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Abstract

Background: Since its initial discovery in 1975, DNA methylation has been intensively studied and shown to be
involved in various biological processes, such as development, aging and tumor progression. Many experimental
techniques have been developed to measure the level of DNA methylation. Methyl-CpG binding domain-based
capture followed by high-throughput sequencing (MBDCap-seq) is a widely used method for characterizing DNA
methylation patterns in a genome-wide manner. However, current methods for processing MBDCap-seq datasets
does not take into account of the region-specific genomic characteristics that might have an impact on the
measurements of the amount of methylated DNA (signal) and background fluctuation (noise). Thus, specific
software needs to be developed for MBDCap-seq experiments.

Results: A new differential methylation quantification algorithm for MBDCap-seq, MBDDiff, was implemented. To
evaluate the performance of the MBDDiff algorithm, a set of simulated signal based on negative binomial and
Poisson distribution with parameters estimated from real MBDCap-seq datasets accompanied with different
background noises were generated, and then performed against a set of commonly used algorithms for
MBDCap-seq data analysis in terms of area under the ROC curve (AUC), number of false discoveries and statistical
power. In addition, we also demonstrated the effective of MBDDiff algorithm to a set of in-house prostate cancer
samples, endometrial cancer samples published earlier, and a set of public-domain triple negative breast cancer
samples to identify potential factors that contribute to cancer development and recurrence.

Conclusions: In this paper we developed an algorithm, MBDDiff, designed specifically for datasets derived from
MBDCap-seq. MBDDiff contains three modules: quality assessment of datasets and quantification of DNA
methylation; determination of differential methylation of promoter regions; and visualization functionalities.
Simulation results suggest that MBDDiff performs better compared to MEDIPS and DESeq in terms of AUC and the
number of false discoveries at different levels of background noise. MBDDiff outperforms MEDIPS with increased
backgrounds noise, but comparable performance when noise level is lower. By applying MBDDiff to several
MBDCap-seq datasets, we were able to identify potential targets that contribute to the corresponding biological
processes. Taken together, MBDDiff provides user an accurate differential methylation analysis for data generated by
MBDCap-seq, especially under noisy conditions.
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Background
The human genome is composed of billions of heritable
non-static epigenetic arrangement of histone and DNA
sequence that controls how genes are expressed [1]
DNA methylation, along with some other covalent mod-
ifications of histone or DNA sequences, have regulatory
control over gene expression. In 1975, two key publica-
tions have suggested that methylation of cytosine resi-
dues in the context of CpG dinucleotide could be an
epigenetic marker of DNA sequences [2, 3]. A large ma-
jority of CpG islands of the vertebrate genome reside in
or near the promoter regions [4]. Since then, DNA
methylation has been intensively studied and, specific-
ally, DNA methylation in promoter regions has been
shown to be associated with cell development, tumor
progression, and aging [5–7]
Through years of efforts, many experimental methods

have been developed to assay the methylation status of
CpG in a genome-wide manner. Currently, the golden
standard of genome-wide profiling of DNA methylation
is the whole genome bisulphite sequencing, which in-
volves treatment of sodium bisulphite followed by high
throughput sequencing (BS-seq) [8]. However, there are
two major disadvantages for BS-seq. Firstly it requires
genome-wide deep sequencing in order to precisely
identify modification at base-pair level, which currently
is not cost effective. Secondly, datasets generated by BS-
seq might also give rise to alignment difficulties due to
C/T modification. On the other hand, affinity-based
method, such as methylated DNA immunoprecipitation
followed by high throughput sequencing (MeDIP-seq)
[9] and methyl-CpG binding domain-based capture
followed by high throughput sequencing (MBDCap-seq)
[8], are established as alternatives to BS-seq for genome-
wide DNA methylation profiling which are more cost ef-
fective. It has been shown that MeDIP-seq is more sensi-
tive to highly methylated, high-CpG densities regions
and MBDCap-seq is more sensitive to highly methylated,
moderate-CpG densities [10].
MBDCap-seq approach uses methyl-CpG binding do-

main of the MBD2 protein to capture double-stranded
DNA, combined with subsequent high throughput se-
quencing, to systematically identify methylated regions
in the genome. There are some unique characteristics of
MBDCap-seq. DNA methylation profiling by MBDCap-
seq is biased by underlying CpG properties of the gen-
ome, more precisely,, methylated regions with high GC
contents are more likely to be eluted than regions with
low GC contents. In terms of quantification of DNA
methylation levels and the determination of differential
methylation (DM), current methods used for testing of
differential methylated regions (DMRs) generally do not
take the sample specific background noise during MBD
capture, which is caused by non-specific pull-down

behavior of methyl-CpG binding domain, into consider-
ation. Last but not least, up till now, there is no software
that is designed specifically for processing large
MBDCap-seq datasets. Previously, we developed an algo-
rithm called BIMMER for testing genome-wide differen-
tial methylation, where we constructed a two-layer
hidden Markov model (HMM) to model the differential
methylation status [10]. However, because of the com-
plexity of the algorithm and the nature of Expectation-
Maximization (EM) solution, BIMMER is relatively slow
in speed and is not suited for analyzing MBDCap data-
sets in large scale. Our aim for the study presented here
is to provide an efficient computational pipeline specific-
ally designed for identification of DM genes by using
MBDCap-seq protocol.

Methods
Genome-wide MBDCap sequencing for prostate cancer
patient samples
MBDCap-seq protocol was carried out to identify meth-
ylated regions across the genome for a set of prostate
cancer samples as listed in Table 1. Total of 6 primary
prostate tumors derived from patients that have different
clinical outcome (3 Metastasized (METs) and 3 No Evi-
dence of Disease (NEDs)) were processed and se-
quenced. Methylated fragments, bound to a methyl-CpG
binding domain protein, were eluted for sequencing with
the Illumina HiSeq 2000 sequencer with 50 bp single
read (SR) sequencing module. Approximately 295 mil-
lion sequence reads were generated and around 78 %
reads were mapped to unique genome locations for all 6
samples. The MBDCap-seq analysis pipeline is:

1. Apply FastQC to short read sequences to examine
sequencing QC and other characteristics of
sequence reads. Extract the file fastqc_data.txt for
GC enrichment analysis;

2. Perform BWA aligner to align sequence reads to
UCSC human genome build hg19 [11];

3. Remove sequence reads with equal and more than
2 bp mis-match and non-uniquely mapped to the
genome;

4. Sort, convert and index BAM file for each sample;

Table 1 6 prostate tumor samples profiled with MBDCap

Sample
ID

Outcome Gleason Reads
(millions)

Mapped reads
(millions)

1 MET 7 51.57 40

2 MET 7 50.43 40.54

3 MET 10 53.43 41.83

4 NED 6 45.71 34.63

5 NED 7 47.05 27.03

6 NED 46.49 44.85
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5. Count number of reads in 100 bp bins tiling through
entire genome by using BedCoverage/BedTools [12];

6. Count number of reads within 4kbp regions (+/- 2kbp
around transcription start sites (TSS)) of each gene by
using BedCoverage tool.

Determination of GC enrichment
Normal human genome has GC content percentage
roughly around 40 % (see UCSC genome statistics at
http://genome.ucsc.edu/goldenPath/stats.html#hg18). The
FastQC algorithm generates a GC counting statistic
from all reads in fastqc_data.txt. If a sample contains
portion of DNA that are enriched in GC content, we ex-
pect to see a shifted distribution, as illustrated in the Re-
sults section Fig. 4, to the right side of the normal
genomic DNA GC distribution. Thus, by assuming a
mixture model of 2 Gaussian distributions (gray-dashed
line in Fig. 4), or G = p1N(μ1, σ1) + p2N(μ2, σ2), where
p1 + p2 = 1, we can determine GC enrichment score,

ES ¼ p2 μ2−μ1ð Þ= p1 � 20ð Þ ð1Þ
We initialized the model fitting with following parame-

ters (for human genome), μ1 = 40, μ2 = 60, and p1 = p2 =
0.5. For our default setting (50 % reads are GC enriched),
ES = 1.0. If only 20 % reads are enriched for GC content
(p2/p1 = 20/80 = 1/4), we will have ES = 0.25, assuming
other parameters stay the same. We select samples with
ES > 0.2, otherwise, samples will be discarded without
further data analysis.

Construction of reference regions to measure background
noise
Gene annotation (refFlat table) of human genome hg19
build was downloaded using UCSC table browser
(http://genome.ucsc.edu/). Promoter regions were de-
fined as regions ranging from 2 Kb upstream of TSS to
2Kb downstream of TSS. We only kept one TSS for
transcripts with same TSS. In total, we constructed an-
notation for 33,178 promoters. To identify regions that
potentially contribute to background noise, we built a
100 bp tiling window across the whole genome. We then
used BEDTools to count the number of mapped reads
within each tiling window of the 6 prostate cancer samples.
In order to identify the regions for measuring background
noise, we applied following procedures:

1. Filtering step: We exclude any 100 bp genome-wide
tiling windows that reside in promoter regions, pre-
dicted CpG islands regions and any windows that
contain ambiguous bases (gaps);

2. Construction Step: We then select preliminary
background regions based on GC content as follows:
for each promoter region, identify 80 100 bp

windows nearby that has low in GC content (<40 %)
and also relatively proximal to the corresponding
TSS; and

3. Finalize background regions based on average transcript
per million (TPM): for each promoter region, choose
40 out of 80 100 bp windows that are relatively low in

TPM [13] as defined as TPM ¼ rg�rl�106

f lg�
P

G
rg�rl
f lg

; where

rg is the number of reads mapped to each 100 bp
window, rl is the read length, flg is fragment length, in
our case, 100.

Statistical framework and differential methylation testing
of MBDDiff algorithm
The read count for promoter region of gene i can be
decomposed into two components, true signal Si, which
is directly associated with real methylation level, and
background noise Bi, which is attributed mainly to the
random pull-down events from the wet-lab procedure of
MBDCap-seq. Previously, we have developed an algo-
rithm, XBSeq [14], for testing for differential expression
for RNA-seq experiments. Here we applied similar stat-
istical framework for MBDCap-seq experiments. Simply
speaking, we assumed that the true signal (what we
would like to estimate) Si possesses a negative binomial
distribution and background noise Bi follows a Poisson
distribution. Then the observed signal (what we typically
measured) Xi is a convolution of Si and Bi, which is gov-
erned by a Delaporte distribution [15].

Xi ¼ Si þ Bi

Si eNB ri; ; pið Þ ð2Þ

Bi e Poisson λið Þ

We further assumed that background noise Bi and true
signal Si are independent. By default, we applied a non-
parametric method for parameter estimation. The Pois-
son parameter λι for Bi can be estimated as:

λi ¼ 1
m

Xm
j¼1

bij ð3Þ

where bij denotes estimated background noise for pro-
moter i across m replicates for each condition. Following
the estimation of Poisson parameter, we will be able to
infer mean μSi and standard deviation σSi for each pro-
moter region:

μSi ¼ E Sið Þ ¼ E Xið Þ−E Bið Þ ð4Þ

σ2Si ¼ σ2Xi
þ σ2Bi

−2ρσXiσBi ; ð5Þ

Then the parameters for negative binomial distribution
can be estimated by
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ri ¼ μ2Si= σ
02
Si −μSi

� �
ð6Þ

pi ¼ μSi=σ
02
Si ð7Þ

where σ
0
Si denotes adjusted variance for Si. This has

proven to be useful when the sample size is small [16].
Details regarding non-parametric parameter estimation
can be found in our previous publication of XBSeq [14].
When sample size is relatively large (>5), the max-

imum likelihood estimation (MLE) is applied to estimate
parameters. The likelihood function is given by

L θið Þ ¼
Ym
j¼1

p Xijjαi; βi; λi
� �

⋅
Ym
j¼1

p Bijjλi
� �

¼
Ym
j¼1

XXij

k¼0

Γ αi þ kð Þβki λXij−k
i e−λi

Γ αið Þk! 1þ βi
� � αiþkð Þ

Xij−k
� �

!
⋅
Ym
j¼1

λ
Bij

i e−λi

Bij!

ð8Þ
which has no closed form. Broyden–Fletcher–Goldfarb–
Shanno (BFGS) algorithm is used to estimate the param-
eters by iterative updating. αi and βi are parameters for
gamma portion of Delaporte distribution which are re-
lated to negative binomial parameters by:

ri ¼ αi ð9Þ
pi ¼ 1= βi þ 1

� � ð10Þ
After successful estimation of all parameters, differen-

tial methylation testing of each promoter between two
groups (with read count x and y) will be carried out by
using moderated Fisher’s exact test:

p ¼
X

p a;bð Þ≤p x;yð Þp a; bð ÞX
all
p a; bð Þ ð11Þ

where a and b are constrained by a + b = x + y

Simulation
In order to evaluate the performance of our method, we
generated a set of simulated datasets where we can con-
trol the differential methylation status of each promoter
region. In this study, true signal S was simulated from a
negative binomial distribution and background noise B
was simulated from a Poisson distribution with parame-
ters estimated from real MBDCap-seq datasets. We
compared MBDDiff with MEDIPS [17], an R package
designed for general purpose DNA fragments enrich-
ment experiments, such as MeDIP-seq and MBDCap-
seq for their ability to detect differntially methylated
regions. We also compared MBDDiff with DESeq [16],
an algorithm originally designed for differential expres-
sion analysis where the background noise is not consid-
ered for testing of expression difference between two

conditions. We choose DESeq algorithm due to the
fact that it has similar signal distribution assumption
(Negative binomial) and differential test statistic (Fisher’s
Exact test).
We followed a similar simulation procedure described

in XBSeq. Basically, to estimate model parameters from
a given MBDCap-seq dataset, 5000 promoters were
randomly selected with replacement after discarding
promoters with relatively low mapped reads or larger
dispersion (top 10 %). The true signal S was simulated
from a negative binomial distribution based on the mean
and variance estimated from the 5000 promoters. 10 %
or 30 % of the promoters were selected to be differen-
tially methylated with enrichment fold change either 2
or 3. We simulated experiments with either 3 or 6 repli-
cate samples per group to examine the potential effect
of the number of replicates. To simulate background
noise B, we first simulated read counts for the selected
100 bp windows. Then for each promoter region, back-
ground noise B was the summation of the read counts
from all the corresponding 100 bp windows. We gener-
ated background noise in three different scenarios, with
different level of dispersion, to examine the performance
of our method in normal and noisy conditions. Back-
ground noise with different dispersion levels were simu-
lated for each 100 bp window from a hybrid model:

BinceM � Norm μ; σð Þ ð12Þ

where μ is from a Poisson distribution μ~ Poisson(λ +NF).
In our simulation, we set M = 10, σ = 3. The noise factor
NF can be chosen from 0, 7, 20, each represents experi-
ments with low background noise, intermediate back-
ground noise and high background noise. Simulations
were repeated 100 times and statistical metrics were eval-
uated based on the average performance.
We evaluated different algorithms (MBDDiff, MEDIPS

and DESeq) for their ability to discriminate between dif-
ferentially methylated and non-differentially methylated
promoters in terms of the following metrics: area under
the ROC curve, number of false discoveries, statistical
power, false discovery rate at pre-selected p value cutoff,
distribution of p values under null model where there
are no differentially methylated promoters. We also
examined the performance of different methods separ-
ately for lowly and highly methylated promoters to see
whether the performance is affected by methylated level
of the promoter.
In order to investigate performance of different methods

when the underlying model assumption can not be met.
We simulated true signal from normal distribution with
parameters estimated from a real MBDcap-seq dataset
and background noise from either normal or uniform dis-
tribution to see whether the performance of different
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methods is affected or not. For instance, to simulate back-
ground noise from normal distribution. We also applied
equation (12). The difference is that, the parameter μ is
from a normal distribution with parameters estimated
from a real MBDcap-seq dataset.

Additional DNA methylation datasets for testing
In addition to our in-house prostate cancer samples, we
also applied our method MBDDiff to previously published
MBDCap-seq datasets where we compared endometrial
cancer patient with either recurrent or non-recurrent out-
come. 3 patients in each group were selected and proc-
essed with different methods to identify potential factors
that contribute to endometrial cancer recurrence. Details
about the experiments can be found in GSE26592 [18].
Similarly, we also selected and processed three tumor

and normal samples from public domain dataset
GSE58020, where MBDCap-seq were carried out to in-
vestigate DNA methylation profile for tripe negative
breast cancers (TNBCs) [19].

Comparison with other software for MBDCap-seq datasets
We also compared our algorithm with some other
methods for MBDCap-seq datasets, including MEDIPS
(1.20.0), DESeq (1.20.0). All these evaluations were

carried out under R version 3.2.0 and Bioconductor ver-
sion 3.1. Details regarding simulation procedure and
workflow of MBDDiff is illustrated in Fig. 1.

Results
Implementation of MBDDiff
In order to use MBDDiff, we need to construct species
specific background annotations that will be used to
measure background noise for MBDCap-seq datasets.
Several background annotation files have already been
constructed and can be downloaded from github page
(https://github.com/Liuy12/MBDDiff_files). Please follow
instructions from MBDDiff package if you want to con-
struct background annotation for your organism of choice.
Currently MBDDiff uses BEDTools to count reads mapped
to promoter and background regions. So users need to
have BEDTools installed on their computer.
After counting reads mapped to promoter and back-

ground regions, MBDDiff then applies quality control
procedure to examine the quality of MBDCap-seq
datasets. Differential methylation testing will be car-
ried out by XBSeq algorithm. In addition, MBDDiff
also provides a set of visualizing tools for MBDCap
data analysis.

Fig. 1 Workflow for MBDDiff and simulation procedure
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Discrimination between DM and non-DM promoters
In order to compare MBDDiff, MEDIPS and DESeq for
processing MBDCap-seq datasets, we generated syn-
thetic datasets when the differential methylation status
and fold change of each promoter region can be con-
trolled. We followed the simulation procedure described
in the Methods section. Briefly, methylation levels from
5000 promoter regions and their corresponding back-
ground noise were simulated with model parameters es-
timated from a given prostate cancer MBDCap-seq
dataset. Among 5000 promoter region simulated, 10 %
or 30 % promoters were designated for enrichment fold-
change at 2 or 3. Different background noise levels were
simulated and all statistical metric calculation were re-
ported as an average over 100 repeats.
We first compared the three methods for their ability

to discriminate between differentially methylated and
non-differentially methylated promoters in terms of the
area under the Receiver Operating Characteristic (ROC)
curve (AUC). As shown in Fig. 2 and Additional file 1:
Table S1 and S2, 6 sample per group generally performed
better than 3 samples per group in terms of AUC under
various conditions. Overall, MBDDiff performs better with

a higher AUC compared to MEDIPS and DESeq with dif-
ferent levels of background noise. For instance, under the
condition of 3 samples per group, 10 % of differentially
methylated promoters and 2-fold difference between two
groups, MBDDiff achieved AUC 0.84 when background
noise is relatively low, while the AUCs for MEDIPS and
DESeq are 0.81 and 0.80 respectively. Even though all
three methods have decreased AUC when background
noise is increased (MBDDiff drop 0.04 to 0.80, MEDIPS
dropped 0.1 to 0.71, and DESeq also dropped 0.1 to 0.70),
MBDDiff is relatively resistant to higher background noise
and performs much better even when the background
noise is at very high level. We then examined the perform-
ance of the three methods separately for highly methylated
(>75 %) and weakly methylated (<25 %) promoters.
MBDDiff performs only slightly better compared to MED-
IPS and DESeq for highly methylated promoters (Fig. 2b
and Additional file 1: Figure S1a). However, for weakly
methylated promoters, MBDDiff performs much better
than MEDIPS and DESeq which indicates that back-
ground noise estimation procedure is essential for accur-
ate DM detection under weakly methylation condition
(Fig. 2c and Additional file 1: Figure S1b).

a) b)

c) d)

Fig. 2 ROC curves of MBDDiff, MEDIPS and DESeq for simulated datasets in different scenarios. ROC curves for simulated MBDcap-seq datasets
with low, intermediate or high level of background noise with 3 number of replicates in each group, 10 % of DM promoters with 2 fold of difference
(a); Different levels of background noise but only for highly methylated promoters above 75 % quantile of methylation levels (b); Different levels of
background noise but only for lowly methylated promoters below 25 % quantile of methylation levels (c); ROC curves for simulated MBDcap-seq
datasets with low, intermediate or high level of background noise with 6 number of replicates in each group, 10 % of DM promoters with 2 fold of
difference (d); Simulation was carried out 100 times and the average results is used
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Control of false discoveries
We then compared the performance of MBDDiff, MED-
IPS and DESeq in terms of the false discoveries encoun-
tered among the top ranked differential methylated
promoters based on p value. Overall, MBDDiff picked
up the least number of false discoveries in various condi-
tions (Fig. 3 and Additional file 1: Table S1 and S2). For
example, under the condition of 3 samples per group,
10 % of differentially methylated promoters and 2-fold
difference between two groups, MBDDiff identified 248
out of 500 number of false discoveries compared to
MEDIPS (271) and DESeq (279) when the background
noise has relatively low dispersion. When the back-
ground noise is increased, MBDDiff also picked up in-
creased number of false discoveries (add 31 to 279), but
is relatively resistant to the increase of background noise
compared to MEDIPS (add 69 to 340) and DESeq (add
64 to 344). We also took a similar approach to examine
the three methods separately for highly methylated
(>75 %) and weakly methylated (<25 %) groups. The
three methods picked up similar number of false dis-
coveries for highly methylated promoters (Fig. 3b and
Additional file 1: Figure S1c). However, for weakly

methylated promoters, MBDDiff again performs the
best with lowest number of false discoveries encoun-
tered (Fig. 3c and Additional file 1: Figure S1d). We also
examined false discovery rate at pre-selected p value
cutoff (p value = 0.05, Additional file 1: Figure S2c).
MBDDiff has relatively low false discovery rate (around
0.4) compare to MEDIPS (around 0.5) and DESeq
(around 0.5). Overall, MBDDiff is more robust against
false discoveries compared to MEDIPS and DESeq espe-
cially for weakly methylated promoters even when the
background noise is relatively high.

Statistical power
Finally, we compared MBDDiff, MEDIPS and DESeq in
terms of the statistical power at selected cutoff (p value
= 0.05). As shown in Fig. 4 and Additional file 1: Table
S1&2, MEDIPS performs the best when the background
noise is relatively low. However, when we increased the
dispersion of background noise, MBDDiff became the
best method with the largest statistical power. For in-
stance, under the condition of 3 samples per group,
10 % of differentially methylated promoters and 2-fold
difference between two groups, MBDDiff achieved

a) b)

c) d)

Fig. 3 False discovery curves of MBDDiff, MEDIPS and DESeq for simulated datasets in different scenarios. False discovery curves for simulated
MBDcap-seq datasets with low, intermediate or high level of background noise with 3 number of replicates in each group, 10 % of DM promoters
with 2 fold of difference (a); Different levels of background noise but only for highly methylated promoters above 75 % quantile of methylation
levels (b); Different levels of background noise but only for lowly methylated promoters below 25 % quantile of methylation levels (c); False
discovery curves for simulated MBDcap-seq datasets with low, intermediate or high level of background noise with 6 number of replicates in each
group, 10 % of DM promoters with 2 fold of difference (d); Simulation was carried out 100 times and the average results is used
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statistical power of 0.41 compared to MEDIPS (0.45)
and DESeq (0.34) when the background noise is rela-
tively low. However, when the background noise is
higher, MBDDiff performs better with statistical power
of 0.34 compared to MEDIPS (0.27) and DESeq (0.20).
Similarly, we also compared statistical power of the three
algorithms separately for highly methylated (>75 %) and
weakly methylated (<25 %) promoters. For highly meth-
ylated group, MEDIPS performs slightly better than
MBDDiff as shown in Fig. 4b and Additional file 1:
Figure S1e. In contrast, for weakly methylated groups,
MBDDiff performs much better than MEDIPS when the
background noise is relatively high (Fig. 1f and 4c). Over-
all, MBDDiff remains one of the best method in terms of
statistical power in various conditions and is more robust
against the increase of background noise.

Apply MBDDiff to prostate cancer datasets
We recently carried out MBDCap-seq to examine whole
genome DNA methylation profile in prostate tumors in
order to identify potential factors that are involved in the
development of prostate cancer after treatment. We

excluded one patient sample because of a relative different
Gleason score from other 5 samples. Then we applied
MBDDiff to 5 samples in order to identify differentially
methylated promoters between MET group and NED
group. As shown in Fig. 6(a), there is a clear enrichment
of GC content for highly methylated regions, which indi-
cates the effectiveness in MBD2 capture procedure for our
prostate samples. The enrichment of GC content was fur-
ther assessed in Fig. 5, where 2 samples (one for MET and
one for NED) were selected and their GC enrichment
scores are 0.25 an 0.33, respectively. Figure 6(b) showed
the distribution of background noise and promoter re-
gions. We also examined the relationship between tumor
samples. As we can observe from Fig. 6(c), patients with
NED outcome are more dispersed than patients with
MET outcome which might suggests a common mechan-
ism for prostate cancer metastasis. After performing
differential methylation algorithm, we identified 57 differ-
entially methylated promoters with absolute log2 fold
change greater than 1, p-value smaller than 0.001 and av-
eraged methylation levels greater than 15 (read count
unit). ANO7, a gene hyper-methylated in prostate cancer

a) b)

c) d)

Fig. 4 Statistical power of MBDDiff, MEDIPS and DESeq for simulated datasets in different scenarios. Bar plot of statistical power for simulated
MBDcap-seq datasets with low, intermediate or high level of background noise with 3 number of replicates in each group, 10 % of DM promoters
with 2 fold of difference (a); Different levels of background noise but only for highly methylated promoters above 75 % quantile of methylation
levels (b); Different levels of background noise but only for lowly methylated promoters below 25 % quantile of methylation levels (c); Bar plot of
statistical power for simulated MBDcap-seq datasets with low, intermediate or high level of background noise with 6 number of replicates in each
group, 10 % of DM promoters with 2 fold of difference (d); Simulation was carried out 100 times and the average results is used
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identified by our study, has been reported that it may act
as a target gene for antibody-based immunotherapy [20].
F13A1, which is also identified as differentially methylated,
is associated with bone metastasis in prostate cancer [21].
To conclude, by using MBDDiff, we were able to identify
57 promoters that were differentially methylated between

MET and NED. This set of genes might be of helpful for
future studies of prostate cancer metastasis.

Apply MBDDiff to breast cancer datasets
To demonstrate the functionalities of MBDDiff, we also
applied MBDDiff to a public dataset derived from TNBCs

a) b)

c) d)

Fig. 6 Apply MBDDiff to prostate cancer datasets. (a) Density plot of GC content grouped by different levels of methylation for all 100 bp
windows across the whole genome of one example prostate MET sample; (b) Distribution of background noise and promoter counts; (c) 3D PCA
plot of sample relation. C indicates NED patients and T indicates MET patients; (d) Heatmap of selected promoters for 5 prostate cancer samples
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Fig. 5 GC enrichment assessment. We perform GC enrichment test for all samples processed with MBDCap-seq protocol. a Enrichment score (ES)
of 0.25 were detected for a MET sample. The dash lines are two Gaussian mixture models (light dash line for normal human genome GC distribution
estimated from 50 bp short reads, and dark dash line for enriched 50 bp reads). ES score is evaluated by using Eq. 1. b ES of 0.33 for a NED sample.
Both samples pass the threshold of > 0.20 requirement. In both (a) and (b), blue-line is the empirical density from the actual data, and red-line is the
mixture model density. Both figure showed a tight estimation
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(GSE58020). We selected and processed 3 samples in both
tumor and normal conditions. Firstly, MBDDiff assessed
the quality of the samples by examining the GC enrich-
ment for all 100 bp windows with different levels of
methylation. As shown in Fig. 7(a), there is a clear enrich-
ment of GC content for regions with higher mapped reads
compared to ones with lower mapped reads which poten-
tially contribute to background noise. After quality assess-
ment, MBDDiff continued to estimate the context-specific
background noise for each sample based on the prelimin-
ary background annotation. As shown in Fig. 7(b), back-
ground noise clearly coincides with the left hump of
promoter mapped reads, indicating that the background
noise we estimated indeed reflects the nature of mixture
model for our observation. MBDDiff also provides some
visualization functionalities including 3D principal com-
ponent analysis (PCA) to examine sample relationship
based on DNA methylation levels of promoter regions,
more versatile heatmap visualization of DNA methylation
levels across samples, etc. Alternatively, you can also
generate an html report that contains several dynamic
visualizations. Details can be found at our github page:
https://github.com/Liuy12/MBDDiff.

As illustrated in Fig. 7(c), there is a clear separation
between TNBC tumor and normal samples. Figure 7(d)
showed heatmap of methylation levels of selected pro-
moters across all samples (around 1800). Finally,
MBDDiff performed differential methylation statistical
tests based on XBSeq. Very interestingly, the dispersion
for promoters showed a ‘S’ shape curve caused by pro-
moters with either very small or very large dispersions,
which probably is due to the artifacts of methylation
measure from the MBDCap-seq protocol (Additional file
1: Figure S3A). Differential methylated promoters are
identified by selecting promoters with absolute log2
fold-change greater than 1, adjusted p-value less than
0.01 and averaged methylation levels greater than 30.
Additional file 1: Figure S3B showed the MA plot after
differential methylation tests. With this stringent selec-
tion criterion, 348 unique promoters with significant
differential methylation were obtained (significantly
more than what we obtained in prostate cancer data,
since here we compared tumor vs normal samples,
while for prostate application, we studied tumors with
NED outcome vs tumors with MET outcome). Interest-
ingly, by using DAVID [22], we found that the genes of

a) b)

c) d)

Fig. 7 Functionalities for MBDDiff for processing TBNC datasets. a Density plot of GC content grouped by different levels of methylation for all
100 bp windows across the whole genome of one example TNBC sample; (b) Distribution of background noise and promoter counts; (c) 3D PCA
plot of sample relation, T indicates tumor samples, N indicates normal samples; (d) Heatmap of selected promoters for 6 TNBC samples
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these promoters are enriched in biological processes, in-
cluding regulation of transcription (adjusted p-value <
0.01) and regulation of neuron differentiation (adjusted
p-value < 0.01), which might indicate the involvement of
neuronal stem cell regulators in TNBCs [23].

Apply MBDDiff to endometrial cancer datasets
Finally, we applied MBDDiff to our previously published
dataset where MBDCap-seq procedure was carried out
to examine the global methylation patterns for a total of
232 primary samples in endometrial cohorts, breast can-
cer cohorts and breast cancer cell lines (GSE26592). For
the purpose of testing our algorithm, we randomly se-
lected three samples from endometrial cancer patients
with either recurrent or non-recurrent outcome to iden-
tify potential factors that contribute to recurrence of
endometrial cancer. After alignment procedure with
bwa, the six samples were processed with MBDDiff. As
shown in Fig. 8a, there is a clear enrichment of GC con-
tent for regions with relatively high methylation levels,
which indicates that the dataset generated is of good
quality. Figure 8b shows the distribution of background
noise and true signal. Then MBDDiff assesses sample re-
lationship based on methylation patterns of promoter

regions. As shown in Fig. 8c, there is a clear separation
between patients with recurrent and non-recurrent out-
come. Figure 8d shows heatmap of promoter regions
that are differentially methylated between the two groups.
Finally, differential methylation test was carried out to
identify potential factors that might cause recurrence of
endometrial cancer. Totally we identified 66 differentially
methylated promoters with fold change larger than 2, ad-
justed p value smaller than 0.1 and average mean methyla-
tion level bigger than 9. Compared to original paper we
identified much less number of differentially methylated
regions, the reason might be: 1) We only focus on differ-
ential methylation testing for promoter regions; 2) We
only used 3 patient samples in each group. Among all the
differential methylated genes, DKK1 has been shown to be
a novel biomarker for endometrial carcinoma.

Discussion
In order to compare MBDDiff, MEDIPS and DESeq, we
carried out simulation procedure to generate datasets
with different levels of background noise. Then we com-
pared the three methods in terms of various statistical
metrics. As we showed in the Results section, MBDDiff
generally outperformed MEDIPS and DESeq in terms of

a) b)

c) d)

Fig. 8 Apply MBDDiff to endometrial cancer datasets. a Density plot of GC content grouped by different levels of methylation for all 100 bp
windows across the whole genome of one example endometrial sample with recurrence outcome; (b) Distribution of background noise and
promoter counts for one example endometrial sample with recurrence outcome; (c) 3D PCA plot of sample relation, R indicates samples with
recurrence outcome, NR indicates samples with non-recurrence outcome; (d) Heatmap of selected promoters for 6 samples
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AUC (Fig. 2) and number of false discoveries (Fig. 3). In
terms of statistical power, MEDIPS performed slightly
better than the other two methods when the background
noise is relatively low. However, with higher background
noise, MBDDiff has a better statistical power compared
to MEDIPS and DESeq. Taken together, MBDDiff is
more robust against higher background noise for accur-
ately identifying differentially methylated promoters.
As designed in the simulation procedure, true signal

was simulated from negative binomial distribution
and background noise from Poisson distribution.
While these are commonly consented models for data
generated from NGS protocols, real data may deviate
from NB and/or Poisson distributions. To investigate
whether there is a potential bias with regards to the
models we used for simulating true signal as well as
background noise, we tested performance of the three
methods with different models for true signal and
background noise for simulation. Firstly, we simulated
the true signal from a normal distribution and back-
ground noise from Poisson distribution (at normal level as
estimated from the one selected prostate cancer dataset).
As shown in Additional file 1: Figure S2a, irrespective of
which models we used for simulation, MBDDiff performed
better then the other two methods in terms of AUC
(Additional file 1: Table S3). All these three methods tend
to perform better when negative binomial is used for simu-
lating true signal as we expected: the simulated data de-
rived from models match the underlying models in these
algorithms. Then we also tested the effect of using different
models for simulating background noise (Additional file 1:
Figure S2b). We used negative binomial model to simulate
true signal but coupled with background noise derived
from normal, uniform, or Poisson distribution. As shown
in Fig S2b and Additional file 1: Table S4, MBDDiff out-
performed MEDIPS and DESeq, regardless of which
noise model you use for simulating background noise.
In summary, MBDDiff is robust under different signal
and background noise models. While for MEDIPS and
DESeq, they work better when uniform and Poisson dis-
tributions (they virtually overlapping in Additional file 1:
Figure S2b) rather than normal distribution for back-
ground noise. Potential bias can also be observed by
examining the distribution of p values under a null hy-
pothesis when no promoters are differentially methylated.
As shown in Additional file 1: Figure S2d, p values gener-
ated by all three algorithms roughly follow the uniform
distribution as we expected, with higher variation gener-
ated from MEDIPS.
We also benchmarked the three algorithms for experi-

ments with different numbers of replicates. As shown in
Additional file 1: Figure S4, DESeq consumes the most
amount of time, followed by MBDDiff and MEDIPS.
Higher computing cost for DESeq and MBDDiff with more

replicate samples in each condition is mostly attributed to
Fisher’s Exact test for assessing statistical significance.

Conclusions
We developed an R package, MBDDiff, which aims specif-
ically to process MBDCap-seq datasets. MBDDiff provide
users the ability to assess quality of datasets, test for differ-
ential methylation of promoter regions and visualization
functionalities.

Additional file

Additional file 1: Supplementary information. Supplementary figures
and tables to provide additional analysis results. (PDF 1214 kb)
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