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Abstract

Background: Litter size and piglet mortality are important traits in pig production. The study aimed to identify
quantitative trait loci (QTL) for litter size and mortality traits, including total number of piglets born (TNB), litter size
at day 5 (LS5) and mortality rate before day 5 (MORT) in Danish Landrace and Yorkshire pigs by genome-wide
association studies (GWAS).

Methods: The phenotypic records and genotypes were available in 5,977 Landrace pigs and 6,000 Yorkshire pigs
born from 1998 to 2014. A linear mixed model (LM) with a single SNP regression and a Bayesian mixture model
(BM) including effects of all SNPs simultaneously were used for GWAS to detect significant QTL association. The
response variable used in the GWAS was corrected phenotypic value which was obtained by adjusting original
observations for non-genetic effects. For BM, the QTL region was determined by using a novel post-Gibbs analysis
based on the posterior mixture probability.

Results: The detected association patterns from LM and BM models were generally similar. However, BM gave
more distinct detection signals than LM. The clearer peaks from BM indicated that the BM model has an advantage
in respect of identifying and distinguishing regions of putative QTL. Using BM and QTL region analysis, for the three
traits and two breeds a total of 15 QTL regions were identified on SSC1, 2, 3, 6, 7, 9, 13 and 14. Among these QTL
regions, 6 regions located on SSC2, 3, 6, 7 and 13 were associated with more than one trait.

Conclusion: This study detected QTL regions associated with litter size and piglet mortality traits in Danish pigs
using a novel approach of post-Gibbs analysis based on posterior mixture probability. All of the detected QTL
regions overlapped with regions previously reported for reproduction traits. The regions commonly detected in
different traits and breeds could be resources for multi-trait and across-bred selection. The proposed novel QTL
region analysis method would be a good alternative to detect and define QTL regions.
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Background
Reproduction, particularly female reproductive perform-
ance, is one of the most important components in live-
stock production. Litter size at weaning (LSW) has been
considered as one of the most important reproduction
traits in pig production [1]. In practical pig breeding, se-
lection for total number of piglets born (TNB) was in-
troduced in the early eighties in Danish Landrace and
Yorkshire populations to improve LSW [2]. Unfortu-
nately, this approach led to an increase in piglet mortal-
ity [1, 3–5]. In 2004 the breeding goal in the Danish
breeding program was changed to focus on the litter size
at five days after farrowing (LS5), and as result the mor-
tality of piglets prenatally and in the early nursing period
has decreased [6].
The genetic basis of reproductive performance is

complicated because of the complex and quantitative
nature of the traits. Using modern molecular informa-
tion, many linkage [7–9] and candidate gene studies
[10, 11] have been conducted to find the quantitative
trait loci (QTL) and causal genes for these traits. More
recently, the availability of high throughput genotyping
makes it possible to study the genetic architectures and
the genetic relationships of reproduction traits in pigs
in further detail.
Based on the high-density panels of single nucleotide

polymorphisms (SNP), genome-wide association studies
(GWAS) have been developed to identify DNA variants
associated with complex diseases and traits in humans
and other animals [12]. GWAS has become a widely ac-
cepted approach to investigate genetic architectures of
economically important traits in livestock. Many previ-
ous studies have carried out GWAS for complex traits in
pig, such as teat number, androstenone and skatole
levels, boar taint, backfat, loin muscle area, body con-
formation and brown coat color, and detected many
QTLs for these traits [13–18]. Detection of QTL regions
and genes affecting pig reproductive traits would be
helpful for further understanding of these traits and gen-
etic improvement of pig reproduction, but only few
studies of reproductive traits have been made [19, 20].
Various approaches, such as single-marker tests [21],

linear mixed model analysis [22], haplotype models and
genealogy based mixed-models [23], Bayesian variable
selection models [24], least absolute shrinkage and selec-
tion operator [25] have been proposed for GWAS. In
previous model comparison studies, linear mixed model
and Bayesian variable selection models were shown bet-
ter than other methods in terms of detection power
[22, 23, 26]. The linear mixed model, which is based on
regression of phenotypes on SNP genotypes, is easy to
implement. Each single marker is analyzed separately
by using a linear model, which creates multiple testing
problems as a large numbers of tests of SNP markers

throughout the entire genome are performed. A
multiple-testing problem which can lead to a high rate
of type I errors could be created. Thus, a Bonferroni
correction is often applied to set stringent thresholds
on P values in order to avoid this problem, but this
could result in poor statistical power. Besides, when
many SNPs are in strong LD with one QTL, the use of
a linear model makes it difficult to identify which SNP
within a broad genomic region causally influences the
complex trait and it is also troublesome to separate
neighboring QTLs, which may contribute to the same
peak. In addition, the linear model is also known for
being sensitive for population and family structures,
thus mixed models correcting for these effects are
needed, either by adding pedigree or markers [26].
Therefore, it is appealing to apply Bayesian variable se-
lection models, which simultaneously fit multiple
marker effects, avoid multiple testing, and can impli-
citly correct for the structure [26, 27]. Additionally, the
power to detect significant genetic association may be
considerably enhanced by simultaneous modeling of
markers. However, simultaneously fitting of SNP
markers usually leads to low posterior probability for
each SNP, in which case the sum of posterior probabil-
ity of SNPs in a QTL region could be a better alternative
option [28]. However, the sum of posterior probability of
SNPs in a QTL region could be larger than 1 and it over-
estimates the posterior probability of a region.
Therefore, the objective of the current study was to iden-

tify QTL for the litter size and piglet mortality based on
data from the PorcineSNP60 BeadChip in Danish Land-
race and Yorkshire pigs. The performance of a Bayesian
mixture model was compared with a linear mixed model
and a novel method was proposed to detect QTL regions.

Methods
Data
The data from breeding herds and multiplier herds were
supplied by Danish Pig Research Centre, SEGES P/S.
Animal Care and Use Committee approval was not ap-
plicable for this study because the data were obtained
from an existing database of pig breeding. Corrected
phenotypes (yc) of TNB, LS5 and mortality rate before
day 5 (MORT) were defined as original observations ad-
justed for effects of herd-year-season, parity, month at
farrowing, hybrid indicator, age at first farrowing, parity-
correction, farrowing interval, and artificial insemin-
ation. This methodology has previously been described
by Guo et al. [29], in which litters of 545,124 Landrace
and 361,978 Yorkshire pigs were used. In the present
study, however, the populations used for computing yc
of both sows and boars were extended to younger gener-
ations by including additional litters of 235,762 Landrace
and 171,218 Yorkshire sows.
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Genotyping was done using the Illumina PorcineSNP60
BeadChip (Illumina, San Diego, CA) or imputed from the
8.5 K GGP-Porcine LD Illumina Bead SNP Chip. A
total of 37,060 and 36,058 SNP markers for Landrace
and Yorkshire pigs, respectively, met the following re-
quirements. Each marker had a minor-allele frequency
greater than 0.01, a call-frequency score greater than
0.9, average GenCall score larger than 0.60, no strong
deviation from Hardy-Weinberg equilibrium (P > 10−7),
and known position on Build 10.2 assembly (Sscrofa10.2).
In addition, the animals with call rate less than 0.8 were
excluded from the analysis. The imputation for lower
density chips as well as sporadic missing genotypes were
performed by using Beagle version 3.3.1 [30].
Finally, yc of TNB, LS5 and MORT for 5,977 geno-

typed Landrace pigs (1,788 boars and 4,189 sows) and
6,000 genotyped Yorkshire pigs (1,761 boars and 4,239
sows) born from 1998 to 2014 were used for the analysis
(around 10 percent of these animals were genotyped by
the low density chip and imputed). Additional genotypes
of 2,532 Landrace pigs (422 boars and 2,110 sows) and
2,628 Yorkshire pigs (520 boars and 2,108 sows) were
added in this study, due to data updating.

Statistical models
A linear mixed model and a Bayesian mixture model
were used to perform GWAS in Danish Landrace and
Yorkshire pigs separately to detect significant QTL asso-
ciated with the three traits.

Linear mixed model (LM)
The LM model [22] used in this study was a single SNP
regression model. The model included a fixed regression
of phenotypes on genotypes of a given SNP, and in
addition, a random polygenic effect accounting for
shared genetic effects of related individuals. The LM
model was:

yc ¼ 1μþ xg þ Zuþ e;

where yc was the vector of yc values of TNB, LS5 or
MORT, μ was the overall mean, 1 was a vector of ones,
g was the additive genetic effect of a SNP, x was a vector
of the SNP genotypes coded as 0, 1, 2 for genotypes
A1A1, A1A2 and A2A2 respectively, u was a vector of
random polygenic effects, Z was an incidence matrix re-
lating yc to the corresponding random polygenic effects,
and e was a vector of residual effects. It was assumed
that ueN 0;Aσ2

u

� �
where A was the pedigree-based

additive relationship matrix and σ2u was the variance of
residual polygenic effect, and eeN 0;Dσ2e

� �
, where σ2

e
was the residual variance and D was a diagonal matrix
containing the elements dii = 1/wi where wi was weight
of yc indicating the reliability of yc. The weight of yc was

calculated based on the reliability of yc and as described
in a previous study [29].
Significance test of SNP effects was performed using a

two-sided t-test. A Bonferroni correction was applied to
control false positive associations in a multiple compari-
son procedure. Thus, the significant level was defined as
P < 0.05/N (or 0.01/N), where N was the number of SNP
loci analyzed. Therefore, the significant threshold value of
− log10(P) were 5.87 (6.57) and 5.86 (6.56) for Landrace
and Yorkshire, respectively. Analysis of the LM model was
performed by using the DMU package [31].

Bayesian mixture model (BM)
The BM model [24, 32, 33] used in the current study as-
sumed SNP effects to follow a mixture distribution and
estimated the effects of all SNPs simultaneously. The
BM model was:

yc ¼ 1μþ
Xm

j¼1
xjgj þ Zuþ e;

where yc, 1, μ, Z, u and e were defined as in the LM
model. The term

Xm

j¼1
xjgj fitted additive effects of all

SNPs, xj was the vector of SNPj genotypes, and gj was
the effect of SNPj. It was assumed that most markers
had small effects and a few markers had large effects.
Accordingly, the prior mixture distribution of gj was:

gj e
N 0; σ2g0

� �
N 0; σ2g1

� � with probability π0

with probability π1 ¼ 1−π0;

8<
:

where N denoted normal distribution, π0 was the prob-
ability of the SNP having a small effect and π1 was the
probability of the SNP having a large effect. It was as-
sumed that the prior distribution of π0 and π1 was a Beta
distribution with Beta (100, 1). Besides, it was assumed
that priors of μ and σ2g0 followed uniform distributions,
and σ2

g1
¼ σ2g0 � 100. By assuming a small variance instead

of 0 for the distribution of N 0; σ2g0

� �
, the implementation

of Markov Chain Monte Carlo (MCMC) was straightfor-
ward with recognizable conditional distributions for all
model parameters [24, 32]. Each of the Bayesian analyses
was run as a single chain with a total length of 52,000
Markov chain samples by Gibbs sampling, with the first
20,000 cycles discarded as burn-in. Afterwards, every 20th
sample of the remaining 32,000 was saved for posterior
analysis. Analysis of the BM model was performed by
using the BayZ package [34].

QTL region based on BM
The QTL region was detected by using a novel post-
Gibbs analysis which was based on the MCMC samples.
First, each chromosome was divided into many small
sliding windows of equal length (1.0, 2.5 or 5.0 Mb) and
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a posterior probability of interval (PPint) was calculated
according to the saved MCMC samples of all the
markers in each window. In each window, PPint was de-
fined as the proportion of samples where at least one
SNP within the window was falling into the second
distribution (large effect) to total number of samples.
Secondly, the peaks including windows with PPint

higher than the significant threshold (0.8) were chosen
as candidate peaks to be further analyzed. In this
study, the threshold of 0.8 was chosen. The threshold
can be chosen by the investigator and directly reflect
the posterior probability of a QTL in the region. Fi-
nally, the window with highest PPint in each candidate
peak was chosen as the QTL region. The genetic vari-
ance explained by a QTL region was computed as var

Xregionb
t
region

� �
, which was the variance at the cycle t

explained by the region and then the posterior mean
and standard deviation were obtained.

Results
Detection of SNPs associated with reproductive traits
The LM model was used to perform single SNP test.
The association patterns of SNPs with TNB, LS5 and
MORT in Landrace and Yorkshire pigs using the LM
model are shown in Figs. 1 and 2, respectively. The red
line and the blue line represent the significant level
after Bonferroni correction at P < 0.05 and P < 0.01,

respectively. SNPs that had significant association with
traits of interests can be visually observed in some chro-
mosomes from the Manhattan plots. Table 1 shows the
number of significant SNPs detected in each chromosome.
Among all the chromosomes, the most significant SNPs
can be found in chromosome 1 for all the traits in both
breeds analyzed except MORT in Landrace where
chromosome 7 embraced most significant SNPs.
For Landrace, at the significant level P < 0.05 there

were 411, 330 and 162 SNPs detected as significant
SNPs for TNB, LS5 and MORT, respectively, and at P <
0.01 there were 290, 206 and 94 SNPs for three traits
correspondingly. For Yorkshire, the numbers of SNPs
at significant level P < 0.05 were 201, 415 and 338 for
TNB, LS5 and MORT, respectively, and at significant
level P < 0.01 reduced to 137, 275 and 187 correspond-
ingly. Among all the significant SNPs, as shown in
Table 2, some have been commonly detected in differ-
ent traits in both breeds.

Analysis of QTL regions
The BM model was used to test all SNPs simultaneously.
Three sets of length, 1.0, 2.5 and 5.0 Mb of sliding win-
dows were tested. A new method of detecting QTL region
by using a Bayesian post-Gibbs analysis was proposed.
The patterns of PPint for 1.0 Mb sliding window are shown
in the right side of Fig. 1 and Fig. 2. Table 3 shows the
number of QTL regions detected for each chromosome in

Fig. 1 Manhattan plot of genome-wide association for reproduction traits in Landrace. Three plots on the left side are genome-wide P-values
from a linear mixed model (LM) with single SNP regression for TNB, LS5 and MORT. The horizontal red and blue lines represent the genome-wide
significance threshold at P < 0.05 and P < 0.01, respectively. Three plots on the right side are posterior probability of interval (PPint) for 1.0 Mb
sliding window from a Bayesian mixture model (BM) QTL region analysis for TNB, LS5 and MORT. The horizontal red line represents the significance
threshold at PPint > 0.8
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different scenarios and more details of these regions are
presented on the supplementary material (Additional file
1: Figure S1, Additional file 2: Figure S2, Additional file 3:
Figure S3, Additional file 4: Figure S4, Additional file 5:
Figure S5 and Additional file 6: Figure S6). QTL regions
were detected for all the traits in both breeds except
MORT in Yorkshire for which no significant region was
detected. The narrowest region among the three window
sizes was chosen as the QTL region for each trait. Within

these regions annotated genes were compared for their
function. The positions and lengths of QTL regions, the
genetic variance accounted by QTL regions as well as the
related genes were listed in Table 4. For TNB in Landrace,
when using 1.0 Mb as the length of sliding windows, three
QTL regions were detected with two located on SSC2 and
one on SSC3 (Additional file 1: Figure S1). The two re-
gions on SSC2 explained 1.00 % and 0.75 % of additive
genetic variance and the one on SSC3 explained 0.76 %.

Fig. 2 Manhattan plot of genome-wide association for reproduction traits in Yorkshire. Three plots on the left side are genome-wide P-values
from a linear mixed model (LM) with single SNP regression for TNB, LS5 and MORT. The horizontal red and blue lines represent the genome-wide
significance threshold at P < 0.05 and P < 0.01, respectively. Three plots on the right side are posterior probability of interval (PPint) for 1.0 Mb
sliding window from a Bayesian mixture model (BM) QTL region analysis for TNB, LS5 and MORT. The horizontal red line represents the significance
threshold at PPint > 0.8

Table 1 Number of significant SNPs detected using a linear mixed model with single SNP regression (LM)

Breed Traita P Total Chromosome

1 2 3 5 6 7 8 9 10 13 14 17

Landrace TNB 0.05 411 322 45 4 14 1 24 1

0.01 290 226 38 1 5 1 18 1

LS5 0.05 330 231 5 18 3 55 18

0.01 206 140 3 18 37 8

MORT 0.05 162 1 44 1 61 32 9 14

0.01 94 23 1 51 7 1 11

Yorkshire TNB 0.05 201 117 12 1 61 10

0.01 137 72 5 1 51 8

LS5 0.05 415 301 26 1 1 13 1 1 70 1

0.01 275 248 13 1 4 1 8

MORT 0.05 338 278 1 6 1 46 6

0.01 187 181 1 2 1 2
aTNB total number of piglets born, LS5 litter size at day 5 after birth, MORT mortality rate before day 5 (including stillbirth)
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When the length of window was increased to 2.5 Mb,
three more QTL regions located on SSC6, SSC13 and
SSC14 were detected and they explained 0.98 %, 0.74 %
and 0.59 % of additive genetic variance, respectively. The
number of QTL regions did not increase further when the
length of windows were expanded to 5.0 Mb. For LS5 in
Landrace, the number of QTL regions increased from one
(on SSC7) to three (on SSC6, 7, 13) when the length of
window increased from 1.0 Mb to 2.5 Mb, and further in-
creased to four (on SSC 6, 7, 13, 14) when using windows
of length 5.0 Mb (Additional file 2: Figure S2). The pro-
portions of additive genetic variance explained by the re-
gions on SSC6 (2.5 Mb), SSC7 (1.0 Mb), SSC13 (2.5 Mb)
and SSC14 (5.0 Mb) were 0.36 %, 0.38 %, 0.84 % and
0.44 %, respectively. For MORT in Landrace, only one
region on SSC7 was detected when using 1.0 Mb and
2.5 Mb windows, and one more on SSC2 was detected
when window amplified to 5.0 Mb (Additional file 3:
Figure S3). The 1.0 Mb region on SSC7 explained
1.99 % of additive genetic variance and the 5.0 Mb re-
gion on SSC2 explained 0.77 %. For TNB in Yorkshire,
one region on SSC3 was detected when using 1.0 Mb

and 2.5 Mb windows (Additional file 4: Figure S4) and
the 1.0 Mb region explained 0.46 % of the additive gen-
etic variance, and one more on SSC1 was detected
when windows were expanded to 5.0 Mb which ex-
plained 0.88 % of the additive genetic variance. How-
ever, only one QTL region on SSC9 was detected for
LS5 in Yorkshire, no matter which window length was
used (Additional file 5: Figure S5) and the 1.0 Mb re-
gion explained 0.51 % of the additive genetic variance.
Comparing the QTL regions for three traits in both

breeds, there were some regions commonly detected for
different traits. The common regions shared by differ-
ent traits in both breeds are shown in Table 5. In Land-
race, the two regions with 1.0 Mb located on SSC2
detected for TNB overlapped with the 5.0 Mb region
detected for MORT. For TNB, on SSC3 the 1.0 Mb re-
gion detected for Landrace overlapped with the 1.0 Mb
region detected for Yorkshire. In addition, for TNB and
LS5 in Landrace two 2.5 Mb regions located on SSC6
and two 2.5 Mb regions located on SSC13 overlapped
with each other, respectively. Finally, for LS5 and
MORT in Landrace the two 1.0 Mb regions located on
SSC7 overlapped.

Discussion
This study performed GWAS for litter size and mortality
traits in Danish pigs. Two models, a linear model and a
Bayesian mixture model, were used for the analysis.
Many SNPs were detected to be significantly associated
with the traits of interests. In addition, a novel approach
to identify the QTL region was proposed. In total, 15
QTL regions were detected for TNB, LS5 and MORT in
Danish Landrace and Yorkshire pigs.

GWAS using LM and BM
The association patterns between markers and traits of
interests were generally similar between the two models
applied in the current study. Among 15 QTL regions
identified by using BM, 12 regions embraced SNPs de-
tected had significant association with traits of interests
using LM. However the detection signals were more dis-
tinct when using BM than LM. The clearer peaks indi-
cate that the BM model is better at identifying and
distinguishing regions of putative QTL.

Table 2 Number of significant SNPs common in different traitsa

detected using LMb

Trait 1 Trait 2 P < 0.05 P < 0.01

Landrace TNB Landrace LS5 110 107

Landrace TNB Landrace MORT 7 6

Landrace TNB Yorkshire TNB 17 13

Landrace TNB Yorkshire LS5 77 50

Landrace TNB Yorkshire MORT 128 52

Landrace LS5 Landrace MORT 6 6

Landrace LS5 Yorkshire TNB 3 4

Landrace LS5 Yorkshire LS5 5 10

Landrace LS5 Yorkshire MORT 23 16

Landrace MORT Yorkshire TNB 1 0

Yorkshire TNB Yorkshire LS5 114 57

Yorkshire TNB Yorkshire MORT 23 8

Yorkshire LS5 Yorkshire MORT 178 133
aTNB total number of piglets born, LS5 litter size at day 5 after birth, MORT
mortality rate before day 5 (including stillbirth)
bLM a linear mixed model with single SNP regression

Table 3 Chromosome (and number) of QTL regions detected using posterior probability in different length of windows

Traita 1.0 Mb 2.5 Mb 5.0 Mb

Landrace TNB 2(2), 3(1) 2(1), 3(1), 6(1), 13(1), 14(1) 2(1), 3(1), 6(1), 13(1), 14(1)

LS5 7(1) 6(1), 7(1), 13(1) 6(1), 7(1), 13(1), 14(1)

MORT 7(1) 7(1) 2(1), 7(1)

Yorkshire TNB 3(1) 3(1) 1(1), 3(1)

LS5 9(1) 9(1) 9(1)
aTNB total number of piglets born, LS5 litter size at day 5 after birth, MORT mortality rate before day 5 (including stillbirth)
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Population stratifications were investigated by calculat-
ing lambda-values [35]. The lambda-values found for
Landrace were 1.50 (TNB), 1.76 (LS5), 1.71 (MORT),
and 1.62 (TNB), 1.77 (LS5), 1.64 (MORT) for Yorkshire.
The LM used in the current study implemented a poly-
genic component, based on the additive-relationship
matrix, as an attempt to control the population stratifi-
cations. However, according to the lambda-values, the
LM used could not control the population stratifications
completely. The use of BM to fit all markers simultan-
eously in the model makes it possible to control the
population stratifications [27].

Although the patterns of associations when using LM
and BM models were generally consistent, some differ-
ences were observed. It was observed that many SNPs
on SSC1 were detected significantly associated with
most of the traits by using LM, while the BM model did
not led to similar results, though there were some tenta-
tive peaks. The reason for the large amount of signifi-
cant SNPs scattered across most of SSC1 when using
LM is most likely assembly and map errors. The linkage
disequilibrium (LD) pattern between significant SNPs
was investigated. Strong LD was found between blocks
of SNPs far away from each other and low LD was

Table 4 The position and length of QTL regions and the genes within the regions

Traita SSCb Position 1 Position 2 Length Proportionc Gene

Landrace TNB 2 139,963,748 140,963,748 1.0 1.00 % PDLIM4, SLC22A4, IRF1, IL-5, IL13, IL4, GDF9, LEAP2

2 141,775,934 142,775,934 1.0 0.75 % VDAC1, PPP2CA, UBE2B, CDKN2AIPNL, SAR1B, SEC24A,
CAMLG, DDX46, TXNDC15

3 6,342,416 7,342,416 1.0 0.76 % KPNA7, ARPC1A, ARPC1B, MIR9796, ATP5J2

6 154,583,417 157,083,417 2.5 0.98 % KLF17, ST3GAL3, ELOVL1, CDC20, CLDN19, GUCA2A, GUCA2B

13 140,304,656 142,804,656 2.5 0.74 % HES1

14 141,048,490 143,548,490 2.5 0.59 % MCMBP, FGFR2, TACC2

LS5 6 154,583,417 157,083,417 2.5 0.36 % KLF17, ST3GAL3, ELOVL1, CDC20, CLDN19, GUCA2A, GUCA2B

7 34,743,041 35,743,041 1.0 0.38 % HMGA1, LOC100156657, NUDT3, RPS10, C7H6orf106, SPDEF,
SNRPC, TAF11, ANKS1A

13 139,777,016 142,277,016 2.5 0.84 % HES1

14 8,423,533 13,423,533 5.0 0.44 % STC1, NEFL, GNRH1, PPP2R2A, ADRA1A, EPHX2, GULO,
CLU, CCDC25, PBK, PNOC, ZNF395

MORT 2 138,703,617 143,703,617 5.0 0.77 % CSF2, PDLIM4, SLC22A4, IRF1, IL-5, IL13, IL4, GDF9, LEAP2,
VDAC1, PPP2CA, UBE2B, CDKN2AIPNL, SAR1B, SEC24A,
CAMLG, DDX46, TXNDC15, H2AFY, CXCL14, IL9

7 34,743,041 35,743,041 1.0 1.99 % HMGA1, LOC100156657, NUDT3, RPS10, C7H6orf106, SPDEF,
SNRPC, TAF11, ANKS1A

Yorkshire TNB 1 181,896,016 186,896,016 5.0 0.88 % RAB11A, MIR339-2, MAP2K1, SNAPC5, SMAD3, CLN6,
SPESP1, RPLP1

3 5,484,217 6,484,217 1.0 0.46 % KPNA7, ARPC1A

LS5 9 70,252,726 71,252,716 1.0 0.51 % BTG2, OPTC, SNRPE, KISS1
aTNB total number of piglets born, LS5 litter size at day 5 after birth, MORT mortality rate before day 5 (including stillbirth)
bPig chromosome
cThe proportion of additive genetic variance explained by QTL region

Table 5 The QTL regions common in different traitsa

SSCb Breed 1 Trait 1 QTL region 1 Breed 2 Trait 2 QTL region 2

Position 1 Position 2 Length Position 1 Position 2 Length

2 Landrace TNB 139,963,748 140,963,748 1.0 - MORT 138,703,617 143,703,617 5.0

2 Landrace TNB 141,775,934 142,775,934 1.0 - MORT 138,703,617 143,703,617 5.0

3 Landrace TNB 6,342,416 7,342,416 1.0 Yorkshire - 5,484,217 6,484,217 1.0

6 Landrace TNB 154,583,417 157,083,417 2.5 - LS5 154,583,417 157,083,417 2.5

7 Landrace LS5 34,743,041 35,743,041 1.0 - MORT 34,743,041 35,743,041 1.0

13 Landrace TNB 140,304,656 142,804,656 2.5 - LS5 139,777,016 142,277,016 2.5
aTNB total number of piglets born, LS5 litter size at day 5 after birth, MORT mortality rate before day 5 (including stillbirth)
bPig chromosome
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detected within block on SSC1. When compared with
other chromosomes, SSC2 in both Landrace and Yorkshire
showed several clear regions with strong LD between the
SNPs within a region. However, the SNPs in LD with each
other dispersed across the whole chromosome on SSC1.
When SNPs in strong LD with a causal gene are wrongly
mapped, LM may lead to peaks in the wrong location,
while BM may not detect the QTL region because all
markers are simultaneously fitted, which may make the
PPint of a region small if the SNPs in the region are
wrongly mapped. When some assembly and map errors
exist, LM and BM will lead to different results. In addition,
the population stratifications could be another reason for
the large amount of significant SNPs on SSC1 when LM
was used. For SSC1, the lambda-values were 2.64 (TNB),
3.05 (LS5), 2.25 (MORT) for Landrace, and 2.41 (TNB),
3.97 (LS5), 3.59 (MORT) for Yorkshire. The lambda-values
for SSC1 deviated more from 1 compared with the
whole genome. However, when using BM, most of the
significant SNPs detected by LM disappeared, which
could also be due to good control of population stratifi-
cations by BM.
The differences in some significant chromosome seg-

ments between the two models can be explained by the
different operation mechanism of models. When using
LM, a single-locus regression analysis was performed, in
which one SNP was fitted and a QTL effect was ex-
plained by a single SNP in each analysis. Therefore, a
number of SNPs in LD with the QTL will generally
present significant effects. In contrast, the BM model es-
timates the effects of all SNPs simultaneously. Therefore
a QTL effect might be represented either by a single
SNP or distributed over several SNPs that were in strong
LD with the QTL. In other words, the effect of the single
QTL could be represented by several markers jointly
[21]. Since all the SNPs were fitted in the model simul-
taneously when using BM, a statistic across a small re-
gion is a good criterion to detect the QTL region instead
of a single SNP.
Regardless of the different models, the amount of sig-

nificant SNPs and regions detected in Yorkshire pigs
was smaller than in Landrace. Also, heritabilities and gen-
etic variances of the traits were higher for Landrace than
for Yorkshire. Lastly, reliability of yc for Landrace is higher
than for Yorkshire, due to the larger data set available for
Landrace. These results indicate that QTL detection
power was higher for Landrace than for Yorkshire.

QTL regions
Detection of QTL regions was based on the results from
MCMC sampling. The PPint represented the probability
of large effect SNPs included in each window. The win-
dow with highest PPint in each significant peak was
chosen as a QTL region. Three sets of sliding windows

with length of 1.0 Mb, 2.5 Mb and 5.0 Mb, were tested
to detect QTL regions. The number of QTL regions was
generally increased when increasing the window length,
at the cost of achieving a broad interval. The optimal
window size may differ between studies or even among
different QTL in the same study depending on the ex-
tent of LD between markers and QTL, the effect size, as
well as the power of detection. In this study, ten window
sizes were tested as a preliminary investigation in order
to choose an appropriate size of sliding window to re-
port (results not shown). The ten window sizes varied
from 0.5 Mb to 5.0 Mb, with the increment of 0.5 Mb.
When using the 0.5 Mb, most of the sliding windows
presented a low PPint and the peaks were confounded
with the background. However, when the window size
varied from 1.0 Mb to 2.5 Mb and from 2.5 Mb to
5.0 Mb, the patterns of different scenarios could be gen-
erally represented by 1.0 Mb and 2.5 Mb, respectively.
Lastly, the PPint showed no significant changes when the
window was enlarged to 5.0 Mb. As regard to the bal-
ance of detection power and positioning of QTL, sliding
window with 1.0 Mb was good to locate QTL in a nar-
row region, 2.5 Mb was appropriate to locate QTL with
higher detection power, while 5.0 Mb could be the upper
limit to define a QTL region because the PPint for a win-
dow larger than 5.0 Mb did not increase (Additional file
1: Figure S1, Additional file 2: Figure S2, Additional file
3: Figure S3, Additional file 4: Figure S4, Additional file
5: Figure S5 and Additional file 6: Figure S6). In general,
there is no need to increase size of window when the PPint
no longer increase with the increasing of window size.
All the QTL regions detected for TNB, LS5 and

MORT in the current study overlapped with previously
reported QTL regions associated with reproduction in
pigs which can be found in Table 6. The QTL regions
reported in previous studies were mainly associated with
corpus luteum number [36–38], teat number [39, 40],
non-functional nipples [41, 42], age at puberty [7, 43],
litter weight [44] and embryo weight [45]. All of these
traits are relevant for litter size or piglet mortality. For
example, the corpus luteum is essential for establishing
and maintaining pregnancy in pigs [46]. Progesterone se-
creted by corpus luteum is a steroid hormone respon-
sible for the decidualization of the endometrium and
maintenance. Besides, genetic association between teat
number and litter traits was investigated where a high
number of non-functional teats was found genetically as-
sociated with more stillborn piglets [47].
In addition, some of the QTL regions reported in

previous studies were specifically associated with lit-
ter size and mortality traits. For example, the QTL
region located on SSC1 identified for TNB over-
lapped with the regions previously reported for TNB
and total number born alive [48]. The QTL regions
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located on SSC2 identified for TNB and MORT over-
lapped with the regions reported for TNB and mum-
mified pigs [20]. The QTL regions located on SSC7
identified for LS5 and MORT overlapped with the
regions reported for TNB and total number born
alive [44]. And the QTL regions located on SSC14
identified for TNB and LS5 overlapped with the re-
gion reported for TNB [20].
The overlap of QTL regions identified in this study

with the regions reported in previous studies provides
more confidence about the QTL regions detected.

Candidate genes for reproduction traits
Some known genes were present on the QTL regions
detected in this study, as it can be seen in Table 4. It
was observed that most of the QTL regions cover a
number of genes even though the region was narrow,
e.g. the regions on SSC2 for TNB in Landrace. There-
fore, pinpointing a specific candidate gene for such a
QTL region is hard. Other regions cover one or two
genes only, e.g. the region on SSC13 detected for TNB
and LS5 in Landrace. This region only include the gene
hairy and enhancer of split-1 (HES1, 140,633,462 ~

Table 6 The QTL regions detected in current study overlapped with previously reported ones

Current study Previous studies

SSCa Position 1 Position 2 Position 1 Position 2 Trait

1 181,896,016 186,896,016 105,873,529 290,457,491 teat number [39]

165,580,236 257,944,209 nonfunctional nipples [41]

183,913,205 184,015,342 total number born [48]

183,913,205 184,015,342 total number born alive [48]

184,917,301 185,121,617 corpus luteum number [36]

185,717,517 185,784,945 corpus luteum number [36]

2 138,703,617 143,703,617 116,028,974 145,137,405 corpus luteum number [36]

139,963,748 140,963,748 138,002,690 142,235,710 nonfunctional nipples [41]

141,775,934 142,775,934 139,070,668 139,947,117 age at puberty [43]

139,359,663 150,135,089 nonfunctional nipples [42]

139,525,787 139,963,748 mummified pigs [20]

139,841,202 139,989,204 corpus luteum number [36]

140,050,554 140,262,094 total number born [20]

140,443,704 140,934,348 teat number [40]

3 5,484,217 6,484,217 1,456,046 130,209,174 teat number [39]

6,342,416 7,342,416 4,571,903 82,495,610 corpus luteum number [37]

6 154,583,417 157,083,417 19,536,155 157,765,593 teat number [39]

7 34,743,041 35,743,041 8,014,191 92,220,281 corpus luteum number [38]

10,763,543 117,929,721 teat number [39]

11,136,187 116,028,974 corpus luteum number [36]

16,365,408 42,509,154 age at puberty [7]

34,692,239 35,120,284 total number born [44]

34,692,239 35,120,284 total number born alive [44]

34,692,239 35,120,284 litter weight, total [44]

9 70,252,726 71,252,726 39,568,811 138,751,051 corpus luteum number [37]

13 139,777,016 142,277,016 5,836,383 188,271,972 nonfunctional nipples [41]

140,304,656 142,804,656 18,268,056 206,704,152 corpus luteum number [38]

91,625,750 145,083,047 embryo weight [45]

141,246,965 141,992,388 age at puberty [43]

14 8,423,533 13,423,533 12,814,009 12,929,926 total number born [20]

141,048,490 143,548,490 141,246,965 141,992,388 age at puberty [43]
aPig chromosome
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140,635,357 bp). HES1 has been found to be involved in
the maintenance of certain stem cells and progenitor
cells, specifically influencing the timing of differentiation
and determining binary cell fate. It has been shown that
HES1 is playing a large role in both the nervous and di-
gestive systems in mice [49, 50]. Another QTL region on
SSC3 for TNB in Yorkshire included karyopherin alpha
7 (KPNA7, 6,330,984 ~ 6,364,374 bp). KPNA7, a member
of the karyopherin α family of transport receptors, was
first reported in cattle and was shown to be exclusively
expressed in ovarian tissues, oocytes and cleavage stage
embryos. RNAi-mediated knockdown of KPNA7 in bo-
vine embryos lead to defects in cleavage development
[51]. In addition, it was also reported that KPNA7 pre-
dominately expressed in porcine oocytes and early cleav-
age stage embryos, which suggests the requirement of
KPNA7 for cleavage development [52]. Both HES1 and
KPNA7 could be related with reproduction traits ac-
cording to their function.
Though it is hard to pinpoint a specific candidate gene

for QTL regions embracing several genes, these genes
could influence a certain trait in a joint manner. Among
the genes located on the detected QTL regions, many
can be clustered in the group involved in process of cell
growth, cell development, cell cycle arrest, cell differenti-
ation and immune response etc. Some of the genes also
have been reported in relation to specific reproduction
processes. For example, the protein coded by sperm
equatorial segment protein 1 (SPESP1, 184,819,956 ~
184,820,069 bp) located on SSC1, is an acrosome mem-
brane protein involved in sperm-egg binding and fusion
[53]. The expression of SPESP1 has also been reported
to be involved in the sperm–oocyte binding and fusion
in pigs [54]. In addition, growth differentiation factor 9
(GDF9, 140,650,007 ~ 140,652,964) on SSC2 was the first
oocyte-derived growth factor identified to be required
for ovarian somatic cell function [55]. The GDF9 null
mice were incapable of ovulation as a result of an arrest
of follicle development at the primary stage, which indi-
cated the essential role of GDF9 in folliculogenesis [55].
The expression of GDF9 was also investigated in pigs
where expression of GDF9 was higher in oocytes than in
cumulus/granulosa cells [56].
Among all the regions detected, the QTL region on

SSC3 was commonly detected for TNB in both Landrace
and Yorkshire. This region had positive effects on TNB
in both breeds and the SNP located on 6,342,416 had
relatively large effect which was found in the intron of
the gene KPNA7. Therefore, this region and the KPNA7
gene could be good resource for across-breed selection.
Another region located on SSC7 was commonly de-
tected for LS5 and MORT in Landrace, while direction
of the effects were opposite for these two traits. The ef-
fect of this QTL region was positive for LS5 but negative

for MORT. The opposite effects of this region on LS5
and MORT could be part of the reason that negative
genetic correlation between LS5 and MORT observed in
Danish pigs [6]. As reported by previous studies, selec-
tion for TNB is generally associated with an increase of
piglet mortality [1, 3, 4]. Accordingly, the Danish breed-
ing program changed breeding goal from selection for
TNB to LS5 in 2004, which has led to an increase in
LSW and a decrease of piglet mortality [6]. The opposite
effects of this region on these two traits also suggested
the selection of LS5 is efficient to reduce MORT. There
were some genes, e.g. high mobility group AT-hook 1
(HMGA1, 34,981,570 ~ 34,990,089 bp), nudix (nucleoside
diphosphate linked moiety X)-type motif 3 (NUDT3,
35,003,934 ~ 35,018,877 bp), ribosomal protein S10
(RPS10, 35,109,882 ~ 35,117,473 bp), SAM pointed domain
containing ets transcription factor (SPDEF, 35,214,393 ~
35,233,199 bp) and small nuclear ribonucleoprotein poly-
peptide C (SNRPC, 35,451,476 ~ 35,466,721 bp), TAF11
RNA polymerase II, TATA box binding protein (TBP)-as-
sociated factor (TAF11, 35,543,524 ~ 35,555,701 bp) and
ankyrin repeat and sterile alpha motif domain containing
1A (ANKS1A, 35,661,335 ~ 35,766,115 bp) involved in this
region on SSC7 and some were reported associated with
pig production traits such as backfat thickness, carcass
length, foot weight, head weight [57] and growth traits
such as limb bone length [58]. The common detection of
this QTL region in several traits could provide good mater-
ial to improve genomic models for multi-trait selection.

Conclusions
This study revealed putative QTLs for TNB, LS5 and
MORT in Danish Landrace and Yorkshire pigs. Com-
pared with Bayesian models, the problem of population
stratification cannot be considered sufficiently in the lin-
ear model. Bayesian models provided more precise peaks
than linear mixed models. Using a novel approach, a
total of 15 QTL regions were identified on SSC1, 2, 3, 6,
7, 9, 13 and 14 for three traits in both breeds. Among
these QTL regions, 6 regions located on SSC2, 3, 6, 7 and
13 were associated with more than one trait. The QTL re-
gions detected in the current study overlapped with the
regions previously reported for reproduction traits.

Additional files

Additional file 1: Figure S1. QTL region profiles for total number of
piglet born (TNB) in Landrace in each chromosome. The horizontal red
line represents the significance threshold at posterior probability of
interval (PPint) > 0.8. The purple, blue and orange line represent the PPint
from a Bayesian model (BM) QTL region analysis based on 1.0 Mb, 2.5 Mb
and 5.0 Mb sliding windows, respectively. (PNG 379 kb)

Additional file 2: Figure S2. QTL region profiles for litter size at day 5
(LS5) in Landrace in each chromosome. The horizontal red line represents
the significance threshold at posterior probability of interval (PPint) > 0.8.
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The purple, blue and orange line represent the PPint from a Bayesian
model (BM) QTL region analysis based on 1.0 Mb, 2.5 Mb and 5.0 Mb
sliding windows, respectively (PNG 396 kb)

Additional file 3: Figure S3. QTL region profiles for mortality rate
before day 5 (MORT) in Landrace in each chromosome. The horizontal
red line represents the significance threshold at posterior probability of
interval (PPint) > 0.8. The purple, blue and orange line represent the PPint
from a Bayesian model (BM) QTL region analysis based on 1.0 Mb, 2.5 Mb
and 5.0 Mb sliding windows, respectively. (PNG 292 kb)

Additional file 4: Figure S4. QTL region profiles for total number of
piglets born (TNB) in Yorkshire in each chromosome. The horizontal red
line represents the significance threshold at posterior probability of
interval (PPint) > 0.8. The purple, blue and orange line represent the PPint
from a Bayesian model (BM) QTL region analysis based on 1.0 Mb, 2.5 Mb
and 5.0 Mb sliding windows, respectively. (PNG 390 kb)

Additional file 5: Figure S5. QTL region profiles for litter size at day 5
(LS5) in Yorkshire in each chromosome. The horizontal red line represents
the significance threshold at posterior probability of interval (PPint) > 0.8.
The purple, blue and orange line represent the PPint from a Bayesian
model (BM) QTL region analysis based on 1.0 Mb, 2.5 Mb and 5.0 Mb
sliding windows, respectively. (PNG 346 kb)

Additional file 6: Figure S6. QTL region profiles for mortality rate
before day 5 (MORT) in Yorkshire in each chromosome. The horizontal
red line represents the significance threshold at posterior probability of
interval (PPint) > 0.8. The purple, blue and orange line represent the PPint
from a Bayesian model (BM) QTL region analysis based on 1.0 Mb, 2.5 Mb
and 5.0 Mb sliding windows, respectively. (PNG 249 kb)
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