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Abstract

Background: The recent development and availability of different genotype by sequencing (GBS) protocols
provided a cost-effective approach to perform high-resolution genomic analysis of entire populations in different
species. The central component of all these protocols is the digestion of the initial DNA with known restriction
enzymes, to generate sequencing fragments at predictable and reproducible sites. This allows to genotype thousands
of genetic markers on populations with hundreds of individuals. Because GBS protocols achieve parallel genotyping
through high throughput sequencing (HTS), every GBS protocol must include a bioinformatics pipeline for analysis of
HTS data. Our bioinformatics group recently developed the Next Generation Sequencing Eclipse Plugin (NGSEP) for
accurate, efficient, and user-friendly analysis of HTS data.

Results: Here we present the latest functionalities implemented in NGSEP in the context of the analysis of GBS data.
We implemented a one step wizard to perform parallel read alignment, variants identification and genotyping from
HTS reads sequenced from entire populations. We added different filters for variants, samples and genotype calls as
well as calculation of summary statistics overall and per sample, and diversity statistics per site. NGSEP includes a
module to translate genotype calls to some of the most widely used input formats for integration with several tools to
perform downstream analyses such as population structure analysis, construction of genetic maps, genetic mapping
of complex traits and phenotype prediction for genomic selection. We assessed the accuracy of NGSEP on two highly
heterozygous F1 cassava populations and on an inbred common bean population, and we showed that NGSEP
provides similar or better accuracy compared to other widely used software packages for variants detection such as
GATK, Samtools and Tassel.

Conclusions: NGSEP is a powerful, accurate and efficient bioinformatics software tool for analysis of HTS data, and
also one of the best bioinformatic packages to facilitate the analysis and to maximize the genomic variability
information that can be obtained from GBS experiments for population genomics.
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Background
Genotype by sequencing (GBS) is a powerful, cost-
effective method to obtain genome-wide variability
information for populations composed by hundreds of
individuals [1–5]. In brief, a GBS protocol starts with a
digestion of the DNA using one or more known restric-
tion enzymes, aiming to reduce the complexity of the
genome to be sequenced. Then, fragments of suitable
lengths (less than 800 bp) are ligated to adapters, ampli-
fied and sequenced in a high throughput Illumina plat-
form [6]. Multiple samples can be sequenced in one
single lane adding appropriate barcodes [7]. Sequenced
reads can then be demultiplexed and either analyzed de-
novo or aligned to a reference genome if available. In
the latter case, variants can be identified using analy-
sis pipelines similar to those used for analysis of whole
genome resequencing data [8]. The main feature of this
protocol is that a relatively small, yet reasonably well dis-
tributed and reproducible, portion of the entire genome
is sequenced, which allows to identify and genotype thou-
sands of genomic variants across the genome and across
different samples. GBS is becoming the method of choice
for several applications in plant genomics and plant breed-
ing [9], such as the analysis of population dynamics [2],
construction of high density genetic maps [4, 8], genetic
mapping of complex traits through Genome-Wide Asso-
ciation Studies (GWAS) [3] and estimation of breeding
values in genomic selection [1, 5].
A key component of any GBS protocol is the bioin-

formatics pipeline required to analyze the reads and to
obtain polymorphic sites within the sequenced popula-
tion. Widely used packages such as bwa [10] or bowtie2
[11] for short read alignment and Samtools [12] or GATK
[13] for variants detection and genotyping have been used
to analyze GBS data [8]. More recently, custom packages
such as Stacks [14] or the Tassel GBS pipeline [15] have
been developed specifically for analysis of the types of
reads produced by GBS technologies. Themain advantage
of these methods over previous approaches is that they
can still work in the absence of a reference genome [16].
Tassel in particular takes advantage of the nature of GBS
reads to perform a highly efficient calculation of genomic
variants.
We recently developed the software package NGSEP

as an accurate, efficient and easy-to-use alternative for
analysis of high throughput sequencing (HTS) data and
we demonstrated its advantages over other commonly
used packages using benchmark whole genome sequenc-
ing (WGS) data on humans, yeast and rice [17]. Here we
describe the new functionalities implemented in NGSEP
for analysis of GBS data and we compare the performance
of NGSEP with other commonly used methods for vari-
ants detection and genotyping on three different breeding
populations of cassava and beans.

Results
Novel functionalities implemented in NGSEP
Deconvolution
The deconvolution process allows to distribute the reads
obtained from fragments barcoded and sequenced in one
Illumina lane, producing one separate file for each sam-
ple. It receives a fastq file with the lane information and
a text file describing the link between barcodes and sam-
ples. Although deconvolution can be generally applied to
any type of sequencing in which samples are identified by
barcodes, it is particularly important for GBS data because
in GBS experiments 96 samples (or even up to 384 sam-
ples in some cases) are sequenced per lane to achieve cost
efficiency. We also included an option in this module to
identify a user-defined tag on each read and then trim
the read from the starting point of this tag. This allows to
remove contamination of adaptor sequence on the three
prime end of the reads, which we have identified as the
most important issue affecting the quality of the reads
produced by the Elshire protocol for GBS (see “Methods”
for details).

One step wizard for parallel multisample analysis
The NGSEPWizard is a new functionality which, starting
from raw sequencing data, embodies all steps required to
obtain a population variants file with only one execution
screen. This functionality greatly reduces the amount of
work needed by researchers to obtain variation datasets
over populations and also helps to standardize parameters
for read aligment and variants detection across different
samples. Figure 1 shows an schematic of the user inter-
action needed to run this functionality. The wizard starts
when users select a folder including raw sequencing data
in fastq format for different samples. Users then select
the samples to process and choose parameters and out-
put directories for read alignment, variants identification
and genotyping and finally submit the entire pipeline. For
error control, the wizard either has the option of skip-
ping samples with problems in any step and trying to
finish the process including only the successful samples,
or it can also cancel the entire execution in case that
one sample fails. For both cases NGSEP will notify about
the samples with problems both through execution logs
and showing a popup alert summarizing errors across the
different samples. Although the NGSEP wizard can in
principle be applied to HTS reads obtained from any type
of sequencing protocol, it is particularly useful to facili-
tate to users the process of obtaining variation datasets
from raw reads in GBS experiments in which hundreds
of samples are sequenced in just a few lanes and hence
execution parameters need to be standardized across
samples. This wizard covers a large part of the bioin-
formatic analysis steps included in currently used GBS
protocols [7, 9].
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Fig. 1 NGSEP wizard. One step wizard to obtain population variability datasets

Filtering and conversion of VCF files
We expanded the variants call format (VCF) filtering
module to include most of the filtering strategies that
can be employed to achieve the balance between variant
genome coverage and genotype quality required for dif-
ferent applications. Genotype calls can be filtered based
either on genotype quality (GQ field in the VCF geno-
type format) or total read coverage. Genomic regions
can be either selected or filtered out, which is useful
to remove markers in undesired regions (for example,
repetitive elements) or to focus on a particular region
of the genome, such as a quantitative trait locus (QTL)
or a gene. Samples can also be either selected or fil-
tered out, which allows users to remove samples that
were sequenced at lower coverage or to focus on sub-
populations within the whole dataset. Single nucleotide
polymorfisms (SNPs) can then be selected based on sev-
eral criteria such as number of individuals genotyped,
minor allele frequency (MAF), distance between mark-
ers and functional annotations. To select SNPs ameanable
for other high throughput SNP genotyping platforms (e.g.
PCR based), users can also select limits on the GC-content
of the region surrounding each particular SNP. All these
filtering approaches can be applied to any VCF file using
minimal computational resources, which facilitates users
trying several different options for downstream analy-
sis. We also expanded the conversion module to allow
users to translate the genotype data to the input formats
needed by tools such as DARwin to build distance-based

dendograms [18], JoinMap for construction of genetic
maps [19], and the R package rrBLUP to perform estima-
tion and cross validation of breeding values in genomic
selection [5].

Statistics on genotyped populations
We added three modules providing several statistics on
the genotypes included in a VCF file. Summary statis-
tics include counts of number of variants discriminated as
biallelic SNPs, biallelic indels and other (multiallelic) vari-
ants, the MAF distribution and the distribution of SNPs
genotyped in different numbers of individuals. It also
includes counts of genotype calls per sample, including
number of genotyped variants, non-reference genotype
calls and heterozygous calls. Counts per sample are also
discriminated by gene functional annotations. The diver-
sity statistics module calculates for each variant common
statistics for population genomic analysis such as MAF,
expected and observed heterozygosity, and deviation from
Hardy-Weinberg Equilibrium. Users can provide a text
file indicating a clustering of samples in subpopulations,
which allows this module to calculate diversity statistics
for each subpopulation, facilitating the calculation and
genome-wide analysis of F-statistics. Finally, a third func-
tion allows to compare the genotype calls on two VCF files
(or one VCF file with itself ), and calculates the number of
differences between every pair of samples. This allows to
identify potentially duplicated materials or direct parental
relationships.
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Imputation
One of themain issues of GBS, compared to high through-
put genotyping platforms, is the relatively high percentage
of missing data produced by the random distribution of
read coverage both across samples and across genomic
sites. Although several bioinformatics methods have been
developed to perform genotype imputation (see [20, 21]
for example), most of these tools have been developed
in the context of imputation on human populations of
unrelated individuals. Even though imputation on popu-
lations of inbred materials and biparental or multiparental
populations is relatively easier because these populations
generally have larger linkage disequilibrium (LD) blocks
[22], very few bioinformatic tools are available to perform
accurate genotype imputation on these cases. Keeping this
in mind, we reimplemented the haploid version of the hid-
den markov model (HMM) implemented in fastPHASE
[21] to perform imputation in populations of inbred lines,
either unrelated or members of a breeding population.
Our implementation receives and produces its output as a
VCF file which allows users to directly integrate imputed
genotypes in GWAS analysis using the format conversion
module of NGSEP.

Comparison of methods on cassava F1 breeding
populations
We evaluated the performance of NGSEP compared to
some of the most widely used pipelines for SNP discov-
ery and genotyping, namely GATK [13], Samtools [12]
and Tassel [15], on GBS reads previously sequenced and
used to generate a dense SNP based cassava genetic map
[4, 8]. These reads were obtained from GBS experiments
performed on two biparental full-sib cassava families of
F1 crosses termed the K family [4] and the NxA fam-
ily [8] (see “Methods” for details). Because cassava is a
naturally outcrossing species, its cultivars hold high lev-
els of heterozygosity. Hence, cassava F1 populations make
a useful benchmark to assess the accuracy of different
pipelines to identify both homozygous and heterozygous
genotypes, using Mendelian rules of segregation as a
gold-standard for expected genotype calls. We classified
SNPs based on their observed heterozygosity (Ho) and
minor allele frequency (MAF) in four different categories
(see Methods for details): 1) Monomorphic (AAxAA),
2) Homozygous/Heterozygous (AAxAa), 3) double het-
erozygous (AaxAa), and 4) segregating (AAxaa). Dis-
tributing the SNPs on these categories is useful to under-
stand the behavior of each method, the amount and main
sources of errors and also the consequences of these errors
for downstream analysis. For each category we calculated
as measures of sensitivity the number of genotype calls
in categories 2, 3 and 4 and, as measures of specificity,
the number of segregation errors and the number of SNPs
in category 1. Figure 2 shows that the distribution of Ho

and MAF on datasets with relatively equivalent quality
obtained running the four pipelines is generally consistent
with expected segregation patterns. This figure also sug-
gests that all methods included in this comparison are able
to provide thousands of SNPmarkers genotyped with high
accuracy.
We compared the number of shared SNPs between the

different methods after keeping genotype calls with com-
parable genotype quality (see next paragraphs for details),
and applying the same filters on number of individuals
genotyped, repetitive regions and observed heterozygos-
ity, retaining SNPs consistent with the categories useful
to build a genetic map (C2 and C3). We found that,
among filtered datasets, NGSEP, GATK and Tassel share
over 60 % of their predicted SNPs, whereas only up to
46 % of the SNPs reported by Samtools are shared by
the other methods (Fig. 2d). Whereas NGSEP identifies
80 and 75 % of the SNPs reported by GATK and Tas-
sel respectively, GATK and Tassel respectively identify 62
and 69 % of the SNPs reported by NGSEP. Differences in
the SNPs retained by the four methods can occur due to
genotype calls confidently predicted by one method and
not called by other method that produce changes in the
number of individuals genotyped, or due to discrepancies
in the genotype calls that produce different estimates of
observed heterozygosity. To rule out the latter option, we
calculated the percentage of SNPs in the filtered datasets
that are contained in the non filtered datasets provided
by each method (Fig. 2d) and we found that close to
90 % of the filtered SNPs identified by each method are
identified by at least other method. Whereas over 99 %
of the SNPs within the Samtools or the GATK filtered
datasets appear in the NGSEP non filtered dataset, only 72
and 90 % of the SNPs within the filtered NGSEP dataset
appear in the non filtered datasets of GATK and Samtools
respectively. Moreover, we verified that more than 96 %
of the genotype calls contained by a filtered dataset are
consistent with genotype calls predicted by other meth-
ods. The largest difference between methods (3.57 %) was
observed between the filtered Samtools dataset and the
unfiltered Tassel dataset. The percentages of inconsis-
tency between the genotype calls shared between the fil-
teredNGSEP dataset and the unfiltered datasets of GATK,
Samtools and Tassel are 2.41 %, 2.77 % and 3.17 % respec-
tively. Over 99 % of these discrepancies are genotypes
called homozygous by one method and heterozygous by
another method. A similar comparison performed with
the datasets obtained from the NxA family shows results
consistent with this comparison.
As a starting point for the comparison of different meth-

ods, we calculated the number of genotypes and the num-
ber of errors as a function of the minimum quality score
(GQ format field in the VCF file) because this score should
be related to the confidence assigned by each method to
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Fig. 2MAF and Ho distributions. Statistics on filtered SNPs obtained running the four discovery pipelines compared in this study on the K family GBS
data. a Distribution of observed heterozygosity bMAF distribution in SNPs useful to build a genetic map (categories 2 and 3, see Methods for
details), cMAF Distribution on highly heterozygous SNPs (category 4), and d Percentage of filtered SNPs useful to build a genetic map that appear at
the filtered (upper chart), and unfiltered (lower chart) datasets obtained running each method

each genotype call. We found that quality scores of GATK
and Samtools tend to be smaller than those of NGSEP
(Additional file 1: Figure S1). On the other hand, most of
the quality scores reported by Tassel are higher than those
of NGSEP, ranging between 66 and 100.
Similar to previous benchmarks [17], we contrasted

the number of genotype calls in SNPs useful to build a
genetic map (categories 2 and 3) against the number of
errors detected within these categories. Figure 3a and d
show that the four methods provide roughly equivalent

high accuracies in this analysis, being NGSEP and Tassel
slightly more accurate than GATK and Samtools in the K
family and GATK slightly more accurate than NGSEP and
Samtools in the NxA family. Samtools is the most con-
servative algorithm reporting at q ≤ 10 about the same
number of SNPs than NGSEP at q ≥ 60, however with
more errors.
Although SNPs in category 4 are in principle not useful

for construction of genetic maps from F1 populations, we
performed the same analysis for the SNPs in this category
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Fig. 3 Quality assessment for cassava F1 families. Top figures: Number of genotype calls in SNPs classified in the categories that are useful to build a
genetic map (C2 and C3, see Methods for details) contrasted with the number of segregation errors identified in such categories in a the K family
and d the NxA family. Middle figures: Number of genotype calls in SNPs segregating the two parents (C4) contrasted with the number of (false)
homozygous genotypes called in SNPs catalogued in this category in b the K family and e the NxA family. Bottom figures: Number of genotype calls
in SNPs classified in the categories C2 and C3 contrasted with the number of genotyping errors identified in SNPs predicted to be monomorphic in
c the K family and f the NxA family. For each pipeline the dots represent datapoints obtained filtering genotype calls at different minimum quality
scores. Values in all figures are thousands of genotype calls

to assess the behavior of each method in highly heterozy-
gous sites. In this case Tassel andNGSEPmore clearly out-
perform GATK and Samtools (Fig. 3b and e). We believe
that the reason for this outcome is that Samtools and
GATK assume that SNPs tend to be in Hardy-Weinberg
Equilibrium (HWE) [12], which is not the case for SNPs
in categories 2 and 4. For the case of Samtools, the strand
bias filter, which we could not deactivate, can also be a
reason for reduced sensitivity, taking into account that an
important percentage of the genome covered in a GBS
experiment is only sequenced in one strand, and only
fragments with lengths equal or smaller than the read
length are sequenced in the two DNA strands. Tassel up
to this point seems to have the best accuracy, although

we could not assess this pipeline using the NxA family
data. Finally, because we filtered out SNPs monomorphic
for the alternative allele, the remaining predicted SNPs
with low observed heterozygosity (Ho ≤ 0.2) are likely
to be called due to genotyping errors. In this comparison
Tassel showed the worst behavior generating 28,954 spu-
rious SNPs at q ≥ 99, compared to 5,953 spurious SNPs
produced by NGSEP at q ≥ 40 and about 1,000 produced
by GATK and Samtools at q ≥ 20 and q ≥ 10 respectively.
Figure 3c and f show the number of predicted erroneous
genotype calls in monomorphic sites contrasted with the
number of genotype calls useful to build genetic maps
as a measure of sensitivity. NGSEP tends to produce
more singleton errors than GATK and Samtools but the
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assignment of quality scores given by NGSEP seems to be
more effective than that given by Tassel to filter out these
errors. Overall, these results suggest that Tassel has a ten-
dency to call heterozygous genotypes over homozygous
genotypes which makes it appear as having the best accu-
racy on the highly heterozygous sites at the expense of
having the worst accuracy on monomorphic sites. Results
obtained with the bean population (next section) seem to
confirm this hypothesis.
As a final assessment of the accuracy of the NGSEP

pipeline, we built a draft genetic map for the NxA popu-
lation using as input one of the most high-quality datasets
obtained with NGSEP, which includes 2,422 SNPs. Con-
sistent with previous studies [4, 8], we obtained 18 linkage
groups, which we could uniquely map to the 18 chro-
mosomes assembled in the latest version of the reference
genome available in phytozome [23], having only 27 SNPs
inconsistent with the chromosome assignment of each
linkage group. Sorting of SNPs within each linkage group
largely coincides with their predicted physical positions in
the reference genome (Additional file 1: Figure S2). The
number of SNPs mapped to each chromosome was on
average 142.8, ranging from 62 mapped to chromosome
16 to 359 mapped to chromosome 1. The total length
of the map (2,615 cM) was relatively close to the 2,412
cM reported by the International Cassava Genetic Map
Consortium (ICGMC) based on the consensus of nine
genetic maps [8] and the 2,571cM reported by [4] for
the K family. The average intervals between two adjacent
mapped markers was 1.33 cM. The largest group, with a
total length of 190.15 cM, was mapped to chromosome 1,
whereas the smallest group, with 98.75 cM, was mapped
to chromosome 17. Chromosome 1 also contains the high-
est marker density, with an interval average of 0.6 cM,
whereas the least saturated group maps to chromosome
16, with an interval average of 1.33 cM. The longest inter-
val between adjacent SNPs is observed on chromosome 13
with a value of 35.174 cM.

Comparison of methods on a common bean MAGIC
population
As a benchmark for comparison of methods on popula-
tions of inbred lines, we present here preliminary results
on GBS of a common bean multiparental advanced gener-
ation intercross (MAGIC) population [24, 25] developed
by the bean program of the International Center for Trop-
ical Agriculture (CIAT, see Methods for details). We ana-
lyzed one of the lanes sequenced for this project, including
a subset of the population composed by 7 parental lines
and 88 siblings. After running the different pipelines and
filtering using different quality scores, we removed SNPs
in regions masked as repetitive in the bean reference
genome [26] as well as variants with less than 80 indi-
viduals genotyped and variants with MAF below 0.05.

In this case we have more variability in allele frequen-
cies and therefore we can infer less information from the
structure of the population. However, assuming that the
development of the population achieved random mating
of the eight parental lines, we can infer that the percent-
age of heterozygous genotypes per site ranges from 25 to
50 %. After the four rounds of inbreeding performed to
obtain F5 plants the percentage of heterozygosity should
range from 1.5 to 3 %. Hence, we assumed for this quality
assessment that most of the heterozygous genotype calls
predicted by the different pipelines would be errors and
we contrasted the total number of genotypes predicted
by each method with the number of those that were het-
erozygous. Figure 4a shows that NGSEP provided the best
accuracy on this comparisons whereas Tassel produced
the largest number of probably false heterozygous calls.
We verified if heterozygous genotypes are clustered in a

few particular SNPs, which could happen due to repeats
not identified in the reference genome or even due to
balancing selection, or if they are spread over the whole
dataset as expected for errors. We contrasted the total
number of SNPs obtained by each method against the
number of SNPs with observed heterozygosity (Ho) larger
than 0.05, which in this subset of the population would
correspond to SNPs in which at least 5 individuals are het-
erozygous. Figure 4b shows that NGSEP also achieved the
best behavior in this comparison mainly because most of
the heterozygous genotype calls predicted by NGSEP are
clustered in about 25 % of the SNPs, whereas heterozygous
genotype calls predicted by GATK, Samtools and Tassel
are spread over more than 50 % of the SNPs. Figure 4c
shows that only NGSEP produces an Ho distribution con-
sistent with the expected percentage of heterozygous calls
for this population. In the case of Samtools and GATK,
the most likely explanation for this behavior is the effect
of the assumption of Hardy-Weinberg equilibrium which
in this dataset does not hold due to inbreeding. Tassel on
the other hand is probably overcalling heterozygous geno-
types because, unlike the other pipelines, it does not take
into account base quality scores during genotype calling.
Finally, we performed a comparison between the impu-

tation module developed in NGSEP for inbred popula-
tions against Beagle [20], which is one of the most widely
used tools for genotype imputation and, to the best of
our knowledge, the only imputation tool able to process
files in VCF format. We considered six different scenar-
ios combining filters on quality and minimum number of
individuals. Figure 4d shows that the same calls are pre-
dicted by both methods in about 82 % of the imputed
genotypes and that between 80 and 90 % of the differences
(12 to 20 % of the imputed genotypes) happened because
Beagle imputed heterozygous genotypes. Although a bet-
ter gold-standard dataset and more algorithms should
be considered to perform a formal comparison between
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Fig. 4 Quality assessment for the bean MAGIC population. a Total number of genotype calls obtained from sequencing data for the bean MAGIC
population contrasted with the number of heterozygous genotype calls. For each pipeline the dots represent datapoints obtained filtering
genotype calls at different minimum quality scores. b Total number of SNPs obtained in the same experiments as a function of the number of SNPs
with observed heterozygosity larger than 0.05. c Distribution of observed heterozygosity for datasets obtained with the four pipelines compared in
this study. d Distribution of imputed genotype calls for different datasets obtained with NGSEP and imputed with NGSEP and with Beagle. The
green line represents the percentage of the total dataset that imputed genotype calls represent for each dataset

methods for imputation on inbred populations, this ini-
tial result suggests that the HMM implemented in NGSEP
can provide genotype calls with accuracies similar to other
state-of-the-art software tools for genotype imputation.

Discussion
Genotype By Sequencing (GBS) is a powerful and cost-
effective protocol to assess the variability of entire pop-
ulations. However, maximizing the information obtained
from GBS experiments requires a bioinformatics pipeline
able to understand the particular nature of the reads
produced by this protocol and adaptable to optimize
its behavior on populations with different characteristics
and in particular different distributions of variability and

heterozygosity. Here we report the novel functionalities
of NGSEP that were designed and implemented to facil-
itate the analysis of GBS data, and we demonstrated that
NGSEP is a powerful and adaptable framework to geno-
type populations of an outcrosser highly heterozygous
species such as cassava as well as populations of inbred
individuals such as the bean MAGIC population. For
the complete MAGIC population, we assembled a highly
curated dataset of about 20,000 SNPs which is now being
used to perform genetic mapping of complex agronomi-
cally relevant traits in bean (Manuscript in preparation).
Besides the populations described in this study and recent
works on analysis of whole genome sequencing data in
rice [27] and peanut [28], the NGSEP pipeline has been
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used by different collaborators to obtain genomic varia-
tion datasets from WGS, GBS and RAD-sequencing data
taken from different populations of landraces, breeding
materials and even wild relatives of rice, cassava, beans,
potato, lettuce and sugar cane.
We compared the accuracy of NGSEP against that of

other widely used software packages for analysis of High
throughput Sequencing (HTS) data such as GATK and
Samtools, which were originally optimized for low cov-
erage WGS data in humans, and the Tassel GBS pipeline
which was specifically built for the GBS protocol devel-
oped at Cornell. We believe that this effort itself is a
novel contribution to the field because, to the best of
our knowledge, comparisons of methods for SNP discov-
ery and genotyping using formal benchmark datasets as
a baseline are generally missing from current literature,
especially for GBS data and non-model organisms. Our
comparisons show that NGSEP provides the best overall
accuracy under different scenarios.
Comparison against tools commonly used for SNP dis-

covery in human genetics shows that NGSEP outper-
forms GATK and Samtools mainly because optimization
of these tools for high accuracy on low coverage WGS
data included the assumption of Hardy-Weinberg Equilib-
rium (HWE) which does not hold on highly heterozygous
sites commonly found on F1 populations, or sites with low
heterozygosity such as most of the variable sites in pop-
ulations of inbred species. Strand bias filters are also not
generally adequate for GBS data which probably explains
why Samtools reported the lowest sensitivity in these
experiments, taking into account that this tool was among
the best ranked in our previous benchmarks with WGS
data [17].
Compared to Tassel, which is currently the preferred

tool for analysis of GBS data, NGSEP also provides better
overall accuracy mainly because Tassel seems to overcall
heterozygous genotypes. The most likely reason explain-
ing this behavior is that, unlike the other pipelines and
for efficiency reasons, Tassel disregards the information
included in base quality scores, which restricts to rela-
tive allele counts the information to call genotypes. Hence,
even sequencing errors tagged during primary analysis
with low base quality scores could produce false heterozy-
gous genotypes. We believe that this is the main reason
explaining the unexpectedly high number of predicted
variants with low MAF in the cassava F1 populations and
the large percentage of heterozygous calls in the bean
MAGIC population. Other difficulty we found while try-
ing to compare Tassel with other tools was that we could
not find a way to run the pipeline on the NxA cassava pop-
ulation because the raw reads were already distributed per
sample andwere paired-end and not single-end. This issue
makes a clear advantage for NGSEP, Samtools, and GATK
over Tassel in terms of usability because these pipelines

can be directly used on data produced by different GBS
protocols.
In our experiments Tassel is the most efficient tool for

GBS data analysis, followed by Samtools. However in both
cases the improved efficiency comes at the cost of lower
accuracy. This difference can be critical in applications
such as GWAS because several markers with different
allele frequencies need to be accurately genotyped within
each genomic region to increase the chance of discovering
true correlations between genomic and trait variation.
We are currently carrying on different efforts to improve

the usability of NGSEP, to allow more researchers acquire
the capacity to analyze HTS data with lower technical sup-
port. Among other improvements, we released for our
graphical interface a wizard that greatly simplifies the
amount of workload needed to obtain datasets of variants
from HTS, and in particular GBS data. Most of the func-
tionalities of NGSEP can also be deployed in a command
line environment or integrated in a web portal solution
such as Galaxy [29].We are also working withmajor bioin-
formatics software integration platforms such as CyVerse
[30] to allow more users to benefit from the integrated
analysis of entire populations achieved by NGSEP.

Conclusion
Bioinformatic analysis of GBS data with NGSEP provides
a powerful framework for discovery and genotyping of
thousands of genetic markers in entire populations. Anal-
ysis of several populations of different crops shows that
NGSEP currently provides a great balance between com-
pleteness, accuracy, efficiency and usability compared to
other software packages. We expect to keep expanding
NGSEP with novel functionalities to facilitate genetic
mapping of complex traits and to assist the genetic
improvement of staple crops through the use of molecular
breeding techniques such as genomic selection.

Methods
Development of NGSEP and parameters used to compare
with other tools
NGSEP is written in Java 1.6. It can be deployed as
a standalone command-line program, a Graphical User
Interface (GUI) implemented as an Eclipse IDE plugin, or
using the XML scripts for integration in the Galaxy [29]
environment. NGSEP relies on the libraries jsci-core for
statistics, sam-1.68 to manipulate sam/bam files, the Sort-
Sam package of Picard [31] to sort alignments and Xchart
[32] to produce charts in the graphical interface. The GUI
includes a screen for read mapping with bowtie2 [11].
NGSEP reads and writes standard formats for genomic
analyses, such as BAM, VCF or GFF.
Single-end raw reads from the K family and the MAGIC

population were demultiplexed using the Deconvolute
module of NGSEP, while paired-end reads from the NxA
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family were already demultiplexed. Because adaptor con-
tamination was identified in about 35 % of the raw reads
sequenced from the K family and the MAGIC popula-
tion, the first 6-mer of the adaptor sequence (AGATCG)
was searched through every read and reads showing this
sequenced were trimmed to the initial basepair of this
sequence. Trimmed reads were aligned to the Phaseolus
vulgaris v1.0 [26] and the Manihot esculenta v4.1 [33] ref-
erence genomes, using bowtie2 [11] with default param-
etes, except for the maximum fragment length of the
paired-end reads in the NxA population, which was set to
1,000 bp. Alignments were coordinate-sorted and indexed
using Picard. We performed the discovery of variants by
running the FindVariants module on all the samples of
each population. As required for GBS data, the detection
of repetitive regions, copy number variants (CNVs) and
other structural variants was turned off; the maximum
base quality score was set to 30 and the minimum qual-
ity for reporting a variant was set to 40; one base at the 5’
end and five bases at the 3’ end of each read were ignored.
Also, due to the nature of GBS experiments, themaximum
number of reads allowed to start at the same position was
raised to 100. Finally, the prior heterozigozity rate was set
to 10−4 in the bean population and to 10−3 in both cas-
sava populations. The VCF files produced at this step were
used as input for the MergeVariants module, to get the list
of variant sites of each population. Afterwards, all samples
were genotyped at the variant sites by running the Find-
Variants module again, keeping all parameters unchanged
except for the minimum variant quality score, which we
set to zero to retain as many genotype calls as possible.
Finally, the MergeVCF module was used to join all the
VCFs into a single file for each population.

GATK pipeline
Demultiplexed reads were mapped to their corresponding
reference genome using bwa-mem v0.7.12 [10] with the -
M flag on, mapped reads were then coordinate-sorted and
merged into a single file per population using the Merge-
SamFiles tool from Picard v1.134. Duplicates were not
marked because in GBS samples stacked reads are con-
fused with PCR duplicates and then the MarkDuplicates
module filters between 60 and 95 % of the aligned reads.
For genotyping of the three populations, bam files were
processed using the Genome Analysis Tool Kit (GATK)
v3.4.0 [13], following their suggested best practices. For
the data cleanup step, the four tools were pipelined:
RealignerTargetCreator, IndelRealigner, BaseRecalibrator
and PrintReads, using always default parameters. As we
did not have a SNP or indel database for cassava or
beans, we provided the algorithm with an empty VCF
for recalibration. In the case of the NxA population, the
Quality Score Base Recalibration could not be performed
because of computer memory limitations, and because

some samples were sequenced twice (see “Methods” of
[8]), producing different sequencer biases. For the variant
discovery step, the HaplotypeCaller was used with both
standard minimum confidence thresholds (for emitting
and calling a variant) set to zero, to allow a higher sensi-
tivity. The prior heterozigozity was set to 10−4 in the bean
population and to 10−3 in both cassava populations. All
other parameters were left with default values.

Samtools pipeline
Alignments from bowtie2 [11] were analyzed using Sam-
tools and BCFtools v1.2 [12]. For this purpose, the
mpileup command from Samtools was used over all the
samples simultaneously, with default parameters, and the
resulting pileup was stored in a BCF file. This file was ana-
lyzed with the call command from BCFtools, using the
multiallelic caller model, and keeping all possible alterna-
tive alleles to achieve maximum sensitivity. The mutation
rate was set to 10−4 for the bean population, whereas
for the cassava populations was left to its default value
of 10−3.

Tassel pipeline
The raw reads from the sequencer were analyzed using
the GBS pipeline from Tassel 3 [15]. The tools were
run consecutively in the following order: the FastqTo-
TagCountPlugin, with the ApeKI enzyme for both, the
beanMAGIC and the cassava K family populations. Then,
the MergeMultipleTagCountPlugin and the TagCountTo-
FastqPlugin were run with a minimum of three for the
times a tag needs to appear to be output. Afterwards, the
sequences in fastq format were mapped to each reference
genome using bowtie2 in the very sensitive (local) mode,
and the alignment was converted to the tagsOnPhysi-
calMap (.topm) format using the SAMConverterPlugin.
Next, the original fastq reads and the tags count were used
to obtain the tagsByTaxa files in the tbt.byte format using
the FastqToTBTPlugin, and (in the K family) were sub-
sequently merged using the MergeTagsByTaxaFilesPlugin
applying the option to identify taxa with identical names.
Finally, SNPs were called using default parameters and
stored in VCF format using the tbt2vcfPlugin along the
whole genome. A custom script was used to concatenate
the SNPs called for each scaffold in the reference genome
into a single VCF file.

Development and sequencing of F1 cassava populations
We reanalyzed GBS data taken from two recently
sequenced cassava full-sib F1 families. The first fam-
ily, referred here as the K family, was developed and
sequenced as an effort leaded by Universidad Nacional de
Colombia to build a highly dense SNP based genetic map
useful to identify genes related to resistance to cassava
mosaic disease (CMD) and cassava bacterial blight (CBB)
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[4]. The population, initially developed at CIAT, consists
of 137 individuals derived from a cross between cultivars
TMS30572 andCM2177-2. GBSwas performed at Cornell
University to obtain reads from both the parents and their
siblings.
The second family, referred here as the NxA family, is

the largest of the nine biparental populations developed
by the International Cassava Genetic Map Consortium
(ICGMC) to assemble into chromosomes the current ref-
erence genome [8]. This family, developed at the Inter-
national Institute for Tropical Agriculture (IITA) and
sequenced at the Vincent J. Coates Genomic Sequencing
Laboratory (VCGSL), consists of 303 full siblings derived
from the cross of the African cultivars Namikonga and
Albert.
For both biparental populations, we first checked the

integrity of the family to detect and filter unrelated sam-
ples using two separate methods: 1) comparing the per-
centage of homozygous differences between the parental
lines and the offspring, and 2) calculating the identity
by descent (IBD) coefficient using the software package
King [34]. Excluding also samples with low number of
sequenced reads (less than 50Mbp), a total of 119 samples
for the K family and 248 samples for the NxA family were
finally utilized.

Comparison of pipelines for SNP detection from GBS data
in F1 families
For each family we ran the four SNP calling pipelines
described in this study using different values for mini-
mum genotype quality scores. Then we filtered out SNPs
that are monomorphic for the alternative allele and SNPs
in regions of the reference genome masked as repeti-
tive. Additionally, we filtered out SNPs with less than 100
individuals genotyped in the K family and less than 200
individuals genotyped in the NxA family. We classified
the SNPs obtained on each experiment in four possi-
ble categories depending on the Mendelian segregation
pattern of a typical F1 family based on the four pos-
sible genotype combinations of the parents: 1) AAxAA
(Monomorphic) 2) AAxAa, 3) AaxAa, and 4) AAxaa.
Because the genotypes of the parents could be missing or
could contain genotyping errors, we classified each SNP
based on its observed heterozygosity (Ho) andminor allele
frequency (MAF) within the population instead of using
the parental genotypes. Assuming an infinite population,
perfect Mendelian segregation and perfect genotyping,
expected values for these parameters on each category are:
1) Ho = 0, MAF=0, 2) Ho = 0.5, MAF=0.25, 3) Ho = 0.5,
MAF=0.5 and 4) Ho = 1, MAF = 0.5. To account for
deviations from these assumptions, we classified the SNPs
using these thresholds: 1)Ho < 0.2, 2) 0.2 ≤ Ho ≤ 0.8 and
MAF ≤ 0.37, 3) 0.2 ≤ Ho ≤ 0.8 and MAF > 0.37, and 4)
Ho > 0.8.

In absence of an explicit gold-standard to measure the
sensitivity and specificity of each method, we calculated
the number of genotypes and the number of segregation
errors on each family taking into account the expected
genotypes on each category. SNPs falling in category 1
should be monomorphic and hence any genotype with a
minor allele (including heterozygous genotypes) should be
an error. On the other hand, SNPs in category 4 should
be heterozygous in every sibling. Therefore, heterozygous
genotypes in the parents or homozygous genotypes in
the siblings should be errors. Categories 2 and 3 include
SNPs useful to build a genetic map and for QTL analysis.
Hence, our main measure of sensitivity is the number of
genotypes obtained in SNPs classified in these two cate-
gories. Errors in these categories include deviations from
the expected genotypes of the parents and homozygous
genotypes for the minor allele in category 2.

Genetic map construction
Map construction was performed using the Maximum
Likelihood mapping algorithm implemented in JoinMap
4.1 using the outbreeding full sib family (CP) population
type. The main limitation in the number of SNPs included
in this analysis was the capacity of the software that did
not allow to analyze more than 3,000 SNPs in a 8GB
memory machine. We therefore selected the more useful
and high-quality SNPs for the construction of the genetic
map. First, from the total 228,187 SNPs generated with
the best quality in NGSEP (Q60), we filtered out SNPs
in repetitive regions and with less than 96 % of missing
data, to obtain 26,146 SNPs. Then, we selected SNPs with
an observed heterozygosity (Ho) between 0.4 and 0.6,
resulting in 4,327 SNPs. Furthermore, we only uploaded
to JoinMap the 3,869 SNPs having informative parental
genotypes and consistent segregation patterns. After the
conventional filters applied in JoinMap (goodness of fit
and redundancy of data) we were able to unambiguously
map 2,422 SNPs. A LOD threshold of 5.5 was used to
construct 18 linkage groups, corresponding to the 18 cas-
sava chromosomes.We used a two point grouping analysis
to assign markers to their corresponding linkage group,
and within groups they were mapped using the strongest
crosslink (SCL). Also, the map was generated using a
recombination frequency below 0.45.
To validate the accuracy of the genetic map, scaffolds

from the version 4.1 of the cassava reference genome
were aligned to the recently released version 6.1, avail-
able at phytozome [23] using blast searches. To obtain the
most likely origin of each scaffold, only hits with lengths
at least 50 % of the length of the best hit, mapping to
chromosomes, and with identity score higher than 90 %
were retained. Remaining segments of scaffolds aligning
to multiple sites were also removed. The most likely chro-
mosomal position of each SNP was calculated translating
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the coordinate within the scaffold where the SNP was
discovered to chromosomal coordinates, using the align-
ment of the scaffold segment closest to the SNP in scaffold
coordinates.

Development and sequencing of a bean MAGIC population
A common bean Multi Parental Advanced Generation
Inter Cross population (MAGIC) was developed from 8
parental CIAT breeding lines (SXB 412, INB 827, ALB
213, SEN 56, SRC 2, MIB 778, SCR 9, INB 841), selected to
combine desirable characteristics such as tolerance to heat
stress, yield under drought and growth under unfavorable
soil conditions such as high Aluminum or low Phospho-
rous stress. Genotypes were combined by pairwise crosses
and subsequently crosses of F1 plants. After the F2 pop-
ulation lines were advanced by single seed descent to F5,
when DNA was extracted from young leaves (Additional
file 1: Figure S3). We performed GBS on 648 F5:7 plants
plus the 8 parental lines following the Cornell protocol
[7] and using NGSEP for bioinformatic analysis. Total
genomic DNA was extracted from 25-days-old seedlings
plants. 1 gr of leaf tissue was frozen using liquid nitro-
gen and ground to a fine powder with metal balls in a
paint shaker for three minutes. The DNA was extracted
with the Urea based DNA extraction midi prep protocol
[35]. The quantity of the DNA was measured with Nan-
oDrop 1000 and the DNA integrity was visualized trough
EcoRI, PstI and RsaI restriction enzyme digestion in a 1 %
agarose gel electrophoresis. DNA was sent to the Cornell
sequencing facility, where GBS libraries were generated
based on the Cornell protocol [7] using ApeKI as restric-
tion enzyme. Sequencing was carried out at the Cornell
sequencing facility on the Illumina HiSeq platform. A sub-
set of 95 MAGIC lines is used here as a real example data
set to compare NGSEP to other GBS data analysis tools.
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