minor alleles between them, we call them
neighboring minor-allele SNPs (or variants). The
minor allele information was either obtained from the
HapMap project directly or inferred by Plink [19] for
each population. Given the genome of an individual,
the physical distance between each minor-allele vari-
ant and its neighboring upstream minor-allele variant
is calculated. The genomic-coordinate distance information
together with the genotypes is used as a feature when esti-
mating the kinship coefficient. The Minkowski distance

(details in Additional file 1) is used to measure the dissimi-
larity of the feature vectors and then the dissimilarity score
is converted to a kinship coefficient.

Representation of alleles using the spatial distribution of
variants
Suppose that we have a set of genotype data of five indi-
viduals S1 – S5 (Fig. 1a) where “A” represents a major
allele and “a” represents a minor allele for each SNP. We
aim to infer the relationship between S1 and S2. The po-
sitions b1, b2, …, b10 are positions in base-pairs (bp) for
SNP sites and 1 ≤ b1 < b2 <… < b10. The distance feature
for a SNP position with minor alleles depends on the
physical distance to its upstream neighboring minor-allele
SNP. For example, an individual shows minor alleles at
position bn and its nearest upstream SNP position display-
ing minor alleles is bm. The distance feature for bn is cal-
culated as (bn − bm) if both genotypes are Aa for the two
positions, or one genotype is Aa and the other is aa. The
distance feature is 2(bn − bm) if both genotypes are aa since
there are two neighboring minor alleles. Note that the
distance feature is calculated regardless of phases. The
distance feature for a SNP position with genotype AA is
defined as zero. To avoid excessive zeros in features (the
zeros will be cancelled out in distance calculation), posi-
tions with genotype AA for both individuals are excluded.
Figure 1b shows the positions after removing b1, b3, b7
and b10 since no minor allele was observed at these posi-
tions for individuals S1 and S2. A position bs with geno-
type “aa” was manually inserted as the initial position and
it is the same across all the individuals in the population.
We set the artificial initial position bs as b2 − 10−16 where
b2 is the first position with at least one minor allele
among all the considered individuals in this specific
example. This starting position bs was assigned with the
genotype “aa” so that different genotypes on the first
minor-allele SNP can be distinguished. The feature vec-
tors of individuals (VS1 and VS2 in Fig. 1c) are used to cal-
culate the dissimilarity between S1 and S2. We chose the
Minkowski distance to take advantage of the flexible
order parameter of the distance function.

Minkowski distance as a dissimilarity measure
Given two points X = (x1, x2, …, xn) and Y = (y1, y2, …, yn)
(note that Vs1 and Vs2 above are examples of X and Y), the
Minkowski distance between X and Y is defined as

Xn
i¼1

xi−yij jp
 !1=p

: ð1Þ

The Minkowski distance is a generalization of the Eu-
clidean (p = 2) and Manhattan (p = 1) distances [20, 21].
The order parameter p plays the key role in our proposed
method in the sense that the optimal value of the
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parameter is determined by the underlying structure of the
data and the estimated kinship coefficients are the presen-
tation of the true relationships of individuals in the data.

Similarity scores as kinship coefficients
In the relationship inference of two individuals, the dis-
similarity score obtained from the distance function
needs to be converted to a similarity score to represent a
kinship coefficient. With the two distance vectors in
Fig. 1c, the estimated kinship coefficient of individuals Si
and Sj is defined as

φ̂ ¼ 1−
dsi;sj

dt

� �
=2; ð2Þ

where dsi;sj is the Minkowski distance between two individ-
uals Si and Sj, dt is a constant approximating the expected
dissimilarity score of two unrelated individuals (More
details in Additional file 1). If the two individuals Si and
Sjhave the exactly same allele distributions, φ̂ ¼ 0:5
because dsi;sj ¼ 0. For the self-kinship coefficient, φ̂ al-
ways equals 0.5. If the two individuals are unrelated,
φ̂¼ 0 because dsi;sj ¼ dt . Here dt is a very rough estimate
and it may be affected by minor allele frequencies, linkage
disequilibrium, as well as deviation from Hardy-Weinberg
Equilibrium. Note that the kindship estimation is not sensi-
tive to dt because we use training data to find the optimal
p so that φ̂¼ 0 for unrelated individuals as described below.

Optimal parameter estimation
The objective function is to minimize the sum of the
squared errors between estimated kinship coefficients
and theoretical kinship coefficients. Hence, the objective
function is defined as

min
X

Relationship

φ̂Relationship;p−φRelationship;p

� �2
; ð3Þ

where available relationships in the data are used. In the
results section, we show that a small amount of known

data is sufficient for the optimal parameter estima-
tion. Due to the nonlinearity of the objective func-
tion, nonlinear programming is applied to find the
solution. Specifically, we applied a sequential quad-
ratic programming (SQP) method which is a popular
and successful nonlinear programming method [22].
A challenge associated with the optimization is that
the search space of the unknown order parameter is
infinite. Prior knowledge about the feasible search
space significantly improves the convergence rate.
After investigating the objective function values by
using a number of parameter values with the Hap-
Map phase III and the 1000 genomes data, we ob-
served that a fairly good local minimum of the
objective function was always between 0 and 1.
Therefore, a feasible search space is provided by using
the two boundaries of p as a constraint, i.e. 0 for the
lower bound and 1 for upper bound. Finally, the SQP
in line search is applied to

min
X

Relationship

φ̂Relationship;p−φRelationship;p

� �2
subject to 0 < p ≤ 1:

ð4Þ

Note that the examples of the known relationships
(ϕRelationship) are ϕPO = 0.25 for a parent-offspring pair,
ϕFS = 0.25 for a full sibling pair, ϕ2nd = 0.125 for a
2nd–degree relative pair, ϕ3rd = 0.0625 for a 3rd–degree
relative pair, and ϕUN = 0 for an unrelated individual
pair.

Synthetic data generation
We simulated SNP data based on real data sets.
Specifically we sampled 154 individuals from 7 non-inbred
three-generation pedigrees as shown in Additional file 2:
Figure S1. Unrelated CEU individuals of the 1000 genomes
data were used for the top-most generation of each pedi-
gree and the haplotypes were those from chromosome
19. For offspring at each generation, the chromosomes
were recombined based on the recombination rates of

A

B

C

Fig. 1 Flow from the SNPs to distance vectors. a: SNP distribution of a population of five individuals. b: SNP distribution after excluding positions
containing only major alleles for the considered individual pair. Positions 1, 3, 7, and 10 are excluded and the initial position bs is inserted
manually. c: Distance vectors for individuals S1 and S2
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chromosome 19 available in the 1000 genomes project
data repository (http://www.1000genomes.org). Genotype
data of the offspring were then simulated accordingly
(a total of 250,182 SNPs).

Results and discussion
Consistency of estimated parameters with varying
amount of known pedigree information
In real data analysis, the known pedigree information
could be very limited. To test the accuracy of parameter
estimation based on limited known pedigree structure, we
used the CEU individual pairs of the HapMap phase III
project. Different percentages of unrelated pairs (i.e.
known to be unrelated individuals) were used for training.
As shown in Fig. 2, the estimated parameter p, test errors
(i.e. mean squared errors on test data), and estimated
kinship coefficients are consistent across the different
number of training pairs. We used only the chromosome
19 data (16,027 SNPs, the MAF distribution can be found
in Additional file 3: Figure S2) but the similar results were
observed when other autosomal chromosomes (chromo-
somes 1–18, 20–22), and other populations (YRI, CHB,
and JPT) in the HapMap phase III and the 1000 genomes
data were used (results not shown). The results confirm
that a very small portion of known pedigree structure is
enough for the estimation of the unknown model param-
eter p. In addition, a small training data set can signifi-
cantly increase the computational efficiency.

Relationship inference using synthetic data
Our proposed method was compared with the KING
and the REAP software using the simulated synthetic
data. There are two versions of KING. KING-homo
estimates kinship coefficients of homogeneous popula-
tions and KING-robust is a more robust version and
can handle population with extreme stratification
(http://people.virginia.edu/~wc9c/KING/manual.html).

Therefore KING-robust (a.k.a. KING) was used for the
comparison. REAP infers kinship coefficients of popula-
tions with admixed ancestry. For the kinship coefficient
estimation, REAP uses proportions and MAFs of ancestral
populations for each individual that are inferred by the
frappe software [23].
Figure 3 shows the boxplots of the estimated kinship

coefficients of 196 parent-offspring (PO) pairs, 49 full
sibling (FS) pairs, 84 pairs at the 2nd degree (2nd), 56
pairs at the 3rd degree (3rd), and 18 unrelated (UN) pairs.
The detailed averages and standard deviations of the es-
timated kinship coefficients of the three methods were
summarized in Additional file 4: Table S1. Our KIND
estimates were usually closer to the theoretical kinship
coefficients than the other two methods. The kinship
coefficient estimates of REAP deviated a lot from the
theoretical kinship coefficients. For the PO and FS
pairs, the standard deviations of REAP were much
larger than those of the other methods. For KIND,
only two UN pairs (i.e. ~10 % of the UN pairs) were
used for the parameter estimation. All other individ-
uals except the two pairs were used for the test data.
We also used two pairs from each of the five rela-
tionships for the parameter estimation. All other indi-
viduals except the 10 individual pairs were used for the
test data. The results were similar as shown in Additional
file 4: Table S1. It again suggests that using a small
number of pairs even from a single relationship is
enough to estimate the optimal value of the unknown
parameter.

Relationship inference using the HapMap phase III data
For the relationship inference on real data, we used the
SNP data from the HapMap phase III. The selected
populations were CEU (Utah residents with Northern
and Western European ancestry, 165 individuals), YRI
(Yoruba in Ibadan, Nigeria, 167 individuals), CHB (Han

A B

Fig. 2 Results by varying number of unrelated individual pairs for training data. a: Test errors (mean squared errors) and estimated parameter
values. The test errors were calculated on separated test data (the data excluding the training data). b: Average kinship coefficient estimates.
Data: Chromosome 19 of the CEU samples in the HapMap phase III project

Lee and Chen BMC Genomics  (2016) 17:372 Page 4 of 9

http://www.1000genomes.org
http://people.virginia.edu/~wc9c/KING/manual.html


Chinese in Beijing, China, 84 individuals), and JPT
(Japanese in Tokyo, Japan, 86 individuals). The auto-
somal chromosomes 1 through 22 were concatenated
in the ascending order (chromosome1, chromosome2, …,
chromosome22, 746,358-902,399 SNPs for these popula-
tions) for the kinship coefficient estimation. The available
relationships of CEU and YRI are PO and UN, and only
the UN relationship is available in CHB and JPT samples.
The data consists of 96 PO and 6216 UN pairs for CEU,
104 PO and 6328 UN pairs for YRI, 3486 UN pairs for
CHB, and 3655 UN pairs for JPT. The UN pairs of
CEU and YRI populations were made from the PO data
assuming that these parents were unrelated individuals.
The number of ancestry populations for frappe and
REAP was set to 3 and 5 % of the UN pairs were used
in estimating the unknown parameter of our proposed
method.
Figure 4 shows the kinship coefficient estimates by the

three methods for the PO (Fig. 4a) and UN pairs (Fig. 4b
and c) in HapMap. Figure 4c is a subfigure to show the
clearer quartiles of the estimates by not plotting those
outliers in Fig. 4b. For UN pairs, KIND estimates were
closer to the theoretical zero value for all considered
populations compared with KING and REAP. For PO
pairs, KIND performs slightly worse than KING. REAP
misclassified some PO pairs as UN pairs because the
estimated kinship was around zero instead of 0.25.
Some extreme outliers existed in the KIND and KING
estimates for CEU and YRI UN pairs. However, these
outliers could be truly related pairs because we used
parents from the parent-adult child data to make the
UN pairs with the assumption that the parents of

different family ids were unrelated. However, the parents
from different families could be related. On the contrary,
the CHB and JPT individuals are truly declared unrelated
individuals. For both PO and UN pairs, the estimates of
REAP were underestimated and usually with greater vari-
ance than those of the other two methods.
We observed that invalid estimations (NaN) were

made by REAP for a large number of pairs, and some
pairs were omitted in the results by KING. However,
our KIND provides a valid estimate for every individ-
ual pair. Additional file 5: Table S2 shows the number
of valid pairs per method, as well as the number of
common pairs valid for all the three methods. REAP
obtained invalid estimates for about half the PO pairs
and KING missed estimates for about half the UN
pairs in the YRI, CHB and JPT populations. We fur-
ther investigated whether the different sample sizes
affected the comparison results. When only the pairs
with valid estimates for all three methods were con-
sidered, the average and standard deviation of the
estimates were similar to those for all the pairs with
valid estimates for each method (Additional file 6:
Table S3 and Additional file 7: Table S4). KIND still
performs the best for UN pairs and the performance
is comparable for PO pairs.

Relationship inference using the 1000 genomes data
The same four populations were used for the 1000 ge-
nomes data and the samples were 85 CEU individuals,
88 YRI individuals, 97 CHB individuals, and 89 JPT
individuals. The 1000 genomes project provides variant
data only for unrelated individuals. A total number of
10,236,127-18,495,543 SNPs were used here for these
populations. The total numbers of pairs are 3570 CEU
pairs, 3828 YRI pairs, 4656 CHB pairs, and 3916 JPT
pairs. About 5 % of the pairs were used in estimating the
unknown parameter for each population in KIND.
Because REAP failed in finishing the jobs in 300 hours
(our Linux cluster walltime limit), we only summarized
the results from KIND and KING. As shown in Fig. 5,
KIND performs better than KING for CEU and YRI UN
pairs, but not for CHB and JPT pairs. This may be due
to the estimation of the parameter p being based on
only unrelated individuals. KING has some extremely
underestimated pairs for CHB and JPT. The specific
number of pairs with valid estimates for each method or
all methods, as well as the mean and standard deviation of
the estimates are listed in Additional files 8, 9 and 10:
Tables S5-S7.

Relationship inference in the presence of population
stratification
Estimating relatedness of individuals in the presence
of population stratification is more complicated and
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Fig. 3 Kinship coefficient estimates for different types of family
relationships based on synthetic data. The five horizontally dashed
lines indicate the theoretical kinship coefficients of the five relationships
(PO and FS: 0.25, 2nd: 0.125, 3rd: 0.0625, UN: 0). Data: 196 parent-offspring
(PO) pairs, 49 full sibling (FS) pairs, 84 pairs at the 2nd degree (2nd), 56
pairs at the 3rd degree (3rd), and 18 unrelated (UN) pairs. For KIND,
10 % of UN pairs (i.e. 2 UN pairs) were used in estimating the
unknown parameter
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challenging than the estimation for a homogeneous
population. We made an artificial population by mer-
ging the four populations (CEU, YRI, CHB, and JPT)
and then we assumed the population structure was un-
known or hidden. The subgroups of similar SNP distri-
butions were discovered by a clustering algorithm and
then the within- and between-cluster kinship coeffi-
cients were estimated. Clusters of individuals were
discovered by k-means clustering, the feature was the
number of minor alleles at each base-pair position, and
the dissimilarity measure was 1 - Pearson correlation.
The 22 autosomal chromosomes were concatenated for
the HapMap data and randomly selected three chromo-
somes (3, 18 and 20) were concatenated for the 1000
genomes data. In the experiment, the k was set to 1–5
and ten different initial cluster centers were tried per k

because the clustering result depends on the initial
cluster center. After replicating the clustering ten
times per k, the set of clusters with minimum sum of
point-centroid distances was selected and then the
kinship coefficients for the within- and between-
cluster were estimated. For the merged population
from the HapMap data, YRI individuals were divided
into two clusters, while CEU, CHB and JPT individ-
uals formed one cluster respectively. For the merged
population from the 1000 genomes data, two clusters
from JPT and one cluster from each of the CEU, YRI,
and CHB were discovered. Note that when estimating
the between-cluster coefficients, individuals of the
two clusters are combined for the estimation of opti-
mal parameter p.
Estimating the optimal parameter value in the pres-

ence of population stratification was more difficult than
that for homogeneous populations. When the population
was homogeneous, only one local optimum was ob-
served in the feasible search space and usually one initial
guess was enough to find the local optimum. In the
presence of population stratification, there may be more
than one local optimum in the feasible search space.
Multiple initial guesses were tried. When the solution
was either the lower or upper bounds of the search
space, the objective function value was noticeably large.
In such cases, a different initial guess was tried and then
the solution with the smaller objective function value
was chosen. We estimated the within- and between-
cluster kinship coefficients and then merged all of the
estimated kinship coefficients for PO relationship or UN
relationship.
Figure 6 shows the boxplots of the estimated kinship

coefficients by KIND, KING and REAP for the mixed
population based on the HapMap data (Fig. 6a) or the

 

Fig. 5 Boxplots of kinship coefficient estimates of the 1000
genomes data. The horizontally dashed line indicates the theoretical
kinship coefficient (i.e. 0)

A B
C

Fig. 4 Boxplots of kinship coefficient estimates of the HapMap phase III data. a: PO pairs, b: UN pairs, c: UN pairs without plotting the outliers
from B. The horizontally dashed lines indicate the theoretical kinship coefficients of the two relationships
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1000 Genomes data (Fig. 6b). The averages and standard
deviations of the kinship coefficients are in Additional
file 11: Table S8. For this challenging situation, the per-
formance of KIND is much better than KING and REAP
by providing kinship coefficients closer to the theoretical
values. KING heavily underestimated the kinship for UN
pairs. The computation efficiency of REAP is unsatisfac-
tory. Although only the three chromosomes were used
from the 1000 genomes data, the result by REAP was
not available because the frappe software failed to finish
in the 300 hours of walltime.

Comparison of computational complexity
Time complexity of the three methods is determined by
the number of individuals and the number of SNPs. Let
n and m be the number of individuals and the number
of SNPs, respectively. The time complexity of KING is
O(n2m). The time complexity of REAP consists of two
parts. One part is the time complexity of frappe to infer
proportions of each ancestral subpopulation for each in-
dividual and MAFs of each ancestral population. The
time complexity of frappe is O(mnkl), where k is the
number of ancestral subpopulations and l is the number
of iterations of Expectation-Maximization (EM) algorithm.
Theoretical time complexity of EM algorithm is infinite
because the number of iterations l is not deterministic and

it is highly dependent on the initial guess for the unknown
parameters. To avoid the infinite iteration, frappe declares
a convergence when the differences in the estimates of
proportions and MAFs of ancestral subpopulations be-
tween two consecutive iterations fall below 10−9. The
other part is the calculation of kinship coefficient of each
individual pair by REAP using the proportions and MAFs
of each ancestral subpopulation estimated by frappe, and
the time complexity of this part is O(n2mk). Therefore, the
total time complexity of REAP with frappe is O(mnkl +
n2mk). The time complexity of our KIND is determined
by the complexities of SQP and the calculation of kinship
coefficient. The time complexity of SQP is determined by
the number of SQP iterations and the quadratic program-
ming (QP) subproblem iterations. SQP solves QP sub-
problems at every iteration. The QP is also an iterative
method and the number of QP iterations is determined by
the number of inequality constraints which is 1 in our
proposed method because the number of unknown par-
ameter is only 1, i.e. 0 < p ≤ 1. Similar to EM algorithm,
SQP is also an iterative method and a convergence is de-
clared when the difference of two objective function values
between two consecutive iterations falls below 10−6 or the
SQP iterations reach 400. Therefore, the time complexity
of SQP is O(l), where l is the number of SQP iteration.
The time complexity of the kinship coefficient calculation
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Fig. 6 Boxplots of kinship coefficient estimates for the merged populations (CEU, YRI, CHB and JPT). a: HapMap individuals with PO or UN
relationships, b: 1000 genomes individuals with UN relationship. The autosomal chromosomes were concatenated for the HapMap data but the
randomly selected three chromosomes 3, 18, and 20 were concatenated for the 1000 genomes data to save computation time. The REAP result
for the 1000 genomes data is not available because it did not finish within 300 hours of walltime. Individual pairs with valid estimates for all
compared methods are used here. Specifically, the following steps were applied: Step 1. A set of clusters of individuals with similar minor allele
distributions is discovered by the K-mean clustering. Step 2. For each cluster, the unknown order parameter is estimated (within-cluster estimation) and
then the kinship coefficients for all individual pairs in the cluster are estimated. Step 3. For each pair of clusters, the parameter is
estimated (between-cluster estimation) and then the kinship coefficients for all the individuals pairs, i.e. one individual from one cluster
and the other individual from the other cluster, are estimated. Step 4. Combine the kinship coefficient estimates from Steps 2 and 3
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is O(n2m). Therefore, the total time complexity of our
KIND is O(l(n’)2m + n2m), where n’ is the number of indi-
viduals in the training data and n’ < < n. It is slightly larger
than that of KING, but much more efficient than REAP.
We measured the elapsed time on Intel Xeon E5-2665

2.4 GHz processor with 40GB of memory. The elapsed
time of KING was the least among the three methods
and that of REAP took the longest because of frappe.
KIND has a slightly longer computation time than KING.
The elapsed time of frappe significantly increased as the
number of SNPs increased. The frappe software finished
in 61 hours for the HapMap data but did not finish in
300 hours which were the maximum allowed running
hours in the experiments. There may be strategies which
would allow high density SNP data to be used with REAP.

Discussions and conclusions
We developed a distance-based method KIND to infer
pairwise relationships of individuals for GWASs. Our
method uses spatial distribution information of SNPs.
First, we found that the minor-allele distance information
reveals the relationships of individuals. Existing methods
used numbers of shared alleles at loci or probability of
marker data conditional on each relationship. We showed
that the distance information is able to identify the pair-
wise relationships. As we know, recombination hotspots
are distributed along the human genome unevenly [24].
Since recombination is the main cause of genetic diversity,
the hotspot distribution leads to unequal physical
distances between neighboring SNPs. Based on this fact,
we suspect that the distance between genetic variants has
left footprints for kinship inference. Here, we calculated
the minor-allele distance between SNPs. In the future
studies, we can further test the average distance to neigh-
boring SNPs or incorporate the MAF-based weighting
strategy in the distance calculation. Second, a fairly good
value for the unknown model parameter was found by
using a small amount of training data. This enables
the efficiency of our method.
When the order parameter of the Minkowski distance

is greater than 0 and smaller than 1, the triangle inequality
does not hold and it is called a semi-metric. The loss of
triangle inequality did not affect negatively on the kinship
estimation. Using both of the HapMap and 1000 genomes
data, we plotted the values of the objective function (Eq 3)
using the p values between −1 and 5. The global minimum
was always observed and the optimal value of p was found
between 0 and 1.
The kinship coefficient estimation from high through-

put genotype data is still challenging. Different
methods obtained different estimates. As shown in
Additional file 12: Table S9, our KIND estimates have a
correlation of 0.53 (UN) or 0.74 (PO) with KING estimates,
but only a correlation of 0.11 (UN) or 0.36 (PO) with REAP

estimates. KING and REAP estimates are very different
with a correlation of only 0.09 (UN) and 0.16 (PO). When
combining the UN and the PO relationships for the correl-
ation calculation, REAP still shows the least correlation
with other two methods (Additional file 12: Table S9).
The boxplots of the estimated kinship coefficients of

UN pairs show some negative coefficients. In the case of
KIND, negative values are generated when dsi,sj is greater
than dt. Negative values are observed in the coefficients
estimated by KING and REAP as well. In the case of
KING, when two individuals in a homogeneous popula-
tion are unrelated, the coefficient is negative. In the
event that a pair of individuals is drawn from two dis-
tinct populations, the coefficient by KING is extremely
smaller than that of a pair of individuals drawn from a
homogeneous population [13]. In the case of REAP, the
negative values are observed in the pairs of not only un-
related but also 3rd degree relatives.
Based on the analysis on synthetic and real data, we

found that our KIND performs better especially when
populations are mixed. Although our KIND is not espe-
cially designed for heterogeneous population, we found
that KIND is robust to the heterogeneity due to its flexibil-
ity and simplicity. Our KIND simply focuses on “variants”
of each individual. If we used “major” alleles instead of
“minor” alleles in our distance feature calculation, the re-
sults are similar (Additional file 13: Table S10). If we con-
sider “pruned” set of SNPs (i.e. SNPs with MAF > 0.4) in
KIND, the kinship estimation is similar to that with all
SNPs (Additional file 14: Table S11). This further indicates
that our kinship estimation is not sensitive to the minor
allele frequency cutoff of SNPs. For the population
stratification, we simply applied the K-mean clustering
to subdivide the data so that KIND can be applied. More
sophisticated models can be applied in future studies.
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within the 300 hour walltime. (DOC 29 kb)
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