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Abstract

Background: The repertoire of T- and B-cell receptor sequences encodes the antigen specificity of adaptive immunity
system, determines its present state and guides its ability to mount effective response against encountered antigens in
future. High throughput sequencing of immune repertoires (Rep-Seq) is a promising technique that allows to profile
millions of antigen receptors of an individual in a single experiment. While a substantial number of tools for mapping
and assembling Rep-Seq data were published recently, the field still lacks an intuitive and flexible tool that can be used
by researchers with little or no computational background for in-depth analysis of immune repertoire profiles.

Results: Here we report VDJviz, a web tool that can be used to browse, analyze and perform quality control of
Rep-Seq results generated by various pre-processing software. On a set of real data examples we show that VDJviz can
be used to explore key repertoire characteristics such as spectratype, repertoire clonality, V-(D)-J recombination patterns
and to identify shared clonotypes. We also demonstrate the utility of VDJviz in detection of critical Rep-Seq biases such
as artificial repertoire diversity and cross-sample contamination.

Conclusions: VDJviz is a versatile and lightweight tool that can be easily employed by biologists, immunologists
and immunogeneticists for routine analysis and quality control of Rep-Seq data. The software is freely available for

non-commercial purposes, and can be downloaded from: https://github.com/antigenomics/vdjviz.
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Background

A diverse repertoire of T- and B-cell antigen receptors is
a critical component of host defense system in verte-
brates called adaptive immunity which ensures readiness
and ability to detect and mount an effective response
against the great variety of encountered pathogens. T-
and B-cell receptor repertoire is formed by genomic
rearrangement of Variable (V), Diversity (D) and Joining
(J) segment loci in a process called V-(D)-J recombin-
ation [1]. Each of the resulting segment junctions carry
complementarity determining region 3 (CDR3) that
plays a key role in antigen recognition and largely de-
fines the specificity of T-cells and immunoglobulins [2].
Recent advances in molecular methods and high-
throughput sequencing allow to profile antigen receptor
repertoires using a technique called Rep-Seq [3]. Raw
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receptor sequences produced by Rep-Seq can be proc-
essed by one of the existing bioinformatics software
tools  (http://omictools.com/rep-seq-c424-pl.html) to
map V-(D)-] junctions and extract CDR3 regions, thus
forming a set of clonotypes - unique combinations of V,
D and ] segments, and CDR3 sequence. Those mappings
are then assembled to estimate individual clonotype fre-
quencies that reflect clonal expansions caused by antigen
recognition, peripheral selection [4] and convergent V-
(D)-J recombination processes [5]. Resulting datasets are
inherently complex due to extremely high diversity of T-
and B-cell receptor sequences and a plethora of physio-
logical factors that shape the repertoire structure [6].
Rep-Seq technique has the potential to become a
method of choice for biologists studying adaptive im-
munity [7], however the software framework behind this
field is still relatively immature. Importantly, this field is
in need of tools that can be used by biologists with little
or no computational knowledge: while there is a sub-
stantial number of tools dedicated to data processing
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[8-15], there is a considerable lack of options to analyze
resulting immune repertoire profiles. In order to fill this
critical gap we have developed VDJviz, an open-source
web-based graphical user interface (GUI) software for
Rep-Seq data browsing. Main features of VDJviz can be
summarized as follows:

e A parser that supports output from 6 commonly
used Rep-Seq processing software: MiTCR,
MIGEC, MiXCR, IgBlast, IMGT HighVQuest and
ImmunoSEQ platform; as well as an internal concise
tab-delimited format.

e An intuitive clonotype table viewer with V-(D)-]
markup that can be used to navigate through the
entire sample and perform complex searches.

e Comprehensive single sample analysis modules
calculating basic repertoire statistics and providing
interactive spectratype, V/J segment usage and
clonality plots.

e Extended multi-sample analysis that includes clonotype
tracking and sample intersection with a flexible
set of clonotype matching rules, repertoire diversity
comparison using rarefaction and simple side-by-side
comparison of single sample analysis results.

e Export of analysis results and dataset sharing.

Implementation

VDJviz is a web based GUI application that uses VDJtools
API (https://github.com/mikessh/vdjtools) as a back-end.
The software utilizes Play framework (https://www.playfra-
mework.com/) for running the server instance and state-of-
art web graphics libraries such as D3js (http://d3js.org/) for
visualization. The reason for choosing Play framework is its
stability and ease of deployment, while D3js allows us to
create complex interactive plots. The browser is lightweight
and uses around 4GM RAM to host several users analyzing
25 samples of up to 10,000 clonotypes, which is the upload
limit for the demo version available online. This limit can
be removed for local installations to allow browsing large
samples using better hardware. In most cases users can also
down-sample clonotype abundance tables (http://vdjtools-
doc.readthedocs.org/en/latest/preprocess.html#downsam-
ple) to view large samples with commodity hardware.

Results and discussion

To the best of our knowledge, in contrast to the rich set
browsers available in the field of genomics (e.g. Refs.
[16-18]), the only published software that falls in im-
mune repertoire browser category so far is IMEX [19].
Existing unpublished solutions for immune repertoire
browsing include VDJserver (https://vdjserver.org/), Vidjil
browser (http://www.vidjil.org/#browser) and ImmunoSEQ
Analyzer (https://clients.adaptivebiotech.com/). In this sec-
tion we will first compare the functionality of VDJviz with
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aforementioned web tools and demonstrate VDJviz features
on the set of relevant examples further in the text.

IMEX is a closed-source GUI software that allows
computing basic repertoire statistics, analyzing V-D-J
segment usage, performing diversity estimation and pro-
vides some options for comparing clonotype tables. The
software is implemented using .NET technology and can
natively run on Windows. Running it on Unix-based sys-
tems requires setting up the Mono Framework (http://
www.mono-project.com/). There are several general lim-
itations of IMEX compared to VDJviz. First, IMEX limits
its analysis to datasets produced by IMGT High-V/
Quest software while VDJviz allows both IMGT High-V/
Quest input and input generated by other software tools.
IMGT High-V/Quest is frequently used by immunolo-
gists, however the current upload batch size of 0.5 mln
reads and variable submission/processing times makes it
unfeasible for analysis of large datasets containing tens
of millions of reads. Next, currently IMEX is limited to
TRB and IGH loci while no such limitation exists in
VD]Jviz. However the most important issue with IMEX is
the way it estimates one of the key immune repertoire
parameters, repertoire diversity [20]. IMEX fits the
a x (I-exp(-b x n)) + k x n function, where n is sampling
depth, a is real number of clonotypes and k is the error
rate, using an optimization algorithm to the rarefaction
curve obtained by random re-sampling. This empirical
model can produce spurious results in some common
settings and cannot reliably distinguish rare clonotypes
and errors. For example, let us consider a highly diverse
and uniform repertoire (say, naive T-cells) and note that
corresponding Rep-Seq data can have negligible error
rate if produced using high-fidelity protocols [12, 21].
The rarefaction curve in error-free setting is a linear
function of sample size [22]. On the other hand, the op-
timal parameters for model used in IMEX can be se-
lected as k=1 and a=0/b=any or b=0/a=any in this
setting, thus either rendering all clonotypes as erroneous
or providing an arbitrary number of clonotypes in a
sample that depends on the seed of the random number
generator used by the optimization algorithm. VDJviz,
on the other hand implements a robust and commonly
used rarefaction algorithm [22] leaving the choice of
error correction strategy up to the user.

Vidjill browser is an extension of recently published
Vidjil Rep-Seq processing software [23]. The major differ-
ence between Vidjil browser and VDJviz lies in the reper-
toire browsing implementation and repertoire analysis
features. Vidjil browser operates with V-D-]J signatures of
clonotype clusters and implements a graphical clonotype
tracking interface with an aim to facilitate clonotype track-
ing for MRD detection and monitoring. VDJviz, on the
other hand, lists individual clonotypes in tabular format
and all the relevant information such as V,D and ]J
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segments and the CDR3 region sequence, which allows to
directly browse the clonal composition of sample and per-
form clonotype table searches using pattern-matching and
filters. Notably, VDJviz implements some of the commonly
used analysis modes such as diversity estimation and spec-
tratyping that are not present in Vidjil browser. VD]viz also
implements basic clonotype tracking functionality in its
cross-sample intersection and clonotype search modules.
VDJviz doesn’t limit clonotype tracking to samples coming
from the same donor, allowing to match clonotypes based
on CDR3 amino acid sequences and therefore allows ex-
ploring clonotypes shared by several different donors.

VDJserver software, being in beta version, incorporates
V-D-] mapping engine and requires to upload raw se-
quencing data, which can be both considered as a benefit
and a limitation comparing to VDJviz that accepts proc-
essed data in multiple formats. While doing data process-
ing on server side facilitates analysis for data produced
using common library preparation protocols, it is unfeas-
ible to implement a general algorithm that covers all
possible customizations of those protocols and complex
cases such as multiplexing and unique molecular identifier
tagging [12]. The output provided by VDJtools includes
segment usage chart and V-D-] mapping statistics, while
clonotype tables are only available as a downloadable plain
text file, which is far less than the functionality provided
by VDJviz, Vidjil browser and IMEX.
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ImmunoSEQ analyzer is a commercial software and
supports only customer data produced by corresponding
commercial assay. ImmunoSEQ has a rich feature set,
some of which are not present in VDJviz, namely a variety
scatterplots for sample comparison, immunoglobulin
somatic hypermutation and edit distance analysis. VD]viz,
on the other hand, offers more options for diversity esti-
mation including rarefaction analysis and clonality plot,
clonotype-level detalization for sample intersection and a
powerful clonotype search engine. Clonotype search algo-
rithms of VDJviz are also more flexible: various filters such
as segment filter can be used in combination, user can
search for CDR3 sequence patterns and several clonotype
matching modes are supported, for example amino acid-
not-nucleotide matching that can be used to filter cross-
sample contaminations.

Below we present six example cases that demonstrate the
usability of VDJviz for common immune repertoire analysis
tasks, in-depth browsing of repertoire clonal composition
and detection of Rep-Seq artifacts. Data for reproducing all
the examples presented here is available in the “examples”
folder of VDJviz source code repository, all figures in this
paper are screenshots of VDJviz browser interface.

Example 1: spectratyping
The first example demonstrates a variation of conven-
tional spectratype (the distribution of CDR3 lengths)

-

Byo.txt Spectratype

22% @ Other
CASSHVGGINGYNEQFF
20% CSVENGRAPDTQYF
CASSYIGTYGYTF
18% @ CASSLLAGDPFEQYF
CASSYLGTGVSPLHF
16% CATAPAEASTDTQYF
CASSQELRGVQETQYF
14% @ CASSTRSSGGETQYF
@ CAIRKQGEEQPQHF
12% @ CASSFRTGGEIYGNEQYF
10%
8%
6%
4%
- I
L . = | ' a_l
21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69

CDR3 length

that are not a multiple of 3 represent out-of-frame clonotypes

Fig. 1 Spectratypes of 6 and 64 years old donors. Each bin of the histograms corresponds to the length of CDR3 nucleotide sequence, clonotypes
were weighted by their frequency and the fraction of top 10 most abundant clonotypes is shown with colored bars. Note that bars at CDR3 lengths

B64yo.txt Spectratype

30% @ Other
28% CASSQAFGGGAGNEQFF
CASSPRRDLNEQFF
26% CASSATSEDEQFF
24% @ CSARGSYNEQYF
CSVDLVGPLONEQYF
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16% @ CAISEDTAYEQYF
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analysis that also visualizes the most abundant clono- 10,000 uniquely labeled [25] TCR beta ¢cDNA mole-
types. Repertoires of 6 and 64 years old healthy donors cules by down-sampling, and spectratype plots were
from our aging study [24] were analyzed. Those samples  compared. As expected [26], the repertoire of 6 years
were prepared using a protocol that allows accurate TCR  old shows a bell-shaped spectratype with almost no
beta ¢cDNA molecules quantification, normalized to clonal expansions. The repertoire of 64 vyears old

s N

a
post-HSCT_CD8 V Spectratype post-HSCT_CD4 V Spectratype

@other ®TRBVIZ4 @TRBVI3 @TRBV20-1 O TRBV2T @other O TRBV10-3 @TRBVI24 @TRBV20-1 @TRBV2S-1
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Fig. 2 Variable segment spectratype and Variable-Joining segment usage chord diagram. a Distribution of CDR3 nucleotide sequence lengths weighted
by clonotype frequency. Most enriched Variable segments are explicitly shown. b Chord diagram of Variable-Joining junction abundance. Segment
lengths are scaled according to the abundance of a specific segment, arc widths scaled by the abundance of corresponding Variable-Joining junctions

J
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donor reveals several substantially expanded clono-
types highlighting significant changes in T-cell reper-
toire structure (Fig. 1).

Spectratype can also be used to spot out-of-frame clo-
notypes and a thorough look at Fig. 1 reveals the abun-
dance of out-of-frame clonotypes in 6 yo sample (small
bars corresponding to CDR3 lengths that are not a mul-
tiple of 3). Summary report provided by VDJviz shows
that the total abundance of out-of-frame clonotypes is
~2 times more for the young donor compared to aged
one (P<0.0001, Fisher’s exact test). Out-of-frame TCR
sequences are extremely useful for studying V-(D)-J re-
combination mechanics [27-31] as they are not subject
to thymic selection. However, they are relatively rare in
mRNA-based samples due to nonsense-mediated mRNA
decay. The result shown on Fig. 1 suggests that a deeper
sampling is required to detect a sufficient number of
out-of-frame clonotypes for repertoires having a high
fraction of expanded clonotypes.

Example 2: variable and joining segment usage

The next example shows the analysis of immune receptor
segment usage. We have first compared repertoires of
helper (CD4) and cytotoxic (CD8) T-cell subsets from a
donor that has undergone an autologous hematopoietic
stem cell transplantation (HSCT) using V-spectratype, a
histogram of clonotypes binned by CDR3 length and
Variable segment. It has been previously shown that post-
HSCT T-cell repertoire exhibits clonal expansion associ-
ated with cytotoxic T-cell response to cytomegalovirus
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(CMV) [32-34]. As it can be seen from the spectratype
shape in Fig. 2a, the clonal expansions are indeed associ-
ated with cytotoxic T-cells and result in altered Variable
segment usage profile. Variable segment usage profile
changes can be also seen from Variable-Joining usage
analysis while browsing the bulk PBMC repertoires of the
donor before and after HSCT (Fig. 2b).

Example 3: clonality analysis

Immune repertoire diversity is one of the key characteris-
tics of the state of adaptive immune system that reflects
the ongoing inflammatory processes and defines its ability
to effectively mount a response to newly encountered
antigens [20]. The following example shows that diversity
estimation from Rep-Seq data could be a tricky procedure.
For this example we have taken samples, hereafter de-
noted as B and C, representing repertoires of PBMCs from
two healthy female donors of the same age described in
Ref. [24]. The samples were normalized to 10,000 uniquely
labeled cDNA molecules by down-sampling. The observed
diversity computed as the total number of clonotypes is
7425 for sample B and 6967 for sample C, thus B appears
to represent a more diverse repertoire. However, closer in-
spection (Fig. 3) with VDJviz quantile plot feature reveals
that sample C has a single dominant clonal expansion,
while sample B is characterized by multiple clonal expan-
sions contributing to a heavy tail of clonotype size distri-
bution and effectively having less diversity than sample C.
This can be illustrated by calculating Efron-Thisted esti-
mate of total diversity which result in 69,282+/-4480 for

Sample_B Quantile Plot

Doubleton High Order
Quantile #5 @ Quantile #4 @ Quantile #3
Quantile #2 Quantile #1

Sample_C Quantile Plot

® Singleton Doubleton High Order

@Quantile #5 @ Quantile #4 @ Quantile #3
Quantile #2

Quantile #1

Fig. 3 VDJviz clonality plot, a nested pie chart divided into the following regions: singletons (clonotypes represented by a single read), doubletons
(2 reads), high order (3 and more reads). High order clonotypes are divided into five quantiles (top 20 % of unique high order clonotypes and so on).
Top ten clonotypes of the first quantile are explicitly shown. Size of each segment is the cumulative frequency of all clonotypes that fall into
corresponding frequency category
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sample B and 84,956+/-4488 (23 % higher) for sample C.
Therefore, given a sufficient profiling depth the immune
repertoire of donor C will turn out to be more diverse
than the repertoire of donor B.

Example 4: rarefaction and error correction

Error correction is a critical data processing step in the
context of highly complex immune repertoire data. High
number of erroneous clonotypes can result in artificial
increase of the observed repertoire diversity [12]. Here
we compare various error correction methods using
rarefaction analysis [35] implemented in VDJviz (Fig. 4).
For this purpose two healthy donor PBMCs replicate
samples each carrying ~2000 T cells were taken from
[36]. Those cDNA libraries were prepared using unique
molecular identifier (UMI) tagging approach, and se-
quenced to a high read-per-UMI coverage allowing
nearly complete elimination of PCR and sequencing er-
rors [12]. The correction resulted in the estimate of
~500 TCR beta cDNA molecules and ~90 clonotypes
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per sample and was used as a gold reference for com-
parison of various error correction approaches.

First, we tested quality-based filtering (without using
UMI information) by removing all clonotypes that have
at least one low-quality base (less than Phred quality 20
and 35) in their CDR3 sequence. Such filtering has a
relatively small effect on the observed diversity which is
more than 10 times higher than the value expected from
UMI-corrected results. Notably, using only clonotypes
that were found in both samples results in observed di-
versity that is still ~5 times larger than the expected
value, confirming the previous observations that errors
that result in artificial diversity are highly reproducible
[12]. This indicates that using replicate-based error cor-
rection to investigate repertoire diversity [37] is a strat-
egy that should be applied with a great caution. Using
frequency-based error correction for quality-filtered
sample, namely requiring more than 1:20 abundance ra-
tio difference for merging clonotypes that differ by a sin-
gle mismatch, showed the best result, yet the observed

2200

2100

Sample size: 109,695
. in

Diversity, clonotypes

0 20,000 40,000 160,000 80,000 100,000

120,000

Fig. 4 VDJviz interactive rarefaction plot (diversity vs sampling depth) for T-cell repertoires from two replicate PBMC samples processed with various
error correction strategies including quality filtering (g20 and g35 thresholds), elimination of clonotypes encountered only in one of the samples
(“intersection”) and frequency-based error correction (“freq”). Solid lines show rarefaction curves computed using observed clonotype frequencies,
dashed lines represent their extrapolations. Note that the expected sample diversity is ~90 clonotypes according to UMI-corrected data

140,000
Sample size

160,000 180,000 200,000 220,000 240,000 260,000
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diversity was still ~60 % higher than the expected value
obtained using UMI-correction.

The accuracy and pitfalls of quality- and frequency-
based error filtering strategies were previously character-
ized using a synthetic dataset [9]. As for the comprehensive
characterization of the accuracy of UMI-based tech-
niques that are considered as gold-standard in present
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example, the reader should refer to recently published
studies [12, 38].

Example 5: errors and contamination in repertoire
sequencing data
Our next example demonstrates the clonotype browser
engine. In order to visualize the erroneous clonotypes

N
Index Frequency Count CDR3AA v D J CDR3NT
1 13% 34307 CSVEIWDSSYNEQFF TREV29-1 TRBD1 TRBJ2-1 TGCAGCGTTGAAATTTGGGATAGCTCCTACAATGAGCAGTTCTTC
2 0.012% 32 CSVEIWDSSYNEQFF TRBV29-1 TRBD1 TRBJ2-1 TGCAGCGTTGAAATTTGGGATAGCTCATACAATGAGCAGTTCTTC
3 0.0065% 18 CSVEIWDSSYNEQFF TRBV29-1 TRED1 TRBJZ2-1 TGCAGCGTCGARATTTGGGATAGCTCCTACAATGAGCAGTTCTTC
4 0.0027% 7 CSVEIWDSSYNEQFF TREV29-1 TRBD1 TRBJ2-1 TGCAGCGTTGAAATTTGGGATAGCTCCTACAATGAGCAGTTCTTT
5 0.0027% 7 CSVEIWDSSYNEQFF TREV29-1 TRBED1 TRBJ2-1 TGTAGCGTTGAAATTTGGGATAGCTCCTACAATGAGCAGTTCTTC
6 0.0027% 7 CSVEIWDSSYNEQFF TRBV29-1 TRBD1 TRBJ2-1 TGCAGCGTTGAAATTTGGGATAGCTCCTACAATGAGCAATTCTTC
7 0.0027% 7 CSVEIWDSSYNEQFF TREV29-1 TRBD1 TRBJ2-1 TGCAGTGTTGAAATTTGGGATAGCTCCTACAATGAGCAGTTCTTC
8 0.0023% 6 CSVEIWDSSYDEQFF TREV29-1 TRBD1 TRBJ2-1 TGCAGCGTTGAAATTTGGGATAGCTCCTACGATGAGCAGTTCTTC
9 0.0019% 5 CSVEIWDSSYNEQFF TRBV29-1 TRBD1 TRBJ2-1 TGCAGCGTTGAMATTTGGGATAGTTCCTACAATGAGCAGTTCTTC
10 0.0019% 5 CSVEIWDSSYNEQFF TREV29-1 TRED1 TRBJ2-1 TGCAGCGTTGAGATTTGGGATAGCTCCTACAATGAGCAGTTCTTC
11 0.0019% 5 CSVEIWDSSYNEQFF TREV29-1 TRBD1 TRBJ2-1 TGCAGCGTTGAAATTTGGGATAGCTCCTACAACGAGCAGTTCTTC
1 N AN oo 3 FOVEIWNCCSVMNENEE ToEWMAY TORMN TOR M T AT TR AAATT T A A AT TrrTACAATR AT ACTTOTT
Sample: D2g_19 Hide
Index  Frequency Count  CDR3AA v D J CDR3NT
1 0.024% 87 CASSYISGGPPTYYE unresolved TCRBDO1-01 TCRBJ02-07 TGTGCCAGCAGTTACATTTCAGGAGGGCCACCTACCTACTACGAG
Sample: D2g_16 Hide
Index Frequency Count CDR3AA v D J CDR3NT
1 0.0014% 45 CASSYISGGPPTYYE unresclved TCRBDO1-01 TCRBJO02-07 TGTGCCAGCAGTTACATTTCAGGAGGGCCACCTACCTACTACGAG
Sample: D2g_17 Hide
Index Frequency Count CDR3AA v D J CDR3NT
1 2.9% 62448 CASSYISGGPPTYYE unresolved TCRBDO1-01 TCRBJO2-07 TGTGCCAGCAGTTACATTTCAGGAGGGCCACCTACCTACTACGAG

Fig. 5 VDJviz clonotype browser interface snapshots showing clonotypes matching a given CDR3 amino acid sequence in a single sample
(@) and across multiple samples (b). a A trace of erroneous variants for one of the top clonotypes from sample2_g35 dataset described
in example#4. b Matching the CDR3 nucleotide sequence of a cancer clonotype in post-treatment samples. The panel shows presence of
minimal residual disease in corresponding patient (D29_17), as well as cross-sample contamination in two other patients
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that were the cause of artificial diversity in previous ex-
ample we have searched for the CDR3 amino acid se-
quence of the second most abundant clonotype in
quality-filtered sample #2. As it could be seen from
Fig. 5a, there is a tail of erroneous sub-variants that dif-
fer from the real CDR3 nucleotide sequence by a one or
more mismatches and are absent in UMI-corrected data.
Similar results were obtained for other highly-abundant
clonotypes.

Next, we have browsed samples from recently pub-
lished minimal residual disease (MRD) study [39] to
address the issue of cross-sample contamination. In
lymphomas, MRD can be monitored by tracking the ma-
lignant clonotype sequence in post-treatment immune
repertoire. Cross-sample contamination, however, can be
a serious issue in this case: contamination with the ma-
lignant clonotype which is usually highly abundant can
lead to false positive MRD detection. We have checked
for the cancer clonotype sequence reported for patient
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PT-2 in post-treatment samples of other patients
(Fig. 5b). Notably, repertoires of 6 out of 42 patients
appear to contain exactly the same sequence. This can
be hardly explained by coincidence, as no other nucleo-
tide variants were found for the dominant clonotype’s
amino acid sequence ruling out convergent recombin-
ation. High number of added N-nucleotides in V-D-J
junction also supports the fact that CDR3 nucleotide se-
quence matching in 6 samples simply by chance is highly
improbable (P <107%%). Notably, the most abundant con-
tamination is present at the level of 24 reads per 100,000
in this example case. Thus, while the method is extremely
sensitive and can detect MRD at a level of 1 read per
100,000, such contaminations can severely dampen
method’s precision.

Example 6: public clonotypes
Our last example demonstrates detection of so-called
“public” clonotypes, that are a fundamental feature of T-

CASSLSSYEQYF
CASSLGETQYF
CASSLGOGYEQYF
CASSPSSYEQYF
CASSLAGETQYF
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CASSPSTDTQYF
CASSLGOQETQYF
CASSLAYEQYF
CASSLGSTDTQYF
CASSPGDTQYF
CASSLGGSYNEQFF
CASSSRETQYF
CASSLGQAYEQYF
CASSLAGGTDTOYF
CASSLTDTQYF -
CASSLAETQYF
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Fig. 6 A snapshot of clonotype sharing (Join sample tab of VDJviz) across multiple samples. Clonotypes of 41 healthy donors of various ages
were matched by their CDR3 amino acid sequence selecting the ones that were present in at least 10 repertoires
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cell repertoire implicated in immune responses to com-
mon pathogens and autoimmune responses [40]. We
have searched for shared clonotypes in 41 samples each
down-sampled to 10,000 uniquely labeled ¢cDNA mole-
cules coming from healthy donors of various ages [24]
and required CDR3 amino acid, but not nucleotide, se-
quence matching in at least 5 of them for a clonotype to
be considered “public” (Fig. 6). The total number of
unique CDR3 amino acid sequences in those samples
was 262,848 and 567 of them represented public clono-
types according to aforementioned criterion. We have
next compared our list of clonotypes to data reported by
Freeman et al. [41] for a Rep-Seq study of pooled
PBMCs coming from 550 individuals of various sex, age
and racial background. We found an exactly matching
CDR3 amino acid sequences for 127 of clonotypes that
we consider “public” (22 %). Many of those clonotypes
can be found in other studies (for example, Wang et al.
[42]) using Google search engine. That way we have ob-
served 11 of our “public” clonotypes being reported
among 29 (excluding “CASSL” which is clearly a non-
canonical CDR3 sequence) cancer-specific clonotypes
in a recent pancreatic tumor Rep-Seq study [43]. The
probability of such overlap occurring by chance is P =
2 x 107! (hypergeometric test, assuming the total number
of unique CDR3 amino acid variants is 10° [44]) due
to high number of unique CDR3 amino acid variants,
highlighting the need for careful statistical testing that
account for the presence of clonotypes with a high
degree of sharing when dealing with tasks such as
tumor-specific clonotype calling. This also suggests
that a database of public clonotypes would be a useful
resource that can limit the number of false-positives
in this case.

While the examples demonstrated here mostly deal
with TCR beta sequences, VDJviz can also handle TCR
alpha (see Additional file 1: Figure S1), gamma and delta
sequences, as well as immunoglobulin sequences (see
Additional file 2: Figure S2), albeit with no support for
hypermutations in CDR1,2 and framework regions.
Overall the examples presented here demonstrate that
the analysis modes provided by VDJviz are highly in-
formative and can be used both for explorative analysis
and for quality control. The latter is crucial as a multi-
tude of biases can arise due to complexity of Rep-Seq
data. While those biases can be dealt with using corre-
sponding techniques or removed manually, their extent
should be routinely checked every time an analysis of
Rep-Seq data is performed.

While VDJviz web tool can be extended in many ways
by adding new analysis types, the most important chal-
lenge is to implement intuitive interface for visualizing
somatic hypermutations in B-cell repertoires [7] and
novel paired-chain Rep-Seq data [45-47].
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Conclusions

As we have demonstrated, VD]Jviz allows to have a
grasp of immune repertoire structure for samples of
interest in several clicks and can be easily used by im-
munologists and biologists with little computational
knowledge. VDJviz is not limited to a single library
preparation protocol or Rep-Seq processing software
including highly popular IMGT HighVQuest [8] and
ImmunoSEQ platforms (http://www.adaptivebiotech.
com/immunoseq). VDJviz allows great flexibility and
can be easily installed as a local server, therefore we
believe that in perspective it can become a handy tool-
of-choice for immunologists routinely working with
immune repertoire data.

Availability and requirements
» Both standalone and online demo VDJviz versions can
be found at https://github.com/antigenomics/vdjviz.
« Operating system(s): platform independent.
+ Programming language: Java, JavaScript, Scala.
+ Other requirements: Java 1.8, Play Framework.
« License: free for non-profit and academic use.

Additional files

Additional file 1: Figure S1. Shared TCR alpha CDR3 amino acid
sequences in T-regulatory cells reported in Ref. [48]. Note the highlighted
clonotype, that is almost exclusively present in wild-type samples, but not
CNS3-KO samples that have an altered T-regulatory cell repertoire structure.
(TIF 1593 kb)

Additional file 2: Figure S2. A representative view of clonotype table

from a sequencing experiment involving a hypermutating Raji cell line
(our unpublished data) showing CDR3 hypermutations. (TIF 2130 kb)
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