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Changes in selective pressures associated ®
with human population expansion may
explain metabolic and immune related
pathways enriched for signatures of

positive selection
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Abstract

Background: The study of local adaptation processes is a very important research topic in the field of population
genomics. There is a particular interest in the study of human populations because they underwent a process of rapid
spatial expansion and faced important environmental changes that translated into changes in selective pressures. New
mutations may have been selected for in the new environment and previously existing genetic variants may have
become detrimental. Immune related genes may have been released from the selective pressure exerted by pathogens
in the ancestral environment and new variants may have been positively selected due to pathogens present in the newly
colonized habitat. Also, variants that had a selective advantage in past environments may have become deleterious in the
modern world due to external stimuli including climatic, dietary and behavioral changes, which could explain the high
prevalence of some polygenic diseases such as diabetes and obesity.

Results: We performed an enrichment analysis to identify gene sets enriched for signals of positive selection in
humans. We used two genome scan methods, XPCLR and iHS to detect selection using a dense coverage of SNP
markers combined with two gene set enrichment approaches. We identified immune related gene sets that could be
involved in the protection against pathogens especially in the African population. We also identified the glycolysis &
gluconeogenesis gene set, related to metabolism, which supports the thrifty genotype hypothesis invoked to
explain the current high prevalence of diseases such as diabetes and obesity. Extending our analysis to the gene
level, we found signals for 23 candidate genes linked to metabolic syndrome, 13 of which are new candidates for
positive selection.

Conclusions: Our study provides a list of genes and gene sets associated with immunity and metabolic syndrome that
are enriched for signals of positive selection in three human populations (Europeans, Africans and Asians). Our results
highlight differences in the relative importance of pathogens as drivers of local adaptation in different continents and
provide new insights into the evolution and high incidence of metabolic syndrome in modern human populations.
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Background

Migration and colonization of new habitats are a major
component of human demographic history. Such pro-
cesses lead to sharp changes in environmental conditions
experienced by individuals (soil, water, climate, and patho-
gens) with concomitant changes in lifestyle and diet, which
in turn alter the phenotypic composition of human popu-
lations. Changes in environmental conditions can lead to
shifts in selective pressures. Thus, new mutations may be
advantageous or previous favorable ones may become
deleterious [1, 2].

Diseases caused by deleterious mutations are not ex-
pected to persist for many generations or to segregate at
high frequency. Yet, the prevalence of metabolic syndrome
such as diabetes type 2 and obesity has increased dramat-
ically in recent years, especially in industrialized countries
[3, 4]. In principle, natural selection should act to elimin-
ate harmful genetic variants but there are many reasons
why this is not always the case. One of the most well-
known explanations for the high incidence of metabolic
syndrome is the “Thrifty Genotype Hypothesis” [5], which
posits that alleles that had a selective advantage in past
environments became deleterious in the modern world
due to external stimuli including climatic, dietary and
behavioral changes. A non-adaptive alternative to this
hypothesis is the “Drifty Gene Hypothesis”, which con-
tends that early hominins were subject to predation risks
that selected against mutations associated with increased
weigh. However, the evolution of social behavior, discovery
of fire and use of weapons released more recent Homo
species from such selective pressure allowing metabolic
disease genes to evolve under neutrality [6]. Also, there
are many other possible explanations. For example, a dele-
terious mutation may be driven to high frequency due to
linkage disequilibrium with a neighboring locus/region
that is under positive selection [7, 8]. Also, an allele might
have pleiotropic effects, for example increased disease risk
and protection against a bacterial infection [9].

Another good example of changes in selective pres-
sures exerted on humans during their spatial expansion
relates to the pathogens they found in the newly colo-
nized habitats. Infectious diseases caused by pathogens
are one of the main threats to human populations and
there is an increasing interest in the identification of
genomic regions associated with parasite resistance or
susceptibility [10, 11]. It is well known that the evolu-
tionary arms race between hosts and pathogens can
lead to selective pressures on immune related gene sets
[11-16]. Recent studies provide several examples of
pathogen-driven selection signatures with important
implications in terms of human immunology and infec-
tious disease epidemiology [10]. Thus, it is important to
investigate if the application of new statistical genetic
approaches can uncover additional examples.

Page 2 of 11

The purpose of the present study is to investigate the
extent to which colonization of new habitats by humans
represent important changes in selective pressures that
may explain human phenotypic variation related to com-
mon diseases and immunity. In particular, changes in
diet are likely to represent important new selective pres-
sures that may explain the high prevalence of diabetes type
2. Additionally, differences in parasite species prevalent in
different habitats may also lead to changes in selective pres-
sures on immunity related genes. Thus, we focus on the
impact that environmental changes may have on metabolic
syndrome and infectious diseases. Until recently, a substan-
tial understanding of the evolution of such complex dis-
eases has been derived from candidate variants that were
revealed either by experiments or gene association studies
[17, 18]. There is general agreement that complex diseases
are inherently polygenic and, therefore, genome scans based
solely on SNP data are not well suited for making infer-
ences about their genetic architecture. Individual variants
associated with complex traits tend to be weakly selected
and, therefore, only the combined effect on gene sets can
be strong enough to reach strict cutoff levels of significance.
This limitation can be overcome by combining genome
scans of SNP data with gene-set enrichment analyses [19].
This approach detects selection signatures at the gene set
level and, therefore, is better adapted to detect polygenic se-
lection. For this reason, we first carry out genome scans of
selection (XPCLR [20] and iHS [21]) using HapMap SNP
data [22] and then we use their output as input of Gene Set
Enrichment Analysis (GSEA-Daub et al. [19] and Gowinda
[23]). We mainly focus on the gene set level and we refine
it to the gene level whenever needed.

We detected gene sets involved in immunity and host-
defense interactions in African. We further examined how
natural selection has influenced the prevalence of diseases
such as diabetes type 2 and obesity, investigating at both
the gene and gene set level. Our results indicate that
changes in environmental conditions have lead to shifts in
selective pressures on genomic regions associated with
adaptation to pathogens and with phenotypes associated
to metabolic syndrome.

Methods
SNP data
We use SNP data from Hapmap database phase II [22] to
test for signatures of positive selection using two genome-
scan methods, XPCLR [20] and iHS [21] (the data from
HapMap Project are publicly available for unrestricted
research use). These methods provide selection scores for
each of the SNPs in the dataset, which we later use to per-
form the enrichment analyses.

The data consists of three populations: Europeans
(CEU), Yoruba from Ibadan, Nigeria (YRI), and Han Chin-
ese from Beijing, China and Japanese from Tokyo (CHB +



Vatsiou et al. BMC Genomics (2016) 17:504

JTP). Recombination rates and genetic coordinates are
from assembly NCBI36 [24].

Genome scan methods

Several methods have been developed to detect signals of
positive selection. Fst-based [25] and haplotype homozy-
gosity methods [21, 26] are among the most widely used.
Although these methods detect genomic regions under
positive selection, they do not necessarily detect the same
signals. A sensitivity analysis [27] that compared the per-
formance of many recent methods under complex evolu-
tionary scenarios revealed that the Cross Population
Composite Likelihood Ratio test (XPCLR) [20] performs
the best under both hard and soft sweep scenarios. How-
ever, it lacks power to detect very recent (incomplete)
selective sweeps, in which case the integrated Haplotype
Score (iHS) [21] performs better. More specifically, iHS
has the ability to detect selective sweeps at an early stage
but lacks power to detect those at intermediate or late
stages while XPCLR exhibits the exact opposite behaviour.
Another substantial difference between the two genome-
scan methods is the underlying theory that they use to
identify candidate regions under positive selection. XPCLR
is a population differentiation method, which uses the
multilocus allele frequency differentiation between two
populations; the objective population (under positive se-
lection) and the reference population (under neutrality).
On the other hand, iHS is a haplotype-based method that
considers the extent of linkage disequilibrium surrounding
the core SNP in an isolated population. Therefore, we
chose to combine XPCLR and iHS to maximize the power
to detect selection signatures at the SNP level.

XPCLR analyses

We carried out XPCLR analyses of all possible population
pairs from the Hapmap Phase II dataset. In all of the com-
parisons, the first population was considered as the object-
ive population (population under positive selection) and
the second one was the reference population (non-selected
population). Thus, the population pairs considered were:
CEU - YRI, YRI - CEU, CEU - CHB +]JTP, CHB +]JTP -
CEU, CHB +JTP - YRI and YRI - CHB +JTP. A previous
study that evaluated the performance of several genome
scan methods [27] shows that the FDR of XPCLR increases
substantially once the SNP reaches fixation. Therefore, we
only used SNPs that were polymorphic in both populations
in order to minimize false positives. Thus, there were
2,179,305 SNPs for population pairs including CEU and
CHB +JTP, 2,203,610 SNPs for those that considered CEU
and YRI and 2,118,211 SNPs for pairs including YRI and
CHB + JTP. In principle, since humans originate in Africa,
the YRI population should be considered as the reference
population when looking for signatures of positive selec-
tion due to changed environmental conditions. However,
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we also carried out analyses with YRI as the objective
population, as variants that were positively selected in
Africa may be released from selective pressure in newly
colonized habitats (Europe and Asia). We evaluated grid
points every 200 bp along the genome and evaluated a
window size of 50 SNPs around each point. We normal-
ized the SNP scores across the whole genome such that
they have zero mean and unit variance. This was per-
formed separately for each of the pairwise comparisons
conducted in the dataset.

iHS analyses
iHS scores for the three populations were derived for
1,131,343 SNPs for CEU, 1,264,811 for YRI and 976,006
for CHB + JTP. iHS is based on the decay in Extended
Haplotype Homozygosity (EHH) to the right and left of
a focal SNP, which is measured by the integrated Haplo-
type Homozygosity (iHH). More precisely, the EHH is
calculated for all SNPs to the right and left of the focal
SNP until EHH is equal to or larger than 0.05. However,
if the focal SNP is close to the end of the chromosome
or the start of a gap >200 kb, there may be no SNP for
which EHH reaches or is below that value, in which case
the iHS statistic cannot be calculated.

iHS performs better when the frequency of the se-
lected allele is low (~0.1 and ~0.3) [27]. As in the case
of the XPCLR analyses, iHS scores were also normalized.
More details about the genome scan methods are given
in Additional file 1: Text 1.

The results of the two genome-scan methods (XPCLR
and iHS) for all the chromosomes in the HapMap Phase
II database are available under request.

Gene set enrichment analysis (GSEA)

After we calculated the selection scores (from XPCLR
and iHS) for each of the SNPs in the dataset for all the
different populations, we performed the GSEA. We used
Daub et al. [19] approach and Gowinda to detect signifi-
cant gene sets (more details are presented in Additional
file 1: Text 2). This procedure was performed twice,
using a) the XPCLR scores and b) the iHS scores.

Gene data

We downloaded the human protein coding gene data
from the Entrez NCBI database from assembly GRCh38
on May 5/2014 and we extracted the start and the end
position of 27,121 genes. For all genes that possess more
than one reference sequence, we took the utmost start
and end position of each of them (longest isoform).

Assignment of SNPs to genes

To match the SNP positions from assembly NCBI36 to
gene positions (start/end) from assembly GRCh38, we
converted the SNP positions from assembly NCBI36 to
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assembly GRCh38 using two tools: a) Remap tool from
NCBI [28] and b) the liftOver tool from UCSC [29].
Conversion with the Remap tool was made on 5/3/2014
and conversion with liftOver on 10/3/2014. The SNPs
that were mapped to the same location with both tools
were kept for the final enrichment analysis.

Gene sets

We downloaded all the human gene sets from the Bio-
systems database [30] on 6/5/2014. The NCBI Biosystem
database includes gene sets from KEGG, REACTOME,
WikiPathways, Pathway Interaction Database (PID) and
BIOCYC. We discarded gene sets that contain less than
10 genes [31]. To avoid redundancy due to duplicated
gene sets, we merged gene sets with a similarity larger
than 95 %. After these corrections, we were left with 928
gene sets out of the 2682 initial ones to continue the
analysis.

Gene set enrichment analyses (GSEA) methods

Both Daub et al. [19] approach and Gowinda calculate
the significance of gene sets based on permutation tests.
They avoid biases due to differences in the length of
genes and the overlap of the genes between gene sets.
Nevertheless, the two methodologies are expected to
give different results as they differ in several aspects, the
most important being in the calculation of the gene set
selection scores. Daub et al. [19] uses the selection
scores from all SNPs in the analysis, estimating the sum
of selection scores of all the genes in the gene set. On
the other hand, Gowinda focuses only on the selection
scores of the candidate SNPs, which are those that are
significant for the chosen cut-off significance threshold
(usually the 1- or 5-percentile of the total number of
SNPs used in the genome scan). Other important differ-
ences include the permutation procedure, the correction
of overlapping genes, and the correction for multiple
testing. More details about the two GSEA approaches
are given in Additional file 1: Text 2. To determine the
significance in the real dataset, we used a q-value smaller
or equal to 0.09 for both GSEA approaches.

Gene enrichment analysis for metabolic syndrome

To evaluate more in detail if the “Thrifty genotype hypoth-
esis” can help explain the high incidence of diabetes 2,
obesity, and metabolic syndrome in modern human popu-
lations we identified all genes that have been associated
with these diseases using the Bio4j tool and the STRING
database (see below). We then determined whether or not
these genes were enriched for signatures of positive selec-
tion using the results of the XPCLR and iHS genome scans.
A threshold of 1 % was used to determine significance of
the gene scores.
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Bio4j Using the Bio4j tool [32], a graph-based platform
that integrates semantically biological data from 6 differ-
ent databases (Uniprot KB —SwissProt + Trembl, Gene
Ontology, UniRef (50,90,100), NCBI Taxonomy, and
Expasy Enzyme DB), we identified a total of 683 genes
associated with obesity, diabetes 2 and metabolic syn-
drome. More details for Bio4j analysis are available in
the Additional file 1: Text 3.1.

STRING database We also used the Search Tool for the
Retrieval of Interacting Genes (STRING) database [33] to
find genes that interact with the candidate genes identified
using Bio4j. The Protein-Protein Interaction (PPI) networks
can reveal additional genes associated with metabolic
syndrome, which could then be evaluated for signatures of
positive selection. More details for STRING analysis are
given in the Additional file 1: Text 3.2.

Results and Discussion

In this study, we use the Cross Population Composite Like-
lihood Ratio (XPCLR) [20] and the integrated Haplotype
Score (iHS) [21] to uncover the broadest range of positive
selection signatures in the human genome. Numerous gene
sets were identified to be involved in local adaptation but
we focus on those related to immune responses and meta-
bolic syndrome.

We found a total 161 gene sets enriched for signals of
positive selection; 15 identified by Daub et al. [19] approach
and 152 by Gowinda, with six that were identified by both.
Figure 1 summarizes the results of the four GSEAs and the
common gene sets that were found among them. An inter-
esting observation is the large number of significant gene
sets based on the iHS scores and Gowinda’s enrichment
analysis (140). Using XPCLR, we performed six pairwise

e N

iHS + Gowinda

140 iHS +

SEL-GSEA

Fig. 1 lllustration of the 167 gene sets that were detected with the
four combinations of the genome scan and GSEA methods. Each circle
shows the methods that were used with the number of candidate
gene sets. The overlap among them is also shown

.
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analyses of the three populations (Europeans, Chinese/
Japanese, Yoruba) to investigate all the possible selec-
tion signals.

When iHS scores were used as input of the enrich-
ment analysis, we found no significant gene sets for the
CHB + JTP population with Gowinda and only one with
Daub et al. [19] approach. In contrast, we identified a
total of 140 different significant gene sets for the YRI
population. Finally, the number of enriched gene sets
obtained for the CEU population was four only (Table 1
and Additional file 2: Tables S1 and S2).

When XPCLR scores were used as input for the enrich-
ment analysis, we identified a total of 17 significant gene
sets across all population pairs and enrichment analyses
approaches (Table 2; Additional file 2: Tables S3 and S4).
Using Daub et al. [19] approach, we found no significant
gene sets for the population pairs CEU-CHB +]JTP and
YRI-CEU, while with Gowinda, we found no significant
gene sets for the CEU-YRI population pair. Interestingly,
when YRI was the objective population and CHB + JTP was
the reference one, we detected seven gene sets, more than
in the comparisons where YRI was the reference. We ob-
tained similar results when YRI was the objective popula-
tion and CEU was the reference, but only when using
Gowinda.

Overall, these results suggest that selective pressures are
much more important in Africa than in European and
Asian populations. We posit that many of the enriched
gene sets were under selection in Africa but were released
from selection in the newly colonized habitats (Europe
and Asia).

In what follows, we first present the results of the GSEAs
based on XPCLR and then the results of analyses based on
iHS mainly for the Yoruba population. We also explore
candidates of positive selection that could be related to me-
tabolism and therefore have been involved in the evolution
of diseases such as diabetes type 2, obesity and metabolic
syndrome.
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Infectious diseases

As individuals migrated to new environments (e.g. climate,
diet), they were forced to adapt, and natural selection acted
to favor variants that were advantageous both in pathogens
and hosts. Both environmental factors and pathogen load
must have had a great impact on the human genetic vari-
ation and infectious disease susceptibility. Based on all the
analyses carried out, we identify a total 35 gene sets related
to immune protection and host defense interactions; seven
of them were detected with XPCLR and 28 with iHS (de-
tails about the populations that the gene sets were detected
are presented in Additional file 2: Table S5).

XPCLR-based GSEA
When Africa was compared with the Asian population
(YRL objective population), we observed increased selec-
tion pressures on host-defense mechanisms that we de-
scribe below in more detail (Additional file 2: Table S5).

Of primary importance is the Cell surface interactions
at the vascular wall gene set, which was detected with
both GSEA approaches. Platelets and leukocytes interact
with the endothelium as a protective response of the
host to infection by bacteria, pathogens or injury. Plate-
lets can also enhance their activation through the gener-
ation of signals by the alphallbbeta3 integrin gene set
[34], also significant in our analysis. Key regulator of
host defense is the T-Cell-Receptor (TCR) gene set, whose
main function is the induction of responses to the cell
nucleus to isolate and destroy the malignant cells
[35, 36]. Also significant was the chemokine gene set,
which is directly involved in both innate and adaptive
immune responses, as secreted chemokines and their re-
ceptors mediate leukocyte recruitment in the site of in-
fection [37]. Xu et al. (2014) suggest that CXCRs, main
receptors of the chemokine subfamily CXC, are also
enriched for positive selection [38].

Although four immune mediated gene sets were de-
tected in the pairwise comparison between YRI-CHB +

Table 1 Summary of the results of the enrichment analysis using iHS scores as the baseline

Population GSEA:
Daub et al. [19]
(# of gene sets)

GSEA: Total # of pathways for each

GOWINDA population, and the in common

(# of gene sets) pathways between the two
GSEA approaches

CEU 3
YRI 7
CHB +JTP 1

Total # of pathways for each
GSEA approach, and the in
common pathways among
populations

11 of which 2 in common
(Cell Cycle, Mitotic, Olfactory
Signaling Pathway)

2 5 of which 1 in common
(Cell Cycle, Mitotic)

140 147 of which 3 in common
(DNA Repair, Spliceosome,
Cell Cycle, Mitotic)

0 1

152 of which 5 in common

(Cell Cycle Mitotic, DNA Repair,
Spliceosome, Olfactory Signaling
Pathway, G2/M checkpoints)

142 of which 2 in common
(Dna Repair, Cell Cycle,
Mitotic)
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Table 2 Summary of the results of the enrichment analysis using
XPCLR scores as the baseline

Population pair GSEA: GSEA: Total # of pathways for

(Objective- Daub et al. [19] GOWINDA each population, and the
Reference) (# of gene sets) (# of gene in common pathways
sets) between the two GSEA

approaches

CEU-YRI 3 0 3

YRI- CEU 0 2 2

YRI- CHB+JTP 1 7 8 of which 1 in common
(Cell surface interactions
at the vascular wall)

CHB+JTP-YRI 1 1 2

CEU- CHB + 0 1 1

JTP

CHB+JTP-CEU 1 1 2

Total # of 6 12 18 of which 1 in common

pathways for (Cell surface interactions

each GSEA at the vascular wall)

The population on the left is considered to be the objective one, while the
one on the right the reference one under all circumstances. Threshold is set
to <0.09

JTP, in the opposite comparison (CHB +JTP-YRI) we
detected only one, the apoptotic gene set, involved in
programmed cell death. The dysfunction of genes in-
volved in apoptosis can lead to inflammatory diseases
and cancer [39-42]. da Fonseca et al. (2010) shows that
positive selection signals on the apoptotic genes in
mammals are mainly the result of evolutionary forces
between host and pathogens [43].

These observations overall suggest that gene sets related
to host defense interactions in the immune system were
under selective pressures in Africa. However, they were
released from such pressures once humans migrated to
Asia, presumably because many of the pathogens (bac-
teria, viruses and other infectious pathogens) were absent
in the newly colonized continent.

iHS-based GSEA

Interestingly, numerous gene sets (147) were detected as
enriched for signatures of positive selection in the YRI
population using iHS. Here we mainly focus on the im-
mune- and host defense- related ones.

Ten gene sets associated with different phases of Human
Immunodeficiency Virus (HIV) and HIV-1 infection were
detected in the African population (Additional file 2: Table
S5). HIV is among the most threatening infectious diseases
in Africa and its prevalence accounts for 71 % of HIV
worldwide [44]. The genetic diversity in HIV patients is
believed to be the result of the virus evolution in relation to
the human immune system [45, 46]. Positive selection was
also detected in previous studies on the human gen-
ome of HIV patients [47] as well as on HIV genome
sequences [45, 48, 49], indicating selective pressures
on both the virus and the host.
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Three other significant gene sets, the Salmonella, Shig-
ellosis, and Helicobacter pylori (H. pylori) infection gene
sets are clearly involved in the defense against pathogens.
These infections are usually caused by environmental
contamination (e.g. food or water) [50-52]. Bacteria
continuously evolve to find new strategies to deceive the
host barriers [53]. Positive selection on the specific bac-
teria strains [54—56] is consistent with an evolutionary
arm race between bacteria and the human host immune
system. Salmonella and Shigella use the same mechan-
ism, known as the trigger model, to invade organisms
[57], whereas H. pylori adheres to and reproduces in epi-
thelial cells [58]. Interestingly, we also detected selection
pressures on the invasion of bacteria through epithelial
cells gene set. Epithelial cells are involved in antimicro-
bial host immune defense and induce inflammatory re-
sponses to prevent the pathogens from invading [59].

The Toll-Like-Receptors (10 different cascades were sig-
nificant) and RIG-1 receptors (2 different significant path-
ways) play a critical role to introduce innate immune
responses. They are associated with the recognition and
defense of pathogenic microorganisms, viruses and bac-
teria [60, 61]. Two Interleukin gene sets, a group of cyto-
kines that secret signals to regulate the immune response,
were also identified as candidates of positive selection.

Overall, our results indicate that selective pressures on
host-defense mechanisms exerted by pathogens in Africa
became much less important once humans colonized other
continents because of dramatic changes in the environment
experienced by colonizers. In agreement with previous ob-
servations, selection is associated with protective immunity
(e.g. TLRs- RIG-1 receptors, interleukin) against infectious
diseases (e.g. bacterial infections, HIV) [19, 61-66].

Obesity — metabolic syndrome - diabetes

Obesity, diabetes and metabolic syndrome are chronic dis-
eases that have been thoroughly studied. A large effort has
been made to find variants, genes and gene sets that con-
tribute to their pathogenesis. Although many studies have
identified multiple genetic factors, few have examined
whether or not they are enriched for signatures of positive
selection. Past selective pressures could help explain the
high prevalence of metabolic syndrome in modern human
populations [67-70]. More precisely, changes in environ-
mental conditions, nutrition, or lifestyle may induce rad-
ical changes in selective patterns; genes initially subject to
positive selection in ancient humans may become deleteri-
ous under the environmental conditions experienced by
modern human societies. Potential examples are the insulin
receptor substrate-1 (IRSI) and TCF7L2 genes that have
already been found to be under positive selection [71, 72].
Nevertheless, given the likely polygenic architecture of meta-
bolic syndrome, it is important to carry out gene set enrich-
ment analyses in order to identify new candidate gene sets.
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In our study, we found two gene sets that could be associ-
ated with metabolic syndrome; the Glycolysis and gluconeo-
genesis and the Signal Attenuation gene sets.

The Glycolysis and gluconeogenesis gene set was de-
tected with XPCLR and Gowinda when the European
was the objective population and the Asian was the ref-
erence population. In principle, glycolysis and gluconeo-
genesis are two metabolic processes that have opposite
effects. Glycolysis degrades glucose in periods of fasting,
diet or intense exercise and gluconeogenesis produces
glucose in periods of feeding. The role of glycolysis and
gluconeogenesis gene set is well defined in the pathogen-
esis of diabetes. Glycolysis controls the hepatic glucose
production [73], which causes hyperglycemia, a symptom
of diabetes. It is also involved in cases of insulin resistance
and deficiency [74], which is usually observed in type 2
diabetes [75]. Felig et al. (1974) also indicates that glucose
precursors are increased in obese population [76], al-
though the clear role of this gene set in obesity is still
controversial [77]. A few studies have already investigated
the possibility of glycolysis and gluconeogenesis gene set
as targets for diabetes therapies [78—80].

Our result are consistent with the hypothesis that in
the past, the glycolysis and gluconeogenesis gene set was
subject to positive selective pressures associated with
adaptation to potentially long fasting periods. But it then
may have become maladaptive due to extreme changes in
the environment experienced by humans in modern soci-
eties. We suggest that these results could be explained by
the fact that recent negative selection should be pro-
nounced in Europeans but not in Asians presumably be-
cause of differences in diet and lifestyle (e.g. food, increased
sedentarily and limited exercise). For example, Europeans
tend to consume more meat than Asians [81], and it has
been shown that increased consumption of meat increases
the incidence of diabetes 2 [82].

We also detected the signal attenuation gene set in the
European population, which includes 15 insulin related
genes. This gene set was identified in the comparison
with the Africans (CEU-YRI pair) using XPCLR and
Daub et al. [19] approach. We note that the significance
of this gene set may be due mostly to the top-scoring
outlier gene, DOK1I, which plays an important role in in-
sulin receptor binding [83]. Nevertheless, insulin related
genes closely interact with DOKI [84], according to the
STRING database (Additional file 1: Figure S2). Among
them, the IRSI and IRS2 genes play an important role in
the pathogenesis of diabetes and obesity [85-88]. Our
analysis did not detect the IRS- genes presumably be-
cause of the stringent cut- off level that we used, how-
ever, a previous study has shown that IRS1 is under
positive selection [72].

Lastly, we identified the autoimmune thyroid disease in
the pairwise comparison between Europeans (objective)
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and Yoruba, which is an inflammatory disease in the thy-
roid gland where blood cells and antibodies attack healthy
tissue. Interestingly, it has also been associated with the
pathogenesis of most types of diabetes [89] and its preva-
lence shows a ~4 % increase in diabetic populations com-
pared to non-diabetic. Our findings agree with Jin et al.
(2012) [90], that also detected the auto-immune thyroid
disease and allograft rejection gene sets enriched for posi-
tive selection in populations from Sub-Saharan Africa and
North America using an Fst-based genome scan method.

Having identified gene sets associated with metabolic
syndrome and enriched for signatures of positive selec-
tion, we next investigated if individual genes potentially
associated with this disease, based on current knowledge,
were also enriched for signatures of positive selection. To
this end we used Bio4j to extract the genes that are associ-
ated to metabolic syndrome and then used STRING to
identify genes that interact closely with them.

Using this approach, we identified 23 genes associated
with metabolic syndrome and enriched for signatures of
positive selection; 17 of them were detected with the
XPCLR-based analysis and six other were detected with
iHS (Additional file 2: Tables S6 and S7 respectively).
Ten of them (SLCI9A2, SLC2A10, UCP2, SLC27A4,
BLK, ESP15, EGFR, SOCSI, TSC, and PTH) have already
been suggested to be under positive selection [15, 91-101].
That leaves us with 13 new genes associated directly (six)
and indirectly (seven) with obesity, diabetes or metabolic
syndrome and also subject to natural selection. Interest-
ingly, the KDM3A (or Jhdm2a) gene also enriched for posi-
tive selection is a key regulator for obesity and metabolic
syndrome in mice [102, 103], but it has not been studied
thoroughly in human populations. Nine of the 23 genes
play a potential risk role in the development of diabetes,
obesity or metabolic syndrome. Five of them (GATA6, CB
LARS2, MRAP2 and SGIPI) belong to the 13 novel genes
that were identified in the current analyses. Four in total
have a potential protective effect, with the PIK3CB gene to
be a novel candidate for positive selection, detected in the
comparison of Asians (objective) with Europeans (refer-
ence). PIK3CB was previously shown to be associated with
protection against insulin resistance [104]. The rest of the
genes have an indirect association without clear evi-
dence for their direct implication in metabolic syn-
drome (Additional file 2: Tables S6 and S7).

Comparing our results with two previous analyses on
diabetes [68, 69], we found that TSPAN8 and NOTCH2
genes were also detected in our analyses, while some
others (ADAMTS9, JAZFI, GRB14 and PRCI) genes were
just below the threshold we used. Figure 2 presents the
genes that show evidence of positive selection, and are risk
or protective factors for metabolic syndrome. Surprisingly,
we do not detect the TCF7L2 gene, unlike many studies
[71, 105]. Nevertheless, the TBLIXRI1 and CULI genes
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that closely interact with TCF7L2 gene (Additional file 1:
Figure S3; derived from STRING database) are under
positive selection in our analysis.

Conclusions

In this study, we were particularly interested in uncovering
selection signatures due to changed environmental condi-
tions found by expanding human populations as they left
the African continent. We hypothesized that such changes
can influence gene sets involved in immune response to
pathogens or associated with diseases such as diabetes,
obesity and metabolic syndrome, which could be connected
with changes in life-style or diet.

It is widely accepted that after the first exodus from
Africa, humans confronted changed environmental condi-
tions and had to face new pathogens [106, 107]. Therefore,
migrants were likely to encounter new selective pressures.
The large number of positively selected gene sets that we
found in the African population, mainly using the iHS gen-
ome scan method, suggests that the most common scenario
involved a release from selective pressures present in the
African continent but absent in Europe and Asia. Indeed,
our results show that selective pressures on immune re-
lated- and host-defense gene sets are detected in Africa but

not in Eurasia. This result is consistent with the idea that
pathogens may be more abundant in Africa than in other
continents [108].

It is important to note that the signature of selection
identified by iHS (long stretches of homozygosity) is simi-
lar to that left by purifying selection acting on conserved
regions [109]. In this regard, we observed that gene sets
uncovered by both Daub et al. [19] approach and Gowinda
when using the iHS selection scores (spliceosome, cell
cycle, mitotic and DNA repair) are conserved across sev-
eral species. The distribution of the iHS scores of some of
the conserved pathways (Additional file 1: Figure S3), does
not give a clear pattern whether selection in the pathways
are mainly driven by selection on the ancestral or the de-
rived allele. Thus, although iHS is widely used to detect
positive selection, we posit that several of the gene sets
identified by iHS might in fact be subject to purifying se-
lection instead of local adaptation. However, according to
previous studies [109, 110], this happens mainly in non-
coding regions, unlike the gene sets detected here that are
in coding regions.

We investigated thoroughly the gene sets and the
genes that could be associated with metabolic syndrome,
mainly diabetes and obesity, whose prevalence increased
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in recent years. We examine diabetes and obesity as a single
entity because they are intimately associated. More specific-
ally, obesity is considered one of the most important factors
in the pathogenesis of diabetes [111]. Our results suggest
that metabolic syndrome could in part be explained by the
thrifty genotype hypothesis. Even though, there is a contro-
versy on whether or not insulin resistance increased meta-
bolic efficiency in the past [112], our result is in agreement
with the reduced selection pressure on the Glycolysis and
Gluconeogenesis gene set that was observed in the Asian
population (see above). The process of gluconeogenesis is
controlled by insulin hormone but in the case of insulin
resistance, it fails to stop glucose production [74]. There-
fore, there might be an association between the deficiency
of the insulin receptor and increased levels of nutrients that
promoted fat storage in early humans. Lastly, two poten-
tially protective genes, EGFR and SOCS1, were identified
with iHS, which suggests that these genes may be undergo-
ing recent selective sweeps associated with the high preva-
lence of metabolic syndrome in modern humans.

Our analyses uncovered several new gene sets with im-
mune- and glucose- related functions that may be subject
to positive selection. Moreover, it presents a substantial
number of novel genes associated with diabetes and obesity
that are enriched for signatures of positive selection. Over-
all, our study brings new insight into the emergence and
evolutionary history of infectious diseases and metabolic
syndrome. In the era of unlimited public data resources
and cutting-edge approaches to analyze them, understand-
ing the way that polygenic selection has shaped the human
genetic diversity could lead towards better prevention and
treatment of these diseases.
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Additional file 2: Table S1. Significant gene sets found using iHS
scores and Daub et al. [19] approach. Threshold is set to <0.09.

Table S2. Significant gene sets found using iHS scores and Gowinda
approach. Threshold is set to <0.09. Table S3. Significant gene sets
found using XPCLR scores and Daub et al. [19] approach. Threshold is set
to <0.09. For all the population pairs, the first population is the objective
one and the second, the reference. Table S4. Significant gene sets found
using XPCLR scores and Gowinda approach. Threshold is set to 0.09. For
all the population pairs, the first population is the objective one and the
second, the reference. Table S5. Immunity related gene sets detected
with the GSEA approaches. Q-value threshold is set to <0.09. Table S6.
17 significant genes related to obesity, diabetes and metabolic syndrome
that were found to be under positive selection with XPCLR and iHS
analysis using the list of genes derived from Bio4j. Some of them
(indicated with *) have been detected in previous studies to be under
positive selection, too. The threshold was calculated based on the 1 %
cut off level. Genes are categorized in groups of potential risk factors,
potential protective and indirect associations. Table S7. Significant genes
related to obesity, diabetes and metabolic syndrome that we found to
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Protein-Protein Interaction (PPI) networks from the STRING database. Five
of them (indicated with *) have been detected in previous studies to be
under positive selection. (XLSX 29 kb)
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