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Abstract

Background: Accurately identifying gene regulatory network is an important task in understanding in vivo biological
activities. The inference of such networks is often accomplished through the use of gene expression data. Many methods
have been developed to evaluate gene expression dependencies between transcription factor and its target genes, and
some methods also eliminate transitive interactions. The regulatory (or edge) direction is undetermined if the target
gene is also a transcription factor. Some methods predict the regulatory directions in the gene regulatory networks by
locating the eQTL single nucleotide polymorphism, or by observing the gene expression changes when knocking
out/down the candidate transcript factors; regrettably, these additional data are usually unavailable, especially for the
samples deriving from human tissues.

Results: In this study, we propose the Context Based Dependency Network (CBDN), a method that is able to infer
gene regulatory networks with the regulatory directions from gene expression data only. To determine the regulatory
direction, CBDN computes the influence of source to target by evaluating the magnitude changes of expression
dependencies between the target gene and the others with conditioning on the source gene. CBDN extends the data
processing inequality by involving the dependency direction to distinguish between direct and transitive relationship
between genes. We also define two types of important regulators which can influence a majority of the genes in the
network directly or indirectly. CBDN can detect both of these two types of important regulators by averaging the
influence functions of candidate regulator to the other genes. In our experiments with simulated and real data, even
with the regulatory direction taken into account, CBDN outperforms the state-of-the-art approaches for inferring gene
regulatory network. CBDN identifies the important regulators in the predicted network: 1. TYROBP influences a batch
of genes that are related to Alzheimer’s disease; 2. ZNF329 and RB1 significantly regulate those ‘mesenchymal’ gene
expression signature genes for brain tumors.

Conclusion: By merely leveraging gene expression data, CBDN can efficiently infer the existence of gene-gene
interactions as well as their regulatory directions. The constructed networks are helpful in the identification of
important regulators for complex diseases.
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Background
Understanding of regulatory mechanisms can help us
bridge the gap from genotype to phenotype and enlighten
us with more insights on the synthesizing effects of dif-
ferent elements in cells. The advent of high-throughput
technology provides us an unprecedent opportunity to
construct an atlas of these regulatory mechanisms—the
gene regulatory network (GRN)—from which one can
study important dynamics such as cell proliferation, dif-
ferentiation, metabolism, and apoptosis.
GRN is often inferred from gene expression data, which

is available in abundance from high-throughput microar-
ray and RNA-Seq. Many computational approaches have
been developed to infer the dependencies between tran-
scription factor (TF) and its target genes from expression
data. The intuitive method is to consider a regulatory
dependency as the correlation of the expressions of the
TF-target pair, computed through a measure such as
mutual information (MI), Pearson correlation, etc. How-
ever, the correlations captured within the expression
data include the effects of intermediary factors; unless
taken into account, they will result in the inclusion of
transitive edges in the GRN inferred. To overcome this
phenomenon, ARACNE [1], an MI-based method, dis-
tinguishes between direct and indirect dependencies by
applying data processing inequality. It considers the low-
est MI value among any triplet of genes as a transitive
edge. CLR (context likelihood of relatedness) [2] presents
a framework to consider background noise, which natu-
rally accounts for the transitive effects. The method works
on the fact that each gene’s MIs or Pearson correlations
with other genes follow the Gaussian distribution. This
allows the gene-gene correlations to be expressed as Z-
scores, thus allowing the comparison of their strengths.
Methods based on regression have also been proposed.
They incorporate all the genes in a regression model;
one as response variable and the others as regressors.
Regression-based methods face two difficulties: 1. most
of the regressors are not actually independent, hence
potentially resulting in erratic regression coefficients for
these variables; 2. The model suffers from severe over-
fitting which necessitates the use of variable selection
strategies. A few successful methods have been reported.
TIGRESS [3] treats GRN inference as a sparse regression
problem and introduce least angle regression in conjunc-
tion with stability selection to choose target genes for
each TF. GENIE3 [4] performs variables selection based
on an ensemble of regression trees (Random Forests or
Extra-Trees).
Another kinds of methods are proposed to improve

the predicted GRNs by introducing additional informa-
tion. Considering the heterogeneity of gene expression
across different conditions, cMonkey [5] is designed as a
bi-clustering algorithm to group genes by assessing their

co-expressions and the co-occurrence of their putative cis-
acting regulatory motifs. The genes grouped in the same
cluster are implied to be regulated by the same regula-
tor. Inferelator [6] is developed to infer the GRN for each
gene cluster from cMonkey by regression and L1-norm
regularization on gene expression or protein abundance.
Recently, Chen et al. [7] demonstrated that involving three
dimensional chromatin structure with gene expression
can improve the GRN reconstruction. While these meth-
ods have relatively good performance in reconstructing
GRNs, they are unable to infer regulatory directions.
There have beenmany attempts at the inference of regu-

latory directions by introducing external data. The regula-
tory direction may be determined from cis expression sin-
gle nucleotide polymorphism data, called cis-eSNP. The
cis-eSNPs are thought of as regulatory anchors by influ-
encing the expression of nearby genes. Zhu et al. [8] devel-
oped a method called RIMBANETwhich reconstructs the
GRN through a Bayesian network that integrates both
gene expression and cis-eSNPs. The cis-eSNPs determine
the regulatory direction with these rules: 1. The genes
with cis-eSNPs can be the parent of the genes without
cis-eSNPs; 2. The genes without cis-eSNPs cannot be the
parent of the genes with cis-eSNPs. These strategies have
been very successful [9–11]. However, their applicability is
limited by the availability of both SNP and gene expression
data.
The inference of interaction networks is also actively

studied in other fields. Recently, Dror et al. [12] proposed
the use of a partial correlation network (PCN) to model
the interaction network of a stock market. PCN computes
the influence function of stock A to B, by averaging the
influence of A in the connectivity between B and other
stocks. The influence function is asymmetric, so the node
with larger influence to the other one is assigned as par-
ent. Their framework has been extended to other fields
such as immune system [13] and semantic networks [14].
Nevertheless, there is an obvious drawback in using PCNs
for the inference of GRNs: PCNs only determine whether
one node is at a higher level than the other. They do not
distinguish between the direct and transitive interactions.
Another primary goal of GRN analysis is to identify the

important regulator in a network. An important regulator
is a gene that influencesmost of the gene expression signa-
ture (GES) genes (e.g. differentially expressed genes) in the
network. Carro et al. [15] identified C/EBPβ and STAT3
as important regulators for brain tumor by calculating
the overlap between the TF’s targets and ‘mesenchymal’
GES genes based on Fisher’s exact test. TFs were ranked
by the number of overlap genes to avoid the influence
of the different size of their targets. However, this study
only considers the direct influence (Fig. 1(a))of transcrip-
tion factors to their target genes, the indirect influence
(Fig. 1(b)), through transitive genes, are neglected. Zhang
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(a) Directed influence (b) Indirect influence

Fig. 1 Two types of important regulators with directed influence (a) and indirect influence (b) to the other genes in the network

et al. [16] developed a method called KDA (key driver
analysis) to calculate whether the GES genes are enriched
in the targets of regulators by searching h-layer neighbor-
hood dynamically or statically with respect to the given
directed network. KDA has been extended to search indi-
rect nodes that are influenced by those regulators, but the
influence function is qualitative. It ignores the regulatory
strength between regulators and their target genes. On the
other hand, because the directed network is quantitatively
predicted from gene expression data, we cannot regard the
interactions as having the same weight.
In this study, we propose a new method, Context Based

Dependency Network (CBDN), which introduces the use
of an influence function to decide the edge direction. In
addition, we show a directed data processing inequality
(DDPI), a property of the influence function, which is used
to remove transitive interactions in the partial correla-
tion network. Thus each edge predicted by CBDN is both
causal and directed, which can be further applied to infer
the important regulators quantitatively. The performance
of CBDN is compared to a few well-known algorithms,
namely ARACNE, CLR, TIGRESS and GENIE3. In the
simulation study, CBDN’s result is comparable to the best
result of these methods in each situation and proves its
outstanding ability to predict regulatory direction. For
a realistic test, we point out the TYROBP-oriented net-
work which is related to Alzheimer’s disease [17]. In this
test, CBDN is superior to other methods in inferring
both network structure and regulatory direction. CBDN
also successfully infers TYROBP as the important regu-
lator by quantitatively considering TYROBP’s influences
on the other genes. For another real expression data
from the patients affected by human brain tumors, CBDN
predicts two potential important regulators ZNF329 and
RB1 whose function are associated with brain tumors.
All of these results demonstrate the strength of CBDN
in the inference of directed GRNs from gene expres-
sion data as well as its potential in predicting important
regulators.

Result
CBDN is designed to construct directed regulatory net-
work by only gene expression data. The computation of
CBDN consists of three stages: In the first stage, the influ-
ence of each gene to the others is calculated to determine
the edge direction. This is done through a partial cor-
relation network constructed from the gene expression
data; In the second stage, the transitive interactions are
removed by DDPI; In the third stage, the important regu-
lators are inferred by ranking the regulators based on their
total influences to the GES genes.

Determine the edge direction
CBDN infers the regulatory interaction through the influ-
ence function. The influence function of gene A to gene
B (denoted as D(A → B)) is calculated by averaging the
Pearson correlation changes between gene B and the other
genes in the network, with or without gene A. Notice
that the influence function is asymmetric that means
D(A → B) �= D(B → A), this phenomenon is adopted
to determine the direction of regulatory edge by selecting
the genes with larger influence function as the parents.
The influence function is derived from partial correla-
tion network, the detailed description can be found in
“Methods”.
Here we give a schematic example based on the simu-

lated GRN structure in Fig. 2(a) to interpret how CBDN
determines the edge directionality.
Here, we denote the variable of node i as Xi. For

instance, the direction between X1 and X4 is determined
by comparing D(X1 → X4) and D(X4 → X1). X4
merely affects the correlation between X1 and X10 (see
Methods),

D(X4 → X1) = |Corr(X1,X10)|
9

(1)

Corr(Xi,Xj) denotes the Pearson correlation between the
two variables Xi and Xj. the correlation between X1 and
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(b) 20 nodes(a) 10 nodes

(c) 50 nodes (d) 100 nodes

Fig. 2 The simulated gene regulatory network structures and edge directions with 10 (a), 20 (b), 50 (c) and 100 (d) nodes

other variables are not influenced given X4. When con-
ditioning on X1, the influences are extended to seven
variables (X2,X3,X5,X6,X7,X8 and X9),

D(X1 → X4) = �
2,3,5,6,7,8,9
i |Corr(X1,Xi)|

9
(2)

The upper bound of D(X4 → X1) (D(X4 → X1) ≤ 1) is
smaller than D(X1 → X4) (D(X1 → X4) ≤ 7) in general,
so CBDN concludes that D(X4 → X1) ≤ D(X1 → X4).
The edge direction is from X1 to X4.

Directed data processing inequality
The influence function described above only determines
whether one gene is the parent or child of another gene;
it does not provide the regulatory relationship. As an
example, the partial correlation network in Fig. 3 iden-
tifies Xi as the parent of Xk , but does not distinguish
whether a transitive relation (Xi → Xj → Xk) exists or not
(Xi → Xk). Data processing inequality (DPI) can be used
to remove transitive interactions by assuming the post-
processing cannot increase the mutual information. If Xi,
Xj andXk form aMarkov chain, denoted asXi → Xj → Xk

MI(Xi;Xk) ≤ MI(Xi;Xj) (3)
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Fig. 3 The diagram for how to remove transitive interactions according
to DDPI. We assume Xi regulates Xj , DDPI is calculated to determine
whether Xi directly regulate Xk (red dashed arrow) or through Xj (blue
solid arrows)

which shows that the mutual information between the
genes with transitive interaction cannot be greater than
direct interaction. This observation has been used in
ARACNE to remove transitive interactions for every
triplet of genes. Considering the edge direction and the
nature of influence function, we propose a directed data
processing inequality to show that the influence of a gene
which interacts transitively with its target genes cannot be
greater than that of a gene which interacts directly, that is

D(Xi → Xk) ≤ D(Xj → Xk) (4)

The mathematical proof is straightforward and pre-
sented in Methods. We give an example to show how
DDPI distinguishes direct (X2 to X6) and transitive (X1
to X6) interactions in Fig. 2(a). Given X6, all the other
variables are divided into two categories: non-descendent
of X2 and descendent of X2. The set U denotes non-
descendent ofX2, includingX1,X2,X3,X4,X8,X9,X10. The
descendents of X2, presented as V, consists of X5 and X7.
For all the variables in U, the influence functions for X1

(D1(X1 → X6)) and X2 (D1(X2 → X6)) are

D1(X1 → X6) = �
3,4,8,9,10
i |Corr(Xi,X6)|

6

D1(X2 → X6) = �
1,3,4,8,9,10
i |Corr(Xi,X6)|

6

(5)

For all the variables in V, the influence functions for X1
(D2(X1 → X6)) and X2 (D2(X2 → X6)) are

D2(X1 → X6) = 0

D2(X2 → X6) = �
5,7
i |Corr(Xi,X6)|

2

(6)

Then we have

D1(X2 → X6) > D1(X1 → X6)

D2(X2 → X6) > D2(X1 → X6)

D(X2 → X6) = D1(X2 → X6) + D2(X2 → X6)

> D1(X1 → X6) + D2(X1 → X6)

= D(X1 → X6)

(7)

X2 is prefer to be the direct parent of X6 instead of
X1 according to Eq. 7. Thus the regulatory structure in
Fig. 2(a) should be X2 → X6 rather than X1 → X6.
To account for the influence of noise, we introduce a tol-

erance parameter τ . A transitive relationship Xj → Xk is
removed when D(Xi → Xk) − D(Xj → Xk) > τ . Oth-
erwise, Xi → Xk is removed. Large τ implies much more
noise exists in the expression data to influence D(Xi →
Xk) and D(Xj → Xk).

Determine the important regulators
The important regulator identified by CBDN is not
required to regulate most of the GES genes. Instead, it
should have large influence on them, which guarantees
such regulator is always on the top level. In this exam-
ple, X1 has the largest influence on the other genes in the
network and is located on the top level (Methods).

Simulation
Tree structure simulation
In order to explicitly reflect the nature of directed inter-
actions in the gene regulatory network, we simulate a
tree structure in which each node has only one parent
(except the root) and is merely regulated by its parent
(only one arrow from its parent, shown in Fig. 2). In
other words, the expression profiles of the descendents
are only determined by their parents. The expression
profiles for each node were sampled from Gaussian dis-
tribution. The joint distribution of the parent and one
of its descendent follows bivariate Gaussian distribution
with specified covariance and noise. In addition, we mix
uniform distributed noise weighted by ω

κ
to the simu-

lated expression profiles, where “ω" presents the amount
of noise and “κ” denotes the noise level. We set “ω" to a
constant (ω = 3) and change “κ” from 0 to 2 in the sim-
ulations. The expression profiles of 10, 20, 50, 100 nodes
are simulated, each of them derived from 1000 samples.
The network structure and edge direction are shown in
Fig. 2.

Infer edge direction
Based on the partial correlation network, CBDN can pre-
dict the interaction edge direction by only gene expression
data. In the simulation, we calculate the proportion of
edges that are assigned the directions correctly to eval-
uate the CBDN’s performance. Our simulation results
demonstrate excellent performance of CBDN in predict-
ing edge direction (Fig. 4). There are 83.3% of the sim-
ulations (66/72) where at least 60% of the edges are
correctly assigned directions. As the covariance between
these nodes increased, the predicted accuracy increases,
and reaches optimality when the covariance is above 0.4.
The influence of noise is more severe for the networks
with small number of nodes (Fig. 4(a), (b) and (f)). The
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(a) Covariance=0.1 (b) Covariance=0.2

(c) Covariance=0.4 (d) Covariance=0.6

(e) Covariance=0.8 (f) Covariance=0.9

Fig. 4 The performance of predicting edge direction by PCN. The increasing covariance spectrum is assigned from 0.1-0.9 in (a)-(f). Different situations
such as the amount of mixed noise and the number of nodes are also evaluated in each subfigure

low covariance makes the performance in large networks
declined dramatically (Fig. 4(a) and (b)).

Compare CBDNwith othermethods
We evaluate the overall performance of CBDN (including
predicted edges and their directions) by comparing it with
other famous methods based on a variety of simulated
datasets. The true positive rate (TPR) and false positive
rate (FPR) are used to plot the receiver operating char-
acteristics (ROC) curve, where TPR = TP

TP+FN , FPR =
FP

FP+FN (TP:true positive, FN:false negative, FP:false pos-
itive). The area under ROC curve (AUC) was applied
to evaluate the performance of CBDN. We apply the
same tests on four state-of-the-art approaches (ARACNE,
CLR, GENIE3 and TIGRESS) for comparison. In Table 1,
CBDN’s result is the best when no noise exists. Even with
small covariance, CBDN correctly revealed the structure
and regulatory orientations (Table 1(a)). When noise is

introduced, CBDN’s result remains comparable with the
best result in each situation. CBDNworked well in general
under medium covariance; large or small covariance make
it difficult to distinguish direct and transitive interactions,
especially when a large amount of noise is introduced
(Table 1). However, our comparison is very conservative
here, since the performance of CBDN is evaluated by con-
sidering both structure and direction, while the other four
methods are evaluated only on the inferred structures.
Nevertheless, CBDN achieves sufficiently good perfor-
mance in reconstructing the directed GRNs. We also
simulate tree structures with 20, 50 ,100 nodes, in which
CBDN achieves very similar results as the network with
10 nodes simulation (See Tables 2, 3 and 4).

Infer important regulators
From the network structure for simulation (Fig. 2) , the
confirmed important regulator is node 1, which is the
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Table 1 Simulation result for 10 nodes tree by comparing CBDN
with other methods by AUC

Covariance ARACNE CLR GENIE3 TIGRESS CBDN

(a) Simulation without
any noise

0.1 0.8367 0.8009 0.8765 0.8157 0.8750

0.2 1 1 1 0.8410 1

0.4 1 1 1 0.8502 1

0.6 1 1 1 0.8272 1

0.8 1 1 1 1 1

b) Simulation with 1/3
random noise

0.1 0.6304 0.6358 0.5879 0.8107 0.8571

0.2 0.9192 0.9846 0.9884 0.8162 1

0.4 1 1 1 0.8327 1

0.6 1 1 1 0.8557 1

0.8 1 1 0.9985 0.8338 1

(c) Simulationwith 2/3
random noise

0.1 0.6904 0.6172 0.6813 0.6241 0.8571

0.2 0.6889 0.8086 0.8480 0.8309 1

0.4 0.9531 0.9599 0.9437 0.8428 1

0.6 1 1 0.9931 0.8424 0.8750

0.8 0.9333 0.9907 0.9807 0.8058 0.8750

parent of all the other nodes in the network. Here, we
calculate the proportion of those nodes in the network,
whose total influence value TIV (Methods) is smaller than
the TIV for node 1, to evaluate the inference ability of
CBDN. From Fig. 5(a) and (b), we see that smaller net-
works are in general inferred more accurately, while the
effects of noise is unpredictable. For example, for the 50
nodes network in Fig. 5(a) , the case with 2/3 noise applied
is better predicted than the cases with smaller noise. The
important regulator prediction is unstable and unbeliev-
able in the network with weak correlation. The proportion
tends to one when the covariance is larger than 0.6 and
the nodes in the network are larger than 20 (Fig. 5(d), (e)
and (f)), which suggest that the inference is quite reliable
for above medium covariance.

Real data
For this test, we download the processed expression data
from GEO [18] (GSE44770), which is from dorsolateral
prefrontal cortex of human brains. The expression data
include 230 tissues from the individuals with or without
Alzheimer’s disease. The negative expression values are
considered missing values because of their low intensities
compared to background noise. We impute these missing
values with the average positive expression values across

Table 2 Simulation result for 20 nodes tree by comparing CBDN
with other methods by AUC

Covariance ARACNE CLR GENIE3 TIGRESS CBDN

(a) Simulation without
any noise

0.1 0.8775 0.9332 0.9747 0.7916 0.9306

0.2 0.9961 0.9963 0.9985 0.8034 1

0.4 1 1 1 0.8245 1

0.6 1 1 1 0.7975 1

0.8 1 1 1 0.8015 1

(b) Simulation with
1/3 random noise

0.1 0.7261 0.8864 0.8369 0.7812 0.8269

0.2 0.9166 0.9836 0.9877 0.7940 0.9286

0.4 1 1 1 0.8249 1

0.6 1 1 1 0.7845 1

0.8 1 1 0.9996 0.8387 1

(c) Simulationwith 2/3
random noise

0.1 0.6364 0.5499 0.5748 0.5848 0.7500

0.2 0.7797 0.8680 0.9146 0.7735 0.8462

0.4 0.9825 0.9905 0.9988 0.8126 1

0.6 0.9977 1 0.9994 0.8465 0.9000

0.8 0.8804 0.9920 0.9911 0.8146 1

all the samples of the same gene. Using gene expression
and cis-eSNPs data, Zhang et al. [17] had earlier found
the disease-related network to be regulated by TYROBP.
In addition, loss-of-function-mutations were recognized
in TYROBP in Finnish and Japanese patients affected by
presenile dementia with bone cysts [19]. Zhang et al. also
overexpressed either full-length or a truncated version of
TYROBP in microglia cells from mouse embryonic stem
cells to confirm the structure and direction of the reg-
ulatory network (Fig. 6). From the TYROBP regulatory
network, we choose 47 GES genes, the expressions of
which are altered when TYROBP is overexpressed and
captured by microarray data, multiple probes designed for
the same gene are combined by averaging their expression
values.
This dataset is then used as the input for ARACNE,

CLR, GENIE3, TIGRESS, and CBDN. The results are
compared with the true network structure and edge
directions from mouse embryonic stem cells experiment.
Figure 7 demonstrates the AUC scores for the five meth-
ods. CBDN achieves the best performance, which is 2%
higher than the second best result from GENIE3. To eval-
uate the capability of CBDN in predicting the regulatory
direction and important regulator, we assume all the genes
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Table 3 Simulation result for 50 nodes tree by comparing CBDN
with other methods by AUC

Covariance ARACNE CLR GENIE3 TIGRESS CBDN

(a) Simulation without
any noise

0.1 0.7643 0.8991 0.9225 0.8562 0.8646

0.2 0.9988 0.9997 0.9999 0.8352 0.9762

0.4 1 1 1 0.8448 0.9286

0.6 1 1 1 0.8483 0.9902

0.8 1 1 1 0.8470 1

(b) Simulation with
1/3 random noise

0.1 0.7018 0.7831 0.8208 0.8151 0.7561

0.2 0.9617 0.9936 0.9985 0.8409 0.9748

0.4 1 0.9999 1 0.8738 0.9688

0.6 1 1 1 0.9032 1

0.8 1 0.9994 0.9998 0.9300 1

(c) Simulationwith 2/3
random noise

0.1 0.6266 0.5486 0.6385 0.6712 0.7561

0.2 0.6196 0.7746 0.8675 0.8139 0.9625

0.4 0.9893 0.9967 0.9991 0.8673 0.8600

0.6 0.9948 0.9982 0.9982 0.8828 0.9697

0.8 0.9286 0.9943 0.9942 0.9043 1

to be potential regulators and ranked them based on
TIV. If one gene is assessed as a regulators, other genes
are assumed to be GES genes. Figure 8 lists the top 10
genes with the largest TIV, only the values of TYROBP
and SLC7A7 are above 8, the validate important regula-
tor TYROBP is ranked at the top. SLC7A7 regulates eleven
GES genes (HCLS1, IL10RA, RNASE6, GIMAP2, RGS1,
TNFRSF1B, IL18, SFT2D2, KCNE3, LHFPL2 and MAF)
and may be another candidate regulator and required to
be validated in the future.
For another experiment, we download the expression

data for brain tumors (GSE19114) and pre-process them
as for Alzheimer’s disease. Eventually, we choose 132
’mesenchymal’ gene expression signature (MGES) genes
and 883 TFs from Supplementary Tables 1 and 2 from
the original paper [15]. Both MGES genes and TFs are
combined together to calculate TIV for each TFs, because
we are also required to consider the regulatory relation-
ships between TFs. We are unable to identify the two key
regulators (STAT3 and C/EBPβ) described in the origi-
nal papers from the top TIV ranked TFs (Fig. 9), because
we adopt different definitions and inherent characteristics
of important regulators. The top two TFs, ZNF329 and
RB1 with TIV s exceed 120, are selected as new candidate

Table 4 Simulation result for 100 nodes tree by comparing
CBDN with other methods by AUC

Covariance ARACNE CLR GENIE3 TIGRESS CBDN

(a) Simulation without
any noise

0.1 0.7445 0.8674 0.9388 0.8394 0.9804

0.2 0.9976 0.9995 1 0.8632 0.9231

0.4 1 1 1 0.8676 0.9792

0.6 1 1 1 0.8872 1

0.8 1 1 0.8426 0.9018 1

(b) Simulation with
1/3 random noise

0.1 0.6929 0.7572 0.8303 0.7765 0.8333

0.2 0.9561 0.9915 0.9992 0.8615 0.9894

0.4 1 1 1 0.8745 0.9875

0.6 1 1 1 0.9071 0.9905

0.8 1 0.9992 1 0.9511 0.9965

(c) Simulationwith 2/3
random noise

0.1 0.4874 0.6362 0.6480 0.6547 0.9756

0.2 0.7527 0.8294 0.8867 0.8169 0.9794

0.4 0.9737 0.9871 0.9976 0.8843 0.9938

0.6 0.9990 0.9996 0.9998 0.9237 0.9907

0.8 0.9520 0.9973 0.9979 0.9123 0.9965

important regulators. The relationship between ZNF329
and brain tumors is still unclear, but zinc finger pro-
tein family has been proved to be associated with brain
tumor. Zhao et al. [20] identified ZNF325 as a transcrip-
tion repressor in MAPK/ERK signaling pathway. Recently,
Das et al. [21] made a comprehensive review to clarify
the relationship between MAPK/ERK signaling pathway
and brain tumors and how can one inhibit this pathway to
treat paediatric brain tumors. RB1 gene is themost impor-
tant cell cycle regulatory genes and the first reported
human tumor suppressor gene. It has been identified to
be related with a variety of human cancers including brain
tumors [22]. Mathivanan et al. found loss of heterozy-
gosity and deregulated expression of RB1 in human brain
tumors [23].

Discussion
In this paper, we propose a new computational method
called Context Based Dependency Network (CBDN),
which constructs directed GRNs from only gene expres-
sion data. This provides us an opportunity to gain deeper
insights from the readily available gene expression data
that we have accumulated for years in databases such
as GEO. Although gene expression data can reflect the
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(a) Covariance=0.1 (b) Covariance=0.2

(c) Covariance=0.4 (d) Covariance=0.6

(e) Covariance=0.8 (f) Covariance=0.9

Fig. 5 The performance of predicting important regulator by DDPI. The increasing covariance spectrum is assigned from 0.1-0.9 in (a)-(f). Different
situations such as the amount of mixed noise and the number of nodes are also evaluated in each subfigure

gene-gene interactions in GRN, there are still three
limitations that must be addressed. First, the transcription
factors prefer to act together as a protein complex rather
than individually. The protein complex may be blocked or
inactivated, for reasons such as incorrect folding, being
restricted in the nucleus or inactivated by the phosphory-
lation or other modifications, etc., even if its transcribed
mRNA has high expression level. Second, the expression
of TF and TF binding are time-dependent. Because the

time delay exists between transcription and translation,
high mRNA expression level does not imply a simultane-
ous high in protein abundance. Third, even when TFs are
bound to their target genes, they may demonstrate differ-
ent effects because of their three dimensional distances
and histone modification.
The probes with low florescence signals are impossible

to be distinguished from background noise. CBDN treats
them as missing values and imputes them by the average



The Author(s). BMCGenomics 2016, 17(Suppl 4):430 Page 350 of 456

Fig. 6 The network structure for the TYROBP oriented regulatory network for Alzheimer’s disease

value of the other samples. We have further tested other
gene expression imputation methods such as the impute
package from Bioconductor or BPCA [24], the recon-
structed GRN seems stable and consistence. In the future,
some noise filtering methods should be incorporated in
CBDN such as described in [25, 26].
The performances of CBDN are underestimated for

both simulated and real expression data. Except CBDN,
the true positive results are defined as the interactions
exist in both predictions and ground truth, which neglect

GRN evaluation for TYROBP oriented regulatory network

Methods

A
U

C

ARACNE
CLR

GENIE
3

TIG
RESS

CBDN
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 7 The performance of different methods for predicting TYROBP
oriented regulatory network

the edge direction. For CBDN, both of the interactions and
directions are taken into consideration for evaluating its
performance. Even though only 2% of AUC is improved
in TYROBP oriented GRN inference, the result is more
powerful and useful since they incorporate edge direc-
tions. The performance of CBDN is significantly better

Rank for candidate important regulators
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Fig. 8 The top ten genes with the largest TIV values for Alzheimer’s
disease
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Fig. 9 The top ten genes with the largest TIV values for brain tumors

than other methods in some situations such as Table 1(c)
with covariance= 0.1, but most of the time CBDN is only
slightly better or comparable with other methods.
We believe that CBDN will be invaluable to biomedi-

cal studies by transcriptome sequencing, where there is a
need for the identification of important regulators. Such
studies used to be limited by the availability of SNP data
to anchor regulatory directions. However, CBDN may be
able to infer such important regulators from gene expres-
sion data alone, as it identifies the important regulator
TYROBP in Alzheimer’s disease. Because CBDN uses new
concept of important regulators, it can also help us get
new findings which may be neglected by the previous
approaches.
This paper also contributes to mathematics in the form

of an inequality for directed data processing (DDPI)
which naturally extends the data processing inequality for
mutual information. DDPI is applied to remove transitive
interactions in CBDN.
In the future CBDN should be extended to predict bi-

directed interactions which are quite common in nature.
By incorporating external data, we hope to use it to tackle
the situations where more than one TFs co-regulate a gene
simultaneously.

Conclusion
The reconstruction of gene regulatory network has been
actively researched in the past decade, many methods
have been designed to achieve this using only high-
throughput gene expression data. However, the edge
direction is usually unknown and seems hard to be deter-
mined by only gene expression data. Even when the direc-
tions can be affirmed, the available approaches is unable
to remove transitive interactions from directed network.
Here, we propose a novel method CBDN, which can

reconstruct direct gene regulatory network by only gene
expression data. CBDN first constructs an asymmetric
partial correlation network to determine the two influence
functions for each pair of genes and determine the edge
direction between them. DDPI extends data processing
inequality applied in directed network to remove tran-
sitive interactions. By aggregating the influence function
to all the nodes in the network, the total influence value
is calculated to assess whether the node is an important
regulator. For both simulation and real data test, CBDN
demonstrated superior performance compared to other
available methods in reconstructing directed gene regula-
tory network. It also successfully identified the important
regulators for Alzheimer’s disease and brain tumors.

Methods
Partial correlation network
In CBDN, a partial correlation network is first constructed
to compute the influence of each node to the others. Inter-
action directions are resolved by choosing the node with a
larger influence as the parent. The influence of gene A to
gene B is calculated by averaging the difference between
the shortest topological paths of gene B to other genes
with or without gene A. We assume the input data is an
m × n matrix, E = (ei,j)m×n, where each row i (denoted
Ei,•) represents a sample; that is, one expression value
per gene; and each column j (denoted E•,j) represents the
expression values of a gene across all the samples.
The partial correlation between Xi and Xk given Xj is

calculated as

PC(Xi,Xk|Xj) = Corr(Xi,Xk) − Corr(Xi,Xj)Corr(Xk ,Xj)√
[ 1 − Corr(Xi,Xj)2] [ 1 − Corr(Xk ,Xj)2]

(8)

Where Corr(Xi,Xj) is the Pearson correlation between
two genes Xi and Xj. The influence of gene Xj for the
correlation between Xi and Xk (k �= j) is defined as the
difference between Corr(Xi,Xj) and PC(Xi,Xk|Xj),

d(Xi,Xk|Xj) = Corr(Xi,Xk) − PC(Xi,Xk|Xj) (9)

The influence of geneXj toXi,D(Xj → Xi) is the average
d(Xi,Xk|Xj) across all the gene Xk ,

D(Xj → Xi) = 1
n − 1

�n−1
k �=j |d(Xi,Xk|Xj)| (10)

CBDN assumes no two-gene cyclic regulation in the
network, so we remove the interaction Xi → Xj ifD(Xi →
Xj) < D(Xj → Xi), and vice versa.

Proof for directed data processing inequality
In the directed GRN, we assume three genes (Xi, Xj and
Xk) form a Markov chain (Xi → Xj → Xk), the other
genes are separated into two categories: non-descendents
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of Xi (U = {Xm · · ·Xn}) and descendents of Xi (V =
{Xp · · ·Xa}). For the elements in U,

D1(Xi → Xk) = 1
|U|�

|U|
t �=i|d(Xk ,Xt|Xi)| (11)

D1(Xj → Xk) = 1
|U|�

|U|
t �=j|d(Xk ,Xt|Xj)| (12)

Based on Eq. 9, Xk is conditionally independent with
the elements in U given Xi or Xj, thus we have
PC(Xk ,Xt|Xj) = PC(Xk ,Xt|Xi) = 0, |d(Xk ,Xt|Xi)| =
|d(Xk ,Xt|Xj)| = |Corr(Xk ,Xt)|, ∀t ∈ U . For the genes inU,
Xi and Xj have the same influence to Xk , D1(Xi → Xk) =
D1(Xj → Xk).
For the elements in V

D2(Xi → Xk) = 1
|V |�

|V |
t �=i|d(Xk ,Xt|Xi)| (13)

D2(Xj → Xk) = 1
|V |�

|V |
t �=j|d(Xk ,Xt|Xj)| (14)

Because Xk is the direct descendent of Xj, Xk is inde-
pendent with other genes in V given Xj (PC(Xk ,Xt|Xj) =
0, d(Xk ,Xt|Xj) = |Corr(Xk ,Xt)| ≥ 0,∀t ∈ V ). The correla-
tions between Xk and the other genes in V do not change
when given Xi, so |d(Xk ,Xt|Xi)| = 0,∀t ∈ V . We conclude
that D2(Xi → Xk) = 0 and D2(Xj → Xk) ≥ 0

D(Xi → Xk) = D1(Xi → Xk) + D2(Xi → Xk)

≤ D1(Xj → Xk) + D2(Xj → Xk)

= D(Xj → Xk)

(15)

Determine the important regulators
We propose a new method to identify the important reg-
ulators in a quantitative way. Assume the genes with gene
expression signature (GES) (eg. differentially expressed
genes) are Xs1,Xs2, . . . ,Xsn, the total influence value (TIV )
of gene Xi is TIV (Xi) = �n

t=1D(Xi → Xst). Regulators are
ranked by their TIV s.
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