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Outlier analysis of functional genomic
profiles enriches for oncology targets and
enables precision medicine
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Abstract

Background: Genome-scale functional genomic screens across large cell line panels provide a rich resource for
discovering tumor vulnerabilities that can lead to the next generation of targeted therapies. Their data analysis
typically has focused on identifying genes whose knockdown enhances response in various pre-defined genetic
contexts, which are limited by biological complexities as well as the incompleteness of our knowledge. We thus
introduce a complementary data mining strategy to identify genes with exceptional sensitivity in subsets, or
outlier groups, of cell lines, allowing an unbiased analysis without any a priori assumption about the underlying
biology of dependency.

Results: Genes with outlier features are strongly and specifically enriched with those known to be associated with
cancer and relevant biological processes, despite no a priori knowledge being used to drive the analysis. Identification
of exceptional responders (outliers) may not lead only to new candidates for therapeutic intervention, but also tumor
indications and response biomarkers for companion precision medicine strategies. Several tumor suppressors have an
outlier sensitivity pattern, supporting and generalizing the notion that tumor suppressors can play context-dependent
oncogenic roles.

Conclusions: The novel application of outlier analysis described here demonstrates a systematic and data-driven
analytical strategy to decipher large-scale functional genomic data for oncology target and precision medicine
discoveries.

Keywords: Outlier analysis, Functional genomics, Oncology, Cancer, Target identification, Precision medicine,
Oncogene addiction, Synthetic lethality

Background
A major challenge in oncology drug discovery is the iden-
tification of tumor vulnerabilities that can lead to novel
therapeutic targets, and linking these vulnerabilities to
specific patient populations that are likely to benefit from
pharmacological inhibition of these targets. While histor-
ically drug targets have originated from in-depth dissec-
tion of cancer biology, more recently tumor genome
sequencing efforts such as The Cancer Genome Atlas
(TCGA) (http://cancergenome.nih.gov) and International
Cancer Genome Consortium (ICGC) (https://icgc.org)
have defined the genomic landscape and complexity for

an ever growing number of tumor types and subtypes.
However, with these approaches, it is becoming increas-
ingly difficult to identify novel oncogenic drivers that are
both pharmacologically accessible and applicable to a sub-
stantial number of patients.
Functional genomics offers an alternative means for

target identification that is complementary to in-
depth biology and sequencing. Gene silencing through
sequence-specific targeting of mRNAs by RNA inter-
ference (RNAi) takes advantage of an endogenous cellular
pathway [1, 2] and has become a powerful research tool
by enabling high-throughput and systematic loss of func-
tion screens in cultured cells and model organisms [3].
One of the largest screens to date is Project Achilles at
the Broad Institute, a pioneering effort that has utilized
a lentivirally delivered short hairpin RNA (shRNA)
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library to catalog the dependency of 216 cancer cell lines
on 11,000 genes [4].
The analysis of genome-scale RNAi screens typically

has focused on a priori partition of cell lines based on
known biological or genetic contexts, such as the muta-
tion of an established oncogene or tumor suppressor,
followed by a comparison of the sensitivity patterns of
the two groups to identify genes that, when knocked
down, confer preferential sensitivity in one group over
the other. This analytical approach has led, for example,
to the discovery of ARID1B and SMARCA2 as specific
vulnerabilities for ARID1A and SMARCA4-mutant can-
cers, respectively [5, 6]. However, the need to pre-define
the groups for interrogation represents an inherent limi-
tation due to the incompleteness of our knowledge (e.g.
granularity in functional consequence of genomic le-
sions) as well as biological complexities (e.g. the role of
molecular and genetic contexts). Predefining groups, fur-
thermore, calls for a separate analysis for each biological
or genetic context, making it impractical to query all
contexts of potential interest.
To address these limitations, we have developed a

complementary data mining strategy based on patterns
of sensitivity in functional genomics screens that re-
quires no a priori assumptions about the underlying
biology of dependency. Oncogene addiction or synthetic
lethality usually results in exceptional response in a sub-
set of tumors or cell lines that are exquisitely vulnerable
to knockdown or inhibition of the gene being interro-
gated [7]. The responder subsets are, by definition, out-
liers relative to the rest of the population or cell line
panel. Taking advantage of this observation, our strategy
adapts and extends outlier analysis methodologies to
identify genes with a subset of exceptional responders
among the screened cell lines. Such a data-driven ap-
proach in principle makes it possible to identify vulner-
abilities in any biological or genetic context in a single
analysis, and also allows for the discovery of novel or
complex contexts in which inhibition of specific genes
represents a vulnerability that would not have been
considered in a pre-defined class comparison analysis.
Outlier analysis has been widely applied to gene ex-

pression data for the discovery of cancer-associated
genes [8]. It was first described in the identification of a
gene fusion in prostate cancer involving two transcrip-
tion factors, ERG and ETV1 [9], which led to the Cancer
Outlier Profile Analysis (COPA) method [9, 10]. Many
technically more sophisticated approaches have followed,
including model-based pattern recognition for deviation
from uni-modality [11–14] and numerical detection for
marked high expression in a subset of tumors that is dis-
tant from the majority [15–19]. Outlier detection has
also been useful in finding drugs with rare but excep-
tional response in clinical trials [7]. While highly

informative, exceptional responder studies in the clinic
are constrained by the relatively modest number of bio-
logical mechanisms currently targeted by drugs as well
as the challenge of following up hypotheses in patients.
Large-scale functional genomic studies relieve these re-
strictions and enable investigating thousands of genes
in parallel.
Here we apply an outlier analysis based strategy to

functional genomic profiles for systematic oncology tar-
get discovery. The utility of such approach is illustrated
by the observation that genes with outlier patterns are
strongly and specifically enriched with those known to
be associated with cancer and relevant biological pro-
cesses, despite no molecular profiling or any other infor-
mation being used to drive the analysis. We show that it
may enable the identification of novel candidate thera-
peutic targets, and that the characteristics of the excep-
tional responder lines could further point to tumor
indications and biomarkers of response to guide precision
medicine strategies.

Results
Identification of genes with outlier sensitivity patterns
To identify genes with an exceptional responder pattern,
we used the union of the results output by three diverse
methods. They each focus on different features (bimo-
dality, variability, gap) to detect outliers and therefore
are considered complementary. Application of these ap-
proaches is not intended as a comprehensive compari-
son of various outlier methodologies; rather we reasoned
that together they would provide a more complete set of
outliers and outlier genes than any single algorithm. The
first two methods were originally developed for outlier
analysis of gene expression data: Profile Analysis using
Clustering and Kurtosis (PACK) [13], and Outlier Sum
(OS) [15]. PACK is a model-based pattern recognition
algorithm for discovering bimodal distribution, which
first determines the number of clusters in the dataset
for each gene and then computes a measure of how
much the distribution differs from Gaussianity (kur-
tosis) for those gene profiles with two clusters. Positive
kurtosis indicates clusters of unequal relative size, while
negative kurtosis indicates clusters of approximately
equal representation. The OS algorithm uses the “out-
lier-sum” statistic, which is defined using values outside
a variability-based numerical limit. It was recently assessed
to have the best performance among six closely re-
lated outlier techniques [20]. For the third method,
inspired by the Q (gap-to-range ratio) statistic utilized
in Dixon’s test for outlier detection [21], we devised
an intuitive nonparametric approach (details described
in Methods; Additional file 1: Figure S1 and Additional file
2) to explicitly identify genes with dependency patterns
where groups of sensitive cell lines are separated by a
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major “gap” from the bulk population (Gap Analysis
Procedure, or ‘GAP’ in short).
All three methods were applied to the Achilles

(v2.4.3) ATARiS gene level scores across a diverse panel
of 216 cell lines derived from consensus clustering of
individual hairpin patterns for on-target effects [22].
The Achilles dataset includes 5299 genes that yielded
similarity solution(s) and thereby consensus scores [4].
The PACK algorithm identified 793 genes with bimodal
distribution, of which 571 (72 %) had positive kurtosis
with one of the two clusters representing a small “out-
lier” subgroup. As the outlier subgroup could have

higher or lower shRNA score than the rest of the panel,
we focused on the 105 genes for which the outlier
group is more vulnerable to knockdown. The OS and
GAP methods led to the identification of genes with a
non-random outlier pattern (FDR ≤ 0.05) where statis-
tical significance was estimated using permutation. We
also required that the outlier group consist of at least
five cell lines to avoid spurious one-off observations,
yielding 90 genes from the PACK algorithm, 84 from
the OS method, and 72 from the GAP approach. In all,
there were 169 unique outlier genes, including 16 that
emerged from all three methods (Fig. 1a and b).

Fig. 1 Outlier genes identified with Profiling Analysis using Clustering & Kurtosis (PACK), Outlier Sum (OS) and Gap Analysis Procedure (GAP)
methodologies. a A summary Venn diagram including statistical significance of pairwise overlap (determined using cumulative hypergeometric
probability distribution), with detailed gene list and relevant results included in Additional file 4: Table S2. b The ATARiS gene level score distribution
for the 16 genes identified by all three outlier methods. A probability density estimate is computed by Gaussian kernel smoothing

Zhu et al. BMC Genomics  (2016) 17:455 Page 3 of 13



Enrichment for curated cancer genes and oncogenic
pathways
We evaluated the biological relevance of the identified
outlier genes by comparing them to two well-known
cancer gene collections. The Cancer Gene Census
(CGC) from the Sanger Institute catalogues genes for
which mutations have been causally implicated in cancer
[23] while the MSK-IMPACT™ (Integrated Mutation
Profiling of Actionable Cancer Targets) panel is a cu-
rated collection of key cancer genes used for diagnostic
genomic testing with next-generation sequencing tech-
nology (https://www.mskcc.org/msk-impact). Although
determined independent of any genetic or other molecu-
lar profiling information, the genes with outlier patterns
are significantly over-represented by those genetically
linked to cancer from both CGC and IMPACT (Fig. 2).
Each of the three outlier analysis approaches enriched
for established cancer genes, and their union had greater
statistical significance than any of them alone (Fig. 2),
supporting the complementarity of these methodologies.
We further assessed the validity of our outlier analysis

strategy through unbiased signature comparison. Among
1330 gene sets from the Broad Institute’s MSigDB canon-
ical pathway (CP) library (http://www.broadinstitute.org/
gsea/msigdb), which collects canonical representations of
biological processes compiled by domain experts from
pathway databases, the outlier genes are strongly and spe-
cifically enriched in those associated with various tumor
types including the prominent oncogenes and therapeutic
targets BRAF, NRAS, KRAS, PIK3CA, CDK4 and CTNNB1,
as well as important cellular pathways and processes in-
volved in cancer such as the Wnt, PI3K-mTOR, p53 and
Rb-E2F pathways, cell cycle and apoptosis (Table 1). CDK2
(Fig. 1b), like the targets of the recently approved breast
cancer drug Ibrance, is a member of the cyclin-dependent

kinase family of Ser/Thr protein kinases whose de-
regulation occurs frequently in certain types of cancer
[24]. In addition to established cancer genes, our out-
lier analysis also reveals potentially novel therapeutic
opportunities. For instance, asparagine synthetase
(ASNS) (Fig. 1b), an enzyme that catalyzes the conver-
sion of aspartate and glutamine to asparagine and glu-
tamate in an ATP-dependent manner, has been shown
to increase the chemotherapy sensitivity of leukemia
cells resistant to L-asparaginase when inhibited [25, 26].
Collectively these results demonstrate that outlier analysis
can serve as a useful strategy to identify cancer driver
genes from RNAi sensitivity patterns.

Enabling tumor indication and predictive biomarker
discoveries
With the identification of genes whose knockdown con-
fers exceptional response, we next asked whether the cell
lines making up the outlier groups are enriched in a par-
ticular tumor type or subtype, or have molecular features
which may be linked to susceptibility to target interfer-
ence. Such insights would not only guide the precision
medicine strategy in oncology drug development for
selecting patients who are most likely to benefit from
targeted therapies, but also help to further prioritize the
most biologically compelling and clinically translatable
outlier patterns.
The 216 cell lines from the Achilles dataset were mapped

to both general tumor types and common histological sub-
types (Additional file 3: Table S1). In the case of breast can-
cer, both clinical marker (ER/PR/HER2 Triple Negative
[TNBC], ER Positive [ER+], HER2 positive [HER2+])
and gene expression (Basal A [BaA_subtype], Basal B
[BaB_subtype], Her2 [Her2_subtype], Luminal [Lum_sub-
type]) based classifications [27] were incorporated.

Fig. 2 Assessment of genes with significant outlier pattern through comparison with two well-known cancer gene collections. The Cancer Gene
Census (CGC) from the Sanger Institute catalogues genes for which mutations have been causally implicated in cancer; The MSK-Integrated Mutation
Profiling of Actionable Cancer Targets (IMPACT™) is a curated panel of key cancer genes used for diagnostic genomic testing. “Union” corresponds to
169 combined genes resulting from the three outlier methods (Fig. 1a)
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Table 1 Enriched signatures from the Broad canonical pathway library among outlier genes

Canonical pathway signature # of outlier genes in the signature P(enrichment) FDR

KEGG_PATHWAYS_IN_CANCER 17 1.53E-07 1.63E-04

KEGG_PROSTATE_CANCER 10 2.46E-07 1.63E-04

KEGG_THYROID_CANCER 6 5.01E-06 2.22E-03

PID_WNT_CANONICAL_PATHWAY 4 1.05E-05 3.25E-03

KEGG_ENDOMETRIAL_CANCER 7 1.22E-05 3.25E-03

PID_BETACATENIN_DEG_PATHWAY 4 3.65E-05 7.14E-03

KEGG_MELANOMA 7 3.76E-05 7.14E-03

KEGG_GLIOMA 7 4.44E-05 7.38E-03

REACTOME_CELL_CYCLE_MITOTIC 12 5.20E-05 7.68E-03

KEGG_BLADDER_CANCER 5 1.10E-04 1.47E-02

KEGG_NON_SMALL_CELL_LUNG_CANCER 6 1.56E-04 1.88E-02

PID_HES_HEYPATHWAY 5 1.76E-04 1.88E-02

KEGG_COLORECTAL_CANCER 6 1.84E-04 1.88E-02

REACTOME_SIGNALING_BY_FGFR 7 2.12E-04 2.02E-02

KEGG_ACUTE_MYELOID_LEUKEMIA 6 2.90E-04 2.41E-02

PID_SMAD2_3NUCLEARPATHWAY 6 3.35E-04 2.47E-02

ST_WNT_BETA_CATENIN_PATHWAY 4 3.53E-04 2.47E-02

BIOCARTA_GSK3_PATHWAY 4 3.53E-04 2.47E-02

REACTOME_MITOTIC_G2_G2_M_PHASES 5 3.90E-04 2.60E-02

REACTOME_SIGNALING_BY_FGFR_IN_DISEASE 7 4.24E-04 2.68E-02

PID_MTOR_4PATHWAY 6 5.70E-04 3.29E-02

BIOCARTA_G1_PATHWAY 4 5.94E-04 3.29E-02

SA_G1_AND_S_PHASES 3 6.95E-04 3.29E-02

REACTOME_G0_AND_EARLY_G1 3 6.95E-04 3.29E-02

PID_TCRRASPATHWAY 3 6.95E-04 3.29E-02

PID_RB_1PATHWAY 6 7.27E-04 3.29E-02

PID_IL4_2PATHWAY 5 7.61E-04 3.29E-02

REACTOME_NGF_SIGNALLING_VIA_TRKA_FROM_THE_PLASMA_MEMBRANE 7 7.77E-04 3.29E-02

KEGG_RENAL_CELL_CARCINOMA 6 8.17E-04 3.29E-02

REACTOME_DOWNSTREAM_SIGNALING_OF_ACTIVATED_FGFR 6 8.17E-04 3.29E-02

REACTOME_CELL_CYCLE 12 9.15E-04 3.54E-02

REACTOME_SIGNALING_BY_ERBB2 6 1.27E-03 4.21E-02

KEGG_CHRONIC_MYELOID_LEUKEMIA 6 1.27E-03 4.21E-02

BIOCARTA_CELLCYCLE_PATHWAY 3 1.44E-03 4.55E-02

PID_FOXM1PATHWAY 4 1.66E-03 4.96E-02

REACTOME_SIGNALING_BY_PDGF 6 1.89E-03 4.96E-02

REACTOME_PROLONGED_ERK_ACTIVATION_EVENTS 3 1.94E-03 4.96E-02

PID_E2F_PATHWAY 5 1.97E-03 4.96E-02

PID_ER_NONGENOMIC_PATHWAY 4 1.98E-03 4.96E-02

REACTOME_SIGNALING_BY_EGFR_IN_CANCER 6 2.07E-03 5.10E-02

BIOCARTA_P53_PATHWAY 3 2.55E-03 5.84E-02

KEGG_PANCREATIC_CANCER 5 2.77E-03 6.14E-02

PID_PI3KPLCTRKPATHWAY 4 3.64E-03 7.44E-02

PID_AR_TF_PATHWAY 4 3.64E-03 7.44E-02
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Significant tumor type associations (Additional file 4:
Table S2) were found for more than half (86/169) of the
genes with outlier patterns. These include well recognized
relationships such as KRAS in pancreatic and colorectal
cancers (P = 1.969e-10 and 2.180e-2 respectively), CDK4
in luminal/ER+ breast cancer (P = 3.968e-7 and 9.044e-4
respectively), BRAF in skin cancer (P = 3.109e-3), PIK3CA
in breast and gastric cancers (P = 1.343e-4 and 1.689e-3
respectively) and APC in colorectal cancer (P = 2.581e-4),
as well as mechanistically supported relationships like
CDK2 in ovarian cancer (P = 6.149e-03; Table 2) where
CCNE1, the cyclin that interacts with CDK2, is frequently
amplified [28, 29].
To uncover predictive genetic biomarkers, we focused

on the lesions that are most likely to be functional, as
tumor genomes are often unstable and thus the vast ma-
jority of genetic changes are generally passengers [30].
For somatic mutations, we selected those in hotspot po-
sitions as well as nonsense and frameshift events. Hot-
spots were identified systematically using patient-derived
genomic profiles from 20 TCGA tumor types (details
described in Materials and Methods), which were subse-
quently employed to filter cell line mutation data compiled
from the COSMIC [31] and CCLE [32] databases. For copy
number alterations, we restricted our analysis to high-level
amplifications (≥4 copies) and deletions (≤1 copy).
Six (KRAS, NRAS, BRAF, PIK3CA, APC and ZMIZ1)

of the 169 genes with outlier patterns are significantly
(P < 0.05) characterized by their own genetic lesions
(Table 2), suggesting oncogenic addiction as the under-
lying mechanism of their exquisite vulnerability. All of
these with the exception of ZMIZ1 represent promin-
ent oncogenes or tumor suppressors. ZMIZ1 has pre-
viously been identified as a candidate oncogene in
multiple murine transposon and insertional mutagen-
esis screens [33–35].

For 25 additional genes with outlier patterns, the asso-
ciated predictive genetic biomarkers are either members
of the same gene family or components of the same pro-
tein complex (Table 2), revealing possible synthetic le-
thal relationships where lesions in functionally related
gene(s) confer special dependency. These include well-
documented relationships such as the vulnerability for
CTNNB1 knockdown in the context of APC lesions and
E2F1 vulnerability in the context of RB1 lesions as well
as the recently discovered dependency on ARID1B in the
context of ARID1A lesions [5]. In the case of CDK2,
CCNE1 amplification is specifically over-represented
among its associated exceptional responder cell lines
(P = 8.215e-04; Table 2), consistent with the tumor
type enrichment of ovarian cancer described above.
Novel relationships of potential interest were also ob-
served such as TOP2A vulnerability with PARP1 lesions,
HNRNPA1 vulnerability with RPL22 lesions and PSMD3
vulnerability for PSMC4 lesions.

Distinct dependency and coherence between solid and
hematological malignancies
To obtain a global view of tumor cell dependency, we per-
formed unsupervised hierarchical clustering of functional
genomic profiles using the genes with outlier dependency
patterns (Additional file 4: Table S2). The vast majority of
hematological cell lines cluster together by functional data
(Additional file 5: Figure S2A and Additional file 6), in
contrast to those of solid origin that are more scattered
and heterogeneous, despite hematological cell lines repre-
senting only 14 % of the total, with tumor types like cen-
tral nervous system (CNS) and ovarian cancer being
equally or more heavily covered by the panel (Additional
file 3: Table S1). Even functionally related genes, such as
those in the Wnt pathway, differ in points of liability:
while cell lines derived from liquid tumors tend to be

Table 1 Enriched signatures from the Broad canonical pathway library among outlier genes (Continued)

BIOCARTA_IGF1R_PATHWAY 3 4.07E-03 8.07E-02

REACTOME_SIGNALING_BY_CONSTITUTIVELY_ACTIVE_EGFR 3 4.07E-03 8.07E-02

KEGG_ERBB_SIGNALING_PATHWAY 5 4.19E-03 8.07E-02

REACTOME_SIGNALING_BY_SCF_KIT 5 4.61E-03 8.63E-02

REACTOME_SIGNALING_BY_ERBB4 5 4.61E-03 8.63E-02

REACTOME_UNFOLDED_PROTEIN_RESPONSE 4 4.74E-03 8.76E-02

BIOCARTA_WNT_PATHWAY 3 6.04E-03 9.36E-02

BIOCARTA_BAD_PATHWAY 3 6.04E-03 9.36E-02

BIOCARTA_IGF1MTOR_PATHWAY 3 6.04E-03 9.36E-02

PID_AURORA_A_PATHWAY 3 6.04E-03 9.36E-02

WNT_SIGNALING 4 6.05E-03 9.36E-02

PID_AR_PATHWAY 4 6.79E-03 0.10

REACTOME_SIGNALLING_BY_NGF 7 7.50E-03 0.10
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vulnerable to TCF3 knockdown, those of solid origin are
susceptible to other pathway genes including GSK3A/B,
CTNNB1 and APC (Additional file 5: Figure S2B).

Potentially context-dependent oncogenic roles for some
tumor suppressor genes
Several outlier genes whose knockdown confers striking
vulnerability are tumor suppressors including APC [36],
PHLPP1 [37] and SPEN [38], while a number of other

candidates have been reported to harbor anti-oncogenic
activities such as the pro-apoptotic gene MTCH2 [39]
and the anti-metastatic RNA chaperone RBM47 [40].
Among the five lines most responsive to Adenomatous
polyposis coli (APC) knockdown, all contain loss of
function mutation in the APC gene itself and four are of
colorectal (CRC) origin (Additional file 7: Figure S3A).
Furthermore, they strongly overlap with those dependent
on CTNNB1 (P = 1.219e-03; Additional file 7: Figure

Table 2 Outlier genes whose predictive genetic biomarkers are the gene itself (in italic) or from the same gene family/protein complex,
suggesting potential oncogenic addiction or a synthetic lethal relationship. Genetic biomarkers and tumor types are listed by decreasing
statistical significance of association

Gene Genetic biomarker (related) Tumor type

APC APC CRC

ARID1B ARID1A

ATP5A1 ATP5H

BRAF BRAF CRC;Melanoma

CDK2 CCNE1;SKP2 Ovarian;Ovarian_serous_adenocarcinoma;Breast Lum_subtype

CRNN DST;SDF4 ALL;Leukemia/Lymphoma

CTNNB1 APC;PXN;CREBBP CRC

DHX30 PARP1;DHX40 Breast;Breast HER2+;Breast Her2_subtype

E2F1 RB1

FOXA1 FOXP4 Breast;Breast Lum_subtype;Breast HER2+;Prostate;

Breast BaA_subtype;Prostate_adenocarcinoma;

Breast Her2_subtype;Breast ER+

HNRNPA1 RPL22

KRAS KRAS Pancreatic;CRC

LRPPRC NFKBIB Breast Lum_subtype;Breast;CRC; Ovarian_clear_cell_adenocarcinoma;Breast HER2+

NRAS NRAS

PIK3CA PIK3CA Breast;Gastric;Breast Lum_subtype;Gastric_adenocarcinoma; CRC;Breast HER2+;Breast
TNBC;Prostate_adenocarcinoma; Breast Her2_subtype;Breast ER+

PSMD3 PSMC4;PSMD8

RBBP4 ACTL6A;GNB4;WDR89

RBM47 IGF2BP1;MAK16 Breast HER2+;Breast;Breast Her2_subtype; Esophageal_adenocarcinoma

RBMXL1 MAK16;TAF15

RPS17 RPL38;RPL22 Ovarian_clear_cell_adenocarcinoma;Ovarian

RREB1 ZNF652;GLI2 Breast;Breast HER2+;Breast Her2_subtype

SF3A3 PRPF3

SLC25A40 SLC2A3;SLCO1B1;SLCO1A2;SLC2A14;LST-3TM12

SPEN DHX38;CSTF2T

TOP2A PARP1;PPM1D;PRKDC Breast;Breast Lum_subtype;Breast HER2+

TOPBP1 NBN;BRCA1

TUBG1 APC CRC

WDR18 WDR67;GNB2L1;WDR16;NWD1

ZMIZ1 ZMIZ1 Leukemia/Lymphoma;Breast;AML

ZNF234 ZNF331 Multiple_Myeloma;Ewing_Sarcoma;Leukemia/Lymphoma;Bone

ZNF236 GLI1
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S3B). Truncating APC mutations have been reported to
have a dominant negative effect on proliferation, spindle
checkpoint control, survival and chromosomal stability
[41]. The exceptional responders for PHLPP1 and
MTCH2 (Fig. 1b) are over-represented by cells from
leukemia/lymphoma and colorectal cancer respectively
(P = 2.211E-8 and 5.178E-3; Additional file 3: Table S2 ).
The results therefore support and may further generalize
the notion that in certain contexts, tumor suppressor
genes can become oncogenic and create specific
liabilities.

Discussion
The analysis of large-scale cell based functional genom-
ics datasets has predominantly focused on identifying
vulnerabilities in known biological contexts, such as
mutated oncogenes or tumor suppressors. A limitation
of this approach is that it requires knowledge of the biol-
ogy to be interrogated and can generally be described as
starting with known biology, then looking for patterns in
the data that support it. We have reversed this paradigm
and now describe an alternative data mining strategy
that starts by looking for profiles indicative of potential
dependencies of interest, with no assumptions about the
underlying biology of the dependency. It is based on
identifying genes with subgroups of exceptionally sensi-
tive cell lines. By definition, these exceptional responders
are statistical outliers. We therefore hypothesized that
outlier analysis, whose previous application in genomic
studies has been limited to gene expression data, would
also be useful in investigating RNA interference response
patterns. We tested the hypothesis by applying outlier
analysis to genome-scale shRNA screen results from
Project Achilles at the Broad Institute, and found
genes with outlier patterns are significantly and specif-
ically enriched with those that have been causally or
genetically linked to cancer as well as related pathways
and processes, demonstrating the effectiveness of our
novel approach.
As we intentionally selected three diverse methods

for outlier analysis, it is not surprising that in addition
to common predictions, each algorithm also identifies
unique outlier genes (Fig. 1a). The significant over-
representation of known cancer genes from each
method (Fig. 2) suggests the general utility of the out-
lier approach is unlikely tied to a specific algorithm,
and other outlier analysis methodologies can be simi-
larly employed to decipher functional genomic profiles.
The complementarity of the diverse approaches is
manifested in the superior enrichment of their output
union (Fig. 2), highlighting the heterogeneous pattern
of outlier distribution among cancer genes.
The GAP method (Additional file 1: Figure S1) in

principle is related to bimodal type of approach in that

both detect major separation between outlier and non-
outlier groups. This is manifested in the degree of over-
lap significance between outlier genes identified where
Gap shows a stronger agreement with PACK over OS
(Fig. 1a). However, unlike bimodal which looks for two
normal distributions with distinct means, GAP does not
require the outlier group to be Gaussian. Given that the
outlier group is often relatively small in size, we believe
it is advantageous to circumvent modeling it explicitly in
consideration of limited statistical power. The method’s
utility is highlighted by some well-known cancer genes
such as CDK4, APC and EZH2 are only captured by
GAP (Additional file 3: Table S2).
The identification of outliers from functional genomic

data also helps to uncover potential indications and
predictive biomarkers associated with candidate targets
(e.g. ovarian cancer and CCNE1 amplification for CDK2
inhibitors) that may guide the development of precision
medicine strategies. The National Cancer Institute (NCI)
has recently launched the Exceptional Responders Initia-
tive to investigate the molecular factors of tumors asso-
ciated with exceptional treatment responders of cancer
patients to drug therapies [42]. Outlier analysis of func-
tional genomics data from large-scale gene silencing pro-
vides an opportunity to address similar questions for
thousands of genes in parallel using pre-clinical models.
The set of genes with outlier dependency patterns may

also provide a useful framework for a global view of tumor
cell dependency. Hematological lines have a unique vul-
nerability pattern that appears more homogenous than
their solid tumor counterparts. This may reflect their evo-
lutionary history where leukemias and lymphomas likely
require fewer rounds of clonal expansion [43–45] as their
precursor cells are already mobile and invasive [46]. It is
also possible that some technical factors (e.g. conditions
in cell culturing) may contribute to the observed differ-
ence. With experimental validation, the grouping of tumor
cells by functional dependency could lead to important
insights on the design of more sophisticated molecular
biomarker strategies of both positive and negative selec-
tions for basket trials.
Our apparently counter-intuitive observation that the

knockdown of several tumor suppressor genes resulted
in striking vulnerability in a subset of tumor cells
suggested they could be oncogenic in specific circum-
stances. This is analogous to the recent finding in the
ARID1 family whereby inactivation of ARID1A creates a
special dependence on the related tumor suppressor
gene ARID1B [5] and the “abnormal” (ARID1A-less)
SWI/SNF complex is pro-oncogenic. The presence of
additional tumor suppressors like ARID1B and APC
among outlier genes suggests that these are unlikely to
be isolated cases and more may have context-dependent
dual properties, presenting a challenge to the simple
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binary classification of cancer genes as either oncogenes
or tumor suppressors, and bringing up the possibility of
expanding the druggable genome to include tumor sup-
pressors when coupled with an appropriate precision
medicine strategy.
While outlier vulnerability analysis of Achilles RNAi

sensitivity pattern has successfully uncovered many well-
known cancer genes along with their tumor type and
genetic biomarker relationships, it also has a few notable
misses. EGFR and ERBB2, two established oncology
therapeutic targets, do not appear to harbor a significant
exceptional responder group distinct from the popula-
tion (Additional file 8: Figure S4). We should note that
the outlier approach, as any analytical strategy, is contin-
gent upon the quality of the input: technological limita-
tions such as hairpin off-target seed effects [47–51] have
an inevitable negative impact on analysis results. Even
though we used ATARiS gene-level solutions which have
on-target signals greatly amplified as input, our analysis
is still not completely immune from this complexity and
novel findings in particular need to be experimentally
confirmed for proper interpretation. We have described
here the application of outlier analysis to only a single
large functional genomics dataset; however, the identifi-
cation of many known cancer genes and relationships
provides confidence and proof-of-principle for the gen-
eral approach.
Whereas we have used Achilles shRNA patterns as an

example, outlier analysis should be equally relevant to
datasets from alternative functional genomic technolo-
gies including siRNA and CRISPR [52–54], as well as to
other shRNA screen data. Since outliers are rare events
by definition, their detection requires a sufficiently large
population as with genome-wide gene expression datasets.
Furthermore, for most of the outlier techniques to work
effectively, the overall input data (after normalization)
should follow a symmetric and preferentially normal dis-
tribution without the confounding of excessive technical
outliers as discussed above. The outlier analysis approach
is not only useful for mining of gene-level values but also
lower-level data such as those from individual hairpins
where the consistency between outlier responders could
provide another means to select for on-target effects.

Conclusions
With the rapid evolution of functional genomic technolo-
gies, there is an ever growing demand for analytical strat-
egies to maximize discoveries from the large amounts of
data being generated. The current analyses typically focus
on genes whose knockdown enhances response in pre-
defined molecular contexts and thus are inherently limited
in their ability to reveal new disease-relevant biology. Here
we tackle this important conceptual problem and demon-
strate one solution by introducing a novel strategy to

identify tumor vulnerabilities from functional genomic
profiles based on patterns of responsiveness alone. It takes
advantage of the observation that oncogene addiction or
synthetic lethality generally manifests itself in the exquisite
sensitivity of a subset of tumors or cell lines, and therefore
is built upon the identification of genes with outlier drop-
out pattern. We thus expand the utility of outlier analysis,
whose application in genomics thus far has been restricted
to gene expression data, towards the mining of functional
genomic profiles.
We show that genes with outlier vulnerability pattern

are strongly and specifically enriched with those known
to be associated with cancer and relevant biological pro-
cesses, demonstrating its utility for the identification of
therapeutic targets. The characteristics of the outlier
lines can further reveal tumor indications and bio-
markers of response associated with candidate targets to
guide the development of precision medicine strategies.
In addition, it provides a useful framework for a global
view of tumor cell dependency, which led to the obser-
vation of distinct sensitivity and coherence between solid
and hematological malignancies. The counter-intuitive
finding of several tumor suppressors with outlier sensi-
tivity patterns challenges the simple binary classifica-
tion of cancer genes as either oncogenes or tumor
suppressors, and generalizes the notion that tumor sup-
pressors could play context-dependent oncogenic roles.
Therefore, our novel analytical approach described here
offers a valuable alternative means to mine fast-growing
functional genomic data in an unbiased manner for
discoveries that may lead to the next generation of
oncology medicines.

Methods
Achilles data
Project Achilles is a systematic effort aimed at identify-
ing and cataloging genetic vulnerabilities across hun-
dreds of genomically characterized cancer cell lines [4].
The project uses genome-wide genetic perturbation re-
agents (shRNAs) to silence or knock down individual
genes and identifies those genes that affect cell survival.
The latest version (2.4.3) was downloaded from the pro-
ject data portal (http://www.broadinstitute.org/achilles).
The file Achilles_QC_v2.4.3.rnai.Gs.gct containing ATARiS
[22] gene level scores for 216 cell lines that pass quality
control (p ≤ 0.05) [4] was used as input for our outlier
analysis below.

Outlier analysis

(1)PACK
Profile Analysis Using Clustering and Kurtosis
(PACK) algorithm implemented in the vabayelMix
library of R [13] was applied to Achilles data for
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outlier identification. We filtered its output for
bimodal genes of positive kurtosis (i.e. unequal
relative mass), with outlier group more vulnerable
to drop-out and containing at least 5 cell lines.

(2)Outlier Sum
The Outlier Sum (OS) algorithm [15] was applied to
gene-summarized Achilles data for outlier identifica-
tion. The outlier-sum statistic for each gene i was
defined to be “one-sided” as the sum of the values
that are smaller than the limit q25(i)-IQR(i):
X

xij⋅I xij < q25 ið Þ−IQR ið Þ� �

where inter-quartile range (IQR) = q75(i)-q25(i), xij
is the drop-out score for gene i in cell line j and I
represents the conditional IF test of whether xij is
lower than this limit (1 if true and 0 if false). Statistical
significance was estimated through 10,000 full
permutation of the data matrix with outlier-sum
statistic calculated in the same manner. We focused
on genes with at least 5 outlier cell lines and the false
discovery rate (FDR) was determined using the
Benjamini–Hochberg procedure [55].

(3)Gap Analysis Procedure (GAP)
We devised a gap-based measure for outlier identifi-
cation (Additional file 1: Figure S1). Let xi,j be the
drop-out value for gene i in cell line j, reorder the
values for each gene so that

yi;1 ≤yi;2≤…: ≤yi;m≤~xi≤yi;mþ1≤…: ≤yi;n

where ~xi is the median for gene i across cell lines.
An outlier sum statistics was computed as following
based on gaps (G) between adjacent data points:

Si ¼
Xk
j¼1

yi;j if max
1≤j≤m

G yi;j

� �
≥ α yi;n− yi;1

� �

0 if max
1≤j≤m

G yi;j

� �
< α yi;n− yi;1

� �

8>><
>>:

where gap G(yi,j) = yi,j + 1 − yi,j and k =max1 ≤ j ≤mj
such that G (yi,j) ≥ α (yi,n − yi,1) For α, we used an
arbitrary value of 0.05. Statistical significance was
estimated through 10,000 full permutations of the
data matrix with the gap-based outlier sum statistic
calculated in the same manner. We focused on genes
with at least 5 outlier cell lines and the false discovery
rate (FDR) was determined using the Benjamini-
Hochberg procedure [55].

Most likely functional genetic lesions
To avoid cell culture artifacts and technical biases in cell
line collection, mutation hotspots were identified in a sys-
tematic and unbiased manner from patient-derived som-
atic mutation profiles. The Cancer Genome Atlas (TCGA)

level 3 mutation data (.maf files) for 20 diverse tumor types
(BLCA, BRCA, CESC, COAD, GBM, HNSC, KIRC, KIRP,
LAML, LGG, LUAD, LUSC, OV, PAAD, PRAD, READ,
SKCM, STAD, THCA, UCEC) were downloaded through
firehose (http://gdac.broadinstitute.org/). We filtered for
non-silent coding mutations (De_novo_Start_InFrame,
De_novo_Start_OutOfFrame, Frame_Shift_Del, Frame_-
Shift_Ins, In_Frame_Del, In_Frame_Ins, Missense, Non-
stop, Read-through, Translation_Start_Site) and excluded
those mapped to pseudogenes. Nonrandom Mutation
Clustering (NMC) algorithm [56] was applied to the
resulting “Pan-Cancer” mutation profile, with multiple
hypothesis testing corrected by the Benjamini-Hochberg
procedure [55]. We focused on significant mutation hot-
spots (FDR ≤ 0.05) of no more than 50 nucleotides. Such
length was selected as a compromise for both activating
and inactivating missense mutations as activating ones
tend to be rather focal [43] while inactivating ones often
span a relatively relaxed region/domain [57].
The non-silent coding mutation profiles for cell lines

were obtained using Cell Index database (CELLX) [58]
based on genetic data compiled from the Cancer Cell Line
Encyclopedia (CCLE) [32], Sanger Catalog of Somatic Mu-
tations in Cancer (COSMIC) [59] and Sanger Wellcome
Trust Genomics of Drug Sensitivity in Cancer (GDSC)
[60]. To select for most likely functional mutations, we
filtered for those located at patient-derived hotspots as
identified above, as well as loss-of-function (LOF) ones by
mutation type of nonsense and frameshift. Copy number
segments for cell lines were also obtained using CELLX.
Amplifications and deletions for a gene were defined as
copy number segments overlapping the gene of at least
four copies and at most one copy respectively, if any.

Gene pairs related by families and protein complexes
1012 human gene families together with their associ-
ated members were downloaded from genenames.org
(http://www.genenames.org/), a curated online repository
of HGNC-approved gene nomenclature, gene families and
associated resources. Protein complex relationships were
obtained from the Comprehensive Resource of Mammalian
protein complexes (CORUM) database which provides a
resource of manually annotated protein complexes from
mammalian organisms including function, localization, sub-
unit composition and literature reference [61, 62]. 1846
such complexes are from human sources. For each pair of
outlier gene and its predictive genetic biomarker (see
Enrichment analysis below), we consider them functionally
related if they belong to the same human gene family or
protein complex based on the annotations described here.

Clustering analysis
Unsupervised hierarchical clustering was performed with
correlation as similarity metric and average linkage as

Zhu et al. BMC Genomics  (2016) 17:455 Page 10 of 13

http://gdac.broadinstitute.org/
http://www.genenames.org/


clustering method using Cluster 3.0 software (http://
bonsai.hgc.jp/~mdehoon/software/cluster/software.htm).
Non-outliers represent non-sensitive hits and are thus
“flattened” to zero. To focus on most variable features,
165 out of the 169 genes with significant outlier sensitiv-
ity pattern (Additional file 3: Table S2) were used in the
clustering analysis as they each have less than a quarter
of total cell lines classified as outliers. The clustering
results were visualized using TreeView program [63] and
heatmap.2 function of ‘gplots’ package in R (http://
www.inside-r.org/packages/cran/gplots/docs/heatmap.2).

Enrichment analysis
The statistical significance for enrichment of outliers in a
tumor (sub)type or with genetic biomarker was calculated
as follows:

P ¼ 1−
Xx−1

i¼0

K
i

� �
M−K
N−i

� �

M
N

� � ;

where M = total of cell lines, K = number of outliers (the
union from the three methods), N = number of cell lines
from the tumor (sub)type or with likely functional gen-
etic lesion, and x = number of outliers in the tumor
(sub)type or with genetic biomarker. The probability of
obtaining at least the observed number of common out-
lier genes from a pair of methods by chance was deter-
mined in an analogous manner, where M = total number
(5299) of genes with ATARiS consensus solution, K and
N = number of outlier genes identified by each method
respectively, and x = number of overlapping outlier genes
identified by both methods.

Gene signature analysis
Gene signature enrichment analysis was performed by
comparing outlier genes with those from the CGC cata-
logue and MSK-IMPACT™ panel as well as those from the
Broad MSigDB’s canonical pathway (CP) library. Statistical
significance was determined using cumulative hypergeo-
metric probability distribution as previously described
[64], where the total number of genes was based on those
with ATARiS gene consensus solution [4, 22] and multiple
hypothesis testing was corrected by Benjamini-Hochberg
procedure [55].

Additional files

Additional file 1: Figure S1. A schematic diagram of the GAP approach.
Its matlab implementation is included as Additional file 2. (DOCX 189 kb)

Additional file 2: An implementation of the GAP approach in matlab.
(PDF 43 kb)

Additional file 3: Table S1. Tumor type and common subtype
classification of Achilles cell lines. (XLSX 16 kb)

Additional file 4: Table S2. The complete list of genes with outlier
patterns along with tumor type indication and related predictive
biomarker results (sorted by decreasing statistical significance of
association), if any. The table indicates for each gene which of the
three analysis methods determined it to be associated with an
outlier responder pattern. (XLSX 16 kb)

Additional file 5: Figure S2. Unsupervised hierarchical clustering of tumor
cells by functional dependency. (A) Grouping of drop-out patterns
using outlier genes, where rows correspond to genes and columns
correspond to cell lines. Non-outlier genes are colored in grey as
they represent non-sensitive hits. The right inset provides a zoom-in
view of the yellow cluster with the vast majority of hematological
lines. The full size heatmap, dendrograms and labels have been included as
Additional file 6. (B) Grouping using outlier genes from the Wnt pathway.
(DOCX 1164 kb)

Additional file 6: The complete clustering diagram shown in Additional
file 5: Figure S2A including heatmap, dendrograms and row/column
labels in full page size. (JPG 10376 kb)

Additional file 7: Figure S3. The outlier pattern for APC. (A) The kernel
density plot of ATARiS gene level score for APC and details on the
five outlier cell lines most vulnerable to its knockdown. (B) Unsupervised
hierarchical clustering of tumor cells by functional dependency on
outlier genes from the Wnt pathway, with APC highlighted in yellow.
(DOCX 395 kb)

Additional file 8: Figure S4. The ATARiS gene level score distribution
for (A) EGFR and (B) ERBB2. A probability density estimate is computed
by Gaussian kernel smoothing. (DOCX 49 kb)
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