Linguiti et al. BMC Genomics (2016) 17:634

DOI 10.1186/512864-016-2841-9 BMC GenomiCS

Genomic and expression analyses of @
Tursiops truncatus T cell receptor gamma

(TRG) and alpha/delta (TRA/TRD) loci reveal

a similar basic public yb repertoire in

dolphin and human

Giovanna Linguiti'", Rachele Antonacci'’, Gianluca Tasco?, Francesco Grande®, Rita Casadio?, Serafina Massari’,
Vito Castelli’, Arianna Consiglio®, Marie-Paule Lefranc® and Salvatrice Ciccarese'”

Abstract

Background: The bottlenose dolphin (Tursiops truncatus) is a mammal that belongs to the Cetartiodactyla and
have lived in marine ecosystems for nearly 60 millions years. Despite its popularity, our knowledge about its
adaptive immunity and evolution is very limited. Furthermore, nothing is known about the genomics and evolution
of dolphin antigen receptor immunity.

Results: Here we report a evolutionary and expression study of Tursiops truncatus T cell receptor gamma (TRG) and
alpha/delta (TRA/TRD) genes. We have identified in silico the TRG and TRA/TRD genes and analyzed the relevant
mature transcripts in blood and in skin from four subjects.

The dolphin TRG locus is the smallest and simplest of all mammalian loci as yet studied. It shows a genomic
organization comprising two variable (V1 and V2), three joining (J1, J2 and J3) and a single constant (C), genes.
Despite the fragmented nature of the genome assemblies, we deduced the TRA/TRD locus organization, with the
recent TRDV1 subgroup genes duplications, as it is expected in artiodactyls.

Expression analysis from blood of a subject allowed us to assign unambiguously eight TRAV genes to those
annotated in the genomic sequence and to twelve new genes, belonging to five different subgroups. All transcripts
were productive and no relevant biases towards TRAV-J rearrangements are observed.

Blood and skin from four unrelated subjects expression data provide evidence for an unusual ratio of productive/
unproductive transcripts which arise from the TRG V-J gene rearrangement and for a “public” gamma delta TR
repertoire. The productive cDNA sequences, shared both in the same and in different individuals, include biases of
the TRGV1 and TRGJ2 genes.

The high frequency of TRGV1-J2/TRDV1- D1-J4 productive rearrangements in dolphins may represent an interesting
oligo-clonal population comparable to that found in human with the TRGV9- JP/TRDV2-D-J T cells and in primates.
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Conclusions: Although the features of the TRG and TRA/TRD loci organization reflect those of the so far examined
artiodactyls, genomic results highlight in dolphin an unusually simple TRG locus. The cDNA analysis reveal
productive TRA/TRD transcripts and unusual ratios of productive/unproductive TRG transcripts. Comparing multiple
different individuals, evidence is found for a “public” gamma delta TCR repertoire thus suggesting that in dolphins
as in human the gamma delta TCR repertoire is accompanied by selection for public gamma chain.

Keywords: T cell receptor, TRG locus, TRGV, TRGJ and TRGC genes, TRA/TRD locus, TRAV and TRDV genes, Dolphin

genome, Expression analysis, IMGT

Background

Bottlenose dolphin (Tursiops truncatus) and the other
cetaceans represent the most successful mammalian
colonization of the aquatic environment and have under-
gone a radical transformation from the original mammalian
bodyplan. The discovery of two archaic whales with mor-
phological homology between Cetacea and Artiodactyla
brought conclusive anatomical support to clade Cetartio-
dactyla [1, 2]. Whales and hippos shared a common semi-
aquatic ancestor that branched off from other artiodactyls
around 60 million years ago [3—-5]. One of the two branches
would evolve into cetaceans, possibly beginning about 52
million years ago, with the protowhale Pakicetus, which
underwent aquatic adaptation into the completely aquatic
cetaceans [3]. So far nothing is known about the genomic
organization of dolphin immunoglobulins (IG) and T cell
receptor (TR) loci. The only studies of antigen receptors
immunity revealed that IgG are present in whales [6, 7] and
IGHG and IGHA genes have been described in the Atlantic
bottlenose dolphin [8]. Within artiodactyls, the locus
organization and expression of TRG and TRA/TRD genes
have been characterized in ruminants; these species have
been shown to possess a large TRG [9-11] and TRA/TRD
[12—14] germline repertoire.

Here we present a evolutionary and expression analysis
of Tursiops truncatus TRG and TRA/TRD genes. The sur-
prising feature concerning TRG genes was, on the one
hand, that the overall organization of the dolphin TRG
locus resembles more the structure of a typical cassette of
artiodactyls (IMGT"®, the international ImMunoGeneTics
information system®, http://www.imgt.org [15] > Locus rep-
resentation: Sheep (Ovis aries) TRG1) than the structure
typical of the human locus (IMGT* > Locus representation:
Human (Homo sapiens) TRG). On the other hand, equally
surprising was the finding of an unusual mechanism of
biases in the V-] gene rearrangement usage, which is remin-
iscent of the most frequently used in the human peripheral
y8 T cells repertoire of productively rearranged TRGV
genes [16]. Despite the fragmented and incomplete nature
of the assembly, we have obtained important information
on the genomics and the evolution of the TRA/TRD
dolphin potential repertoire and its relationship with
the expressed chains. Furthermore, the structural 3D

visualization, computed by adopting a comparative
procedure, using cDNA TRGV-] and TRDV-D-J rear-
ranged amino acid sequences from a single individual, is
consistent with the finding that the predicted y§ pairing,
present both in the blood and in the skin, is shared among
the organisms living in a controlled environment (kept
under human care) as well as in those living in marine
environment. This finding highlights in dolphin the exist-
ence of a basic “public” Yy repertoire of a given TR in a
range of public T cell responses.

Results

Genomic arrangement and evolution of the dolphin TRG
locus

The recent availabily of a high quality draft sequence of
the bottlenose dolphin (Tursiops truncatus) genome [17]
(BioProject: PRJNA20367) allowed us to identify the
dolphin TRG locus in two overlapping scaffolds (GEDI
ID: JH473572.1; BCM-HGSC ID: contig 425448-578749)
that provided a genomic sequence assembly of 188.414 kb
(gaps included). In the dolphin, as in all mammalian spe-
cies so far studied [18-20], the amphiphysin (AMPH)
gene flanks the TRG locus at its 5° end and the related to
steroido-genic acute regulatory protein D3-N-terminal
like (STARD3NL) gene flanks the TRG locus at its 3" end.
We annotated all the identified dolphin TRG genes using
the human (GEDI ID: AF159056) and ovine (GEDI ID:
DQ992075.1, DQ992074.1) TRG genomic sequences as a
reference; the beginning and end of each coding exon
were accurately identified by locating the splice sites and
the flanking recombination signal (RS) sequences of the V
and | genes (Fig. 1). According to our results, the dolphin
locus is the simplest of the mammalian TRG loci identi-
fied to date (Additional file 1) [9, 10, 21-23]. It spans only
48 kb and its genes are arranged in a pattern comprising 2
TRGYV, 3 TRGJ genes and a single TRGC (Additional file
2) gene. A closer inspection of the dolphin, human and
sheep constant genes (Fig. 1c), reveals, that the dolphin
TRGC (Additional file 2) gene possesses a single small
exon 2 (EX2) which is more similar to the sheep TRGC5
EX2 than to the human TRGC1 EX2 (whereas in contrast
the human TRGC2 gene has polymorphic duplicated or
triplicated exons 2 [24]) (Fig. 1c). The dotplot matrix of
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[EX1]
Oviari TRGC1 (E)RNLAADTSFEPTVFLPSIAEINH. .DNAGTYLCLLE KF VEWRVENDKRAL. . PSQQGNTMKTED. . ... .. TYMELSWLTVTEN. . . . SMDEQHVC [ EIIFPSIKE
Oviari TRGC2 (E)RNLAADTSPEPTVFLPSIAEINH..DNAGTYLCLLE KFE VSWREVENDERAL . . PSQOGNTMKTED. . . . ... TYMKLSWLTVTEN. . . . SMDKQHVC 2 EIIFPSIKE
Oviari TRGC3 (D)RDLDEDMSFEPTMFLPSITEIKR. .DNSGTYLCLLE . VYWREKRGNEVL. . PSQEGKTIKTLD. ...... TYMEFSWLTVSGHN. . . . SMDKEHMC i0 EILFPAVNE
Oviari TRGC4 (M)RNLATDLSPKPIIFLPSIAEINH..SKTGTYLCLLE KFFE VYWKEKDGNRAL . . PSQOGNTMNTTD. . ... ..TYMKLSWLTVTEN. .. .SMDKEHIC INQ EILFPSINE
Oviari TRGCS (D)RRLDGDLFPEPTIFFPSVEEVER..HSAGTHLCLLQ NF VOWKEKNGNTIL. . ESHQGNIIKTND. ... ...TYMKFSWLTLTEK. . . . AMGKEHVC 2 EILFSFVNK
Oviari TRGCE (D)KNLPTDIIFKPTIFLPSINEVNHE. .QQTATYLCLLE NP VEWKEKNGKRVL . . PSQQGNTMEKTHN. . . . . TYMKFSWLTVTED. . . . SMEKEHMC 2 EILFPAVNE
Turtru TRGC (D)RSLDGDMSPKPTIFLPSIDEINL. .HEAGTHLCLLE KFFE VEYWKEKNGNEVL . . ESQOGNIIKTND . . . TYMKFSEWLTVTEN. . . . SMDNELVC I IDQ EILFPSIEN
Homsap TRGCL (D) KQLDADVSFEPTIFLPSIAETEL. .QKAGTYLCLLE K IHWQEKKSNTIL. . GSQEGNTMKTND. . . . . TYMKFSWLTVFEK. . . . SLDKEHRC VDO EIIFFFIKT
Homsap TRGC2 (D) KQLDADVSPKPTIFLPSIAETKL. .QKAGTYLCLLE KFFE IHWQEKKSNTIL. . GSQEGNTMETND. . . . . TYMKFSWLTVPEE. . . . SLDKEHRC D) EITIFPPIKT
TRANSMEMBERANE - REGION
[EX2A) [EX2B] [EX2C) (EX3]) [EX4]
Oviari TRGC1 IV 177
Oviari TRGCZ 220
Oviari TRGC3 135
Oviari TRGC4 210
Oviari TRGCS 169
Oviari TRGCE 207
Turtru TRGC 169
Homsap TRGC1 LLLLLESVVYFAIITCCLLRRTAL 170
Homsap TRGCZ KSVVYFAIITCCLLGRTAF 188
[EX2T] [EX2R] [EX21
Fig. 1 Schematic representation of the genomic organization of the dolphin TRG locus as deduced from the genome assembly Ttru_1.4. a The
diagram shows the position of all V, J and C genes according to the IMGT® nomenclature. The AMPH (located 15.5 kb upstream of the first TRGV
gene) and the STARD3NL (located 11.6 kb downstream of the unique TRGC gene, in the inverted transcriptional orientation) genes at the 5' end
and at the 3" end, respectively of the TRG locus are shown. Boxes representing genes are not to scale. Exons are not shown. b Description of the
TRGV, TRGJ, and TRGC genes in the dolphin genome. The position of all genes in the JH473572.1 scaffold and their classification are reported. The
bottlenose dolphin (Tursiops truncatus) TRG genes and alleles have been approved by the WHO/IUIS/IMGT nomenclature subcommittee for IG, TR
and MH [66, 67]. * From L-PART1 to 3’ end of V-REGION. ¢ IMGT Protein display of the dolphin, human and sheep TRGC genes. The description of
the strands and loops is according to the IMGT unique numbering for C-DOMAIN [68]. The extracellular region is shown with black letters, the
connecting region is in orange, the transmembrane-region is in purple, and the cytoplasmic region is in pink. 1st-CYS C23, CONSERVED-TRP W41
and hydrophobic AA L89 and 2nd-CYS C104 are colored (IMGT color menu) and in bold

J

dolphin TRG and sheep TRG1 loci genomic comparison
displays a remarkable consistency of the identity diago-
nals, from the sheep TRGV11-1 gene to the TRGC5 gene
(red rectangle in Additional file 3A) with a remarkable
compactness of the three | genes. Therefore the overall
organization of the dolphin TRG locus resembles more
the structure of a typical single cassette of artiodactyls
(IMGT®, the international ImMunoGeneTics information
system®, http://www.imgt.org [15] > Locus representation:
Sheep (Ovis aries) TRG1), than the structure typical of the
human locus (IMGT®>Locus representation: Human
(Homo sapiens) TRG) (Additional file 3B). High bootstrap
values (97 to 100) in the phylogenetic tree from artiodac-
tyls (sheep and dromedary), human and dolphin, grouped
dolphin TRGV1 gene with human TRGV9 gene and sheep
TRGV11-1 (a pseudogene), and dolphin TRGV2 gene
with human TRGV11 (an ORF) and sheep TRGV7 gene
(Additional file 4A). It is noteworthy that, in sheep the
TRGV11-1 and the TRGV7 genes lie within the TRGC5

cassette (Additional file 4), previously shown to be the
most ancient one in cattle and sheep [9].

Genomic arrangement and evolution of the dolphin
TRA/TRD genes

Analysis of the Ttru_1.4 dolphin genome assembly con-
firmed that the TRD genes are clustered within the TRA
locus, as in eutherians and birds. The organization and
structure of the dolphin TRA/TRD locus is similar to
the organization of the locus in humans (IMGT®, Locus
representation human (Homo sapiens) TRA/TRD) [16],
i.e. the TRAV genes are located at its 5' end with TRDV
interspersed, followed by the TRDD genes (3 in humans
and at least 2 in the dolphin), the TRDJ genes (four in
both species), and by a single TRDC gene (Additional
file 5). A single TRDV gene located, as in all mammals,
in an inverted transcriptional orientation downstream of
the TRDC gene, has been named TRDV4 by homology
with the other artiodactyl TRA/TRD loci although no
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TRDV3 gene has yet been isolated in dolphin (Fig. 2a).
This gene in dolphin, in contrast to all the so far ana-
lyzed species, is a pseudogene, since we have found both
by in silico analysis and by PCR on genomic DNA, the
presence of a stop codon (Additional file 6). Figure 2b
shows the amino acid sequences of the dolphin TRA/
TRD variable genes aligned according to the IMGT
unique numbering for V domain [25]. Evolutionary ana-
lysis of dolphin, sheep, and human TRAV is shown in
Additional file 7A. The tree shows that 10 dolphin sub-
groups form a monophyletic group with a corresponding
human and sheep gene subgroup, consistent with the
occurrence of distinct subgroups prior to the divergence
of the three mammalian species. Three human TRAV
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subgroup (TRAV19, TRAV20 and TRAV40) were found
in dolphin, and not in sheep. In the TRA/TRD locus, the
TRDJ, TRDD, and TRDC genes are followed finally by
the TRAJ genes (Additional file 8 and Additional file 9),
61 in humans and 59 in dolphin, and by a single TRAC.
Also in this case, the presence of several variable genes
(TRDV1-1, TRDV1-1D and TRDV1-1 N) belonging to
the TRDV1 subgroup, scattered in three different con-
tigs, makes this portion of the dolphin locus more simi-
lar to the TRA/TRD locus of artiodactyls than to the
human locus, as humans have only a single TRDV1 gene
[16], while in cattle [13, 26], sheep [12] and other artio-
dactyls the TRDV1 subgroup is a large, multigene sub-
group. In the phylogenetic tree, the membership of the

59 TRAJ (on 70 Kb)
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TRAV20-1D MLECAFIVLWLQLGCKLE EDKVEQSPQTLKIQEGDSLILNCSYT LLWYRQDPGKGPELLFA L 7.3
TRAV3T MEPHLOQASLMLLCVQL SWSNGQPLVEEEVEEGESFTLNCSYT FOWFTQDPREGLHSLIQ L 7.3
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TRDV2 MORVCYLIHLTLFWPGVMS AVTLVPONOARSVSVGESVTLRCSME © TFWYRETPGNTMTLIYR EG.......C TYGPGFE.DNFQGEIIL VLNILEA JEGEYYC 8.3.3

Fig. 2 Schematic representation of the genomic organization of the bottlenose dolphin (Tursiops truncatus) TRA/TRD locus as deduced from the
genome assembly Ttru_1.4. a The diagram shows the position of the TRDV, TRDD, TRDJ and TRDC genes and of the TRAV, TRAJ and TRAC genes
according to the IMGT® nomenclature. The retrieval of the relevant contigs from the GenBank (JH484271.1 and JH481615.1) and Ensembl
databases (S_742;S_97;5_89; S_123 and S_112178), has allowed the identification, starting from the 5’ end of the locus, of 16 TRAV (including 5
pseudogenes), 5 TRDV (including 1 pseudogene), 2 TRDD, 4 TRDJ (including one ORF and 1 pseudogene), 1 TRDC, 59 TRAJ and 1 TRAC genes,
located in a genomic region spanning approximatively 450 Kb (Additional file 5). Boxes representing genes are not to scale. Exons are not shown.
Arrow head indicates the transcriptional orientation of the TRDV4 gene. The arrows above the line of the TRAJ genes indicate the 70 kb region
that has been magnified in the lower part of the figure. b IMGT Protein display for the dolphin TRAV and TRDV functional genes. The description
of the strands and loops is according to the IMGT unique numbering for V-REGION [25]. 1st-CYS C23, CONSERVED-TRP W41, hydrophobic L89 and
2nd-CYS C104 are colored (IMGT color menu) and in bold
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TRDV1 genes is supported by the monophyletic group-
ings, which are marked by 25 sheep, 6 dromedary and 3
dolphin members in contrast with the single human one
(Additional file 7B).

5' RACE PCR and RT-PCR on blood and skin RNA identified
the dolphin TRG, TRA and TRD chains repertoire

Four types of 5" RACE and three types of RT-PCR (total
of 6 and 6 experiments, respectively) on total RNA iso-
lated from the peripheral blood of three unrelated adult
animals (identified as M, K and L) and from the skin of
animal identified by letter C (Tables 1 and 2) were car-
ried out to investigate the dolphin TRG, TRA and TRD
chains repertoire. We obtained a total of 105 unique
(5RV and RTV) clonotypes of different length, each con-
taining rearranged VJ-C (for TRG and TRA) and V-D-J-
C (for TRDV) transcripts. A clonotype (AA) (AA for
amino acid) is identified by a given rearranged V gene
and allele, a given ] gene and allele and a unique amino
acid junction [27]. The V domains were checked for
their typical features, ie., the leader region and the five
conserved amino acids (1st-CYS C23, CONSERVED-
TRP W41, hydrophobic 89 (here, leucine L89), 2nd-CYS
104 and anchor 118 (J-PHE 118 or J-TRP) characteristic
of a V-DOMAIN [25]. The functionality of each clono-
type was determined based on the IMGT® criteria: tran-
scripts were considered as productive if they had in-
frame junctions and no stop codons, whereas transcripts
were considered as unproductive if they had frameshifts

Table 1 List of primers used in 5" RACE, RT and genomic PCR
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and/or stop codons. The junctions comprise the CDR3-
IMGT and the two anchors C104 (2nd-CYS) and F118
(J-PHE for TRG, TRA and TRD) or W118 (for one
TRAJ, identified in this study as TRAJ34) (Fig. 3 and
Additional file 9). Fifty-nine TRG clonotypes were ob-
tained from M, L, K and C, respectively. Twenty of the
59 TRG clonotypes contained out-of-frame cDNAs
(Table 2). All the remaining 39 TRG clonotypes were
productive, containing in-frame cDNA sequences and
were submitted to and accepted by the ENA database in
which they are identified by the HG328286 to
HG328324 Accession numbers (Table 2 and Additional
file 10). As all possible rearrangements between the two
TRGV and the three TRGJ genes were found both in
blood and in skin, it can be concluded that all dolphin
TRG genes contribute to the formation of productive
transcripts in all six TRGV-TRG] combinations (Fig. 4).
To investigate the dolphin TRA chain repertoire, total
RNA from the peripheral blood of a female dolphin (identi-
fied as L) was used as template in the single 5" RACE ex-
periment (Tables 1 and 2). A total of 41 different TRA
clonotypes were obtained and sequenced (Fig. 3). All se-
quences were productive (in-frame junction and no stop
codon), and the leader region was of 17 to 20 amino acids
depending on the V subgroup. The CDR1- and CDR2-
IMGT lengths of the transcripts [6.4.], [6.8.], [7.8.] corre-
sponded to nine different TRAV subgroups and 29 different
genes and were associated with diverse CDR3-IMGT of
various length from 8 to 16 AA. In our ¢cDNA collection, 8

Locus Primer  Genomic Orient? Sequence 5'-3'

Primer length  Location and sequence positions Description

TRG  TC3L REV TGAGGAGGAGAAGGAGGT 18-mer
TCILT  REV GACGATACATACGAGTTCA 19-mer
TCIL3  REV AAGGCAAAGATGTGTTCCAG 20-mer
TC1L2  REV TGTTGCCATTCTTTTCTTTCC 21-mer
TVILU  FWD GCTCGCTCTGACAGTCCTT 19-mer
TV7LU  FWD GATCCTCTTCTCCTCCCTCTG 21-mer
J2GL REV TGACGCTCTTGCCATGTGTT 20-mer
J5BR REV CGGCGATGGGACAAAACTTG  20-mer
TRA  TAICIL REV GAAGGTCTGGTTGAAGGTG 19-mer
TA1C2L REV TGTCTCCGCATCCCAAATC 19-mer
TA1C3L REV TGCTGGATTTGGGGCTTCT 19-mer
TRD  TD1CIL REV AGAACTCCTTCACCAGAC 18-mer
TD1C2L REV CTTATAGTTACATCTTTGGG 20-mer
TD2CL  REV CTGGAGTTTGAGTTTGATT 19-mer
vD4U  FDW GTGGAAGGTTTTGTGGGTCAGG  22-mer
VDAL REV TAACCAAGTGACCCAGATTT 20-mer

TRGC EX3P 4336443381
TRGC EX1P 3780737825
TRGC EX1° 37635-37654
TRGC EX1P 37692-37712
TRGV1 L-Part1® 9989-10007
TRGV2 L-Part1® 21785-21805
TRGJ2° 31033-31052
TRGJ3P 34698-34717

TRAC EX1€ 86762-86780
TRAC EX1€ 86745-86763
TRAC EX1€ 86574-86592
TRDC EX1¢ 85917-85934
TRDC EX1¢ 85938-85957
TRDC EX29 86773-86791
TRDV4 EX® 9185091871
TRDV4 EX® 92062-92081

5'RACE, RT-PCR

dC-TAILED cDNA

nested, RT-PCR

nested, V1-V2 RT-PCR

V1 RT-PCR, V1J2 genomic PCR
V2 RT-PCR, V2J3 genomic PCR
V1J2 genomic PCR

V2J3 genomic PCR

5'RACE, RT-PCR

dC-TAILED cDNA

nested PCR

5'RACE, RT-PCR

dC-tailed cDNA

nested PCR

V4 genomic PCR

V4 genomic PCR

2FWD: forward orientation, REV: reverse orientation (IMGT, Genomic orientation, http://www.imgt.org/IMGTindex/Orientation.php)

PAcc. Number: JH473572.1
“Acc. Number: EnsS_112178
9Acc. Number: JH481615.1


http://www.imgt.org/IMGTindex/Orientation.php

Table 2 Summary of the different 5'RACE and RT-PCR experiments and the obtained rearrangement types

Locus Animal tissue Experiment FWD primer REV primer name

Total number of Number of non-redundant Number of non-redundant Non-redundant

GenBank (GEDI)

name non-redundant  out-of-frame clonotypes in-frame clonotypes in-frame clonotypes accession numbers
clonotypes by rearrangement type
TRG  Blood M 5'RACE - TC3L/TCIL1/TCIL2 7° (7) 4 3 1 TRGV1*01-TRGJ3*01  HG328298
2 TRGV2*01-TRGJ1*01 HG328299/300
Blood M RT-PCR TVILU TC3L/TCIL2 8 81 7 1 TRGV1*01-TRGJ2*01  HG328291
TV7LU TC3L/TCIL2 4 TRGV2*01-TRGJ3*01  HG328292/93/94/95
1 TRGV2*01-TRGJ1*01  HG328296
1 TRGV2*01-TRGJ2*01 HG328297
Blood L 5'RACE - TC3L/TCIL1/TCIL2 118 ane 5 2 TRGV1*01-TRGJ2*01 HG328286/8
1 TRGV1*02-TRGJ2*01 ~ HG328287
2 TRGV2*01-TRGJ3*01 HG328289/90
Blood K RT-PCR TVILU TC3L/TCIL2 20 (20) 5 15 6 TRGV1*01-TRGJ2*01  HG328305/7/8/10/11/14
TV7LU TC3L/TCIL2 5 TRGV1*01-TRGJ3*01  HG328306/9/12/13/15
3 TRGV2*01-TRGJ3*01 HG328301/02/04
1 TRGV2*01-TRGJ1*01 HG328303
Skin C RT-PCR TVILU TC3L/TCIL3 13 (13) 4 9 4 TRGV1*01-TRGJ2*01  HG328316/17/18/19
TV7LU TC3L/TCIL3 1 TRGV1*02-TRGJ2*01  HG328320
1 TRGV1*02-TRGJ1*01 HG328321
3 TRGV2*01-TRGJ3*0 HG328322/3/4
TRD  Blood M 5'RACE TD1CIL/TDIC2L/TD2CL 5° (5)2 3 1 TRDV1*01-TRDJ4*01  LN610749
1 TRDV1*01-TRDJ4*01 © LN610748
1 TRDV2*01-TRDJ4*01  LN610747
TRA  Blood L 5'RACE TA1CIL 41 “4no 41 d LN610706-LN610746
TA1C2L
TA1C3L

20One clonotype is an incomplete sequence; POne clonotype is a sterile germline transcript; “M TRDV1-1 N -TRDJ4 and TRDV1-1 -TRDJ4 rearrangements have one TRDD gene; “L TRA cDNA clonotypes by rearrangement
type are displayed in Fig. 3

¥€9:/1 (9107) S21wouan Dg ‘v 1o mnbury

/1 Jo 9 abeyq
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5RAL2 TRAV16*01
SRAL3 TRAV16*02

MKPTLISVLYMIFTLRGTR
MKPTLISVLYMIFTLRGTR

SRAL4 TRAV8-1%01
SRLA5S TRAVE-1%01
SRLA6 TRAVES2*01
SRLAT TRAVES2*01
SRAL8 TRAVES2*02

MTLVFTLMLELLLFLRGAG AQSVTQPDGHITVSEGARLELRCNYS
MTLVFTLMLEVLLFLRGAG ~AQLVTQPDGHITVSEGARLELRCNYS
MTLVFTLMLEVLLFLRGAG ~AQSVTQPDGHITVSEGDHLELRCNYS
MTLVFTLMLEVLLFLRGAG ~AQSVTQPDGHITVSEGDHLELRCNYS
MTLVETLMLEVLLFLRGAG ~AQSVTQPDGHITVSEGDHLELRCNYS

SRAL9 TRAV1B-1*01 MFSATHSVLVIFLIFRGIN
SRAL10 TRAV1B-1*01 MFSATHSVLVIFLIFRGIN
SRAL11 TRAV1B-1%02 MFSATHSVLVIFLIFRGTN
SRAL12 TRAV18-1%02 MFSATHSVLVIFLIFRGTN
SRAL13 TRAV18S2*01 MFSATHSVLVIFLIFRGTN
SRAL14 TRAV18S2*02 MFSRITHSVLVIFLIFRGTN
SRAL15 TRAV1BS3*01 MFSATHSVLVIFLIFRGTN
SRAL16 TRAV1BS3*D2 MFSATHSVLVIFLIFRGTN
SRAL17 TRAV1BS4*01 MFSVTHSVLVIFLIFKGIN GDSVN(
SRAL18 TRAV1BS5*01 MFSATHSVLVIFLIFKGIN GNSVN(
SRAL19 TRAV1BS6*01 MFSATHSVLVIFLIFKGIN GDSVN(
SRAL20 TRAV18S7*01 MFSATHSVLVIFLIFRGTN GDSVN(

PRTLHCTYQ

VTVSEGAPRTLHCTYQ
T LHCTYQ
T TLHCTYQ
TVSEGAPRILHCTYQ
T LHCTYQ

LHCTYQ

EGPVTVSKGAPRTLHCTYE

VTVSKGAPRILHCTYQ

VTGSKGSPRTLHCTYQ

VIVSEGAPRTLHCTYQ

LEWYVQYLNKA

5RAL21 TRAV38-1%01 MIFASLLRAVLVSTCLGSSV AQMVTQPQPEVSVQEADTVTLDCTYS TSE..
5RAL22 TRAV38-1*01 MIFASLLRAVLVSTCLGSSV AQUVTQPQPEVSVQEADTVTLDCTYS TSE..

SRAL23 TRAV14*01
5RAL24 TRAV14%02

MLLSSLLKVVMASLWLGSST AQKVTQDQPVILVOEKEVVTLDCIYD
MLLSSLLKVVMASLWLGSST AQKVTQDOVILVOEKEVVTLDCTYD

5RAL29 TRAV20S2*02
5RAL30 TRAV20S3*01 TVLWLQLGWLRG
SRAL31 TRAV20S3*01 MLECAFIVLWLQLGWLRG
5RAL32 TRAV20S3*01 MLECAFIVLWLOLGWLRG
SRAL33 TRAV20S3*02
5RAL34 TRAV2054*01 V]

5RAL35 TRAV20S4+*02 MLECAFIVLWLELGWLRG

EDKVEQSPQTLKIQEGDSLILNCSY
EDKVEQSPQTLKIQEGDSLILNCSY
EDKVEQSPQTLKIQEGDSLILNCSY
EDKVEQSPQTLKIQEGDSLILNCSY
EDKVEQSPQTLKIQEGDSLILNCSY
EDKVEQSPQTLKIQEGDSLILNCSY
EDKVEQSPQTLKIQEGDSLILNCSY

SRAL36 TRAVO*01
SRAL37 TRAVO*01

MNSSPGLVIVILLVLGOTR ~EDSVTQMDGOMTLPEGAALTINCTYS
MNSSPGLVTVILLVLGOTR ~EDSVTQMDGRMTLPEGAALTINCTYS

-
L-REGION FR1-IMGT CDR1-IMGT FR2-1MGT CDR2-IMGT FR3-IMGT CDR3-IMGT FRA-IMGT ~ CDR-IMGT
(1-26) (27-38) (39-55) (56-65) (66-104) (105-117) (118-127) length
Clone name TRAV gene T 10 20 30 a0 50 60 70 80 30 100 111 112 117 118 127 TRAJ gene
,,,,,,,,, I T T ¢ X Tk 73 N I B P ol
SRAL] TRAV16*01  MKPTLISVLVMIFTLRGTR KCNYS LFWYVHYPKQHLOLLLR ESI..... RGF HLKKPS yye . .SAGOKLV FGQGTSLTINP .15] TRAJS4

LFWYVHYPKQHLOLLLR
LFWYVHYPKQHLOLLLR

LFWYVQYPNQGLOLLLK
LFWYVQYPNQGLOLLLK
LFWYMQYPNQGLOLLLK
LFWYMQYPNQGLOLLLK
LEWYMQYPNQGLOLLLK

LFWYVOYLNKAPQLLLK
LFWYVOYLNKAPQLLLK
LEWYVQYLNKAPQLLLK G:
LFWYVQYLNKAPQLLLK
VFWYVQYLNKAPOLLLK
VFWYVQYLNKAPOLLLK
LFWYVQYLNKAPQLLLK
LFWYVOYLNKAPQLLLK
LEWYVQYLNKAPQLLLK G
VEWYVQYLNKAPQLLLK

LFWYVQYLNKAPQLLLK

YLLWYKQPPSGEMIFIT
YLLWYKQPPSGEMIFII

SLYWYKQPSSGAMILLI
SLYWYKQPSSGAMILLI

5RAL25 TRAV20-1D*01 IVLWLOLGWLRG ~ EDKVEQSPQTLKIQEGDSLILNCSY GLLWYRQDPGKGPELLF
5RAL26 TRAV20-1D*01 EDKVEQSPQTLKIQEGDSLILNCSY GLLWYRQDPGKGPELLF
SRAL27 TRAV20S2%01 EDKVEQSPQTLKIQEGDSLILNCSY GLLWYRQDPGKGPELLF
5RAL28 TRAV2052*01 EDKGEQSPQTLKIQEGDSLILNCSY ALLWYKQDPGKGPELLF

GLLWYRQDPGKGPELLF
GLLWYRQDPGKGPELLF
GLLWYRQDPGKGPELLF
GLLWYRQDPGKGPELLF
GLLWYRQDPGKGPELLF
GLLWYRQDPGKGPELLF
GLLWYRQDPGKGPELLF

TFWYVQYPGEGPQULLK
TFWYVQYPGEGPQVLLK

5RAL38 TRAV9*02 MNSSPGLVIVILLVLGOTR ~EDSVTQMDGOMTLPEGAALTINCTYS TFWYVQYPGEGPQULLK
SRAL39 TRDV1S2*01  MVLSSLPWVFLAFIFSGFGA AQKATQVOPAISSQLGEAVTLSCQYE TSWS..... QYY IVWYKQLPSGEMTFLIH
SRAL40 TRAVIT*01  MEKLLTVSLVILWLOLAR  VNSQOGEENLQALSIHEGENATMNCS YKT.. TLHWYRQDSRRGFAPLI
SRALAL TRAV13S1*01 MRHLTRVIVLLILGVSL  GEKMEQSPSTLTVOEGNSSVITCTYT NSA.. FLW FLID
B
TRDV gene
5R1D15 TRDV2 MORVCYLIHLTLFWPGVMS ~AVTLVPONQARSVSVGESVTLRCSMK GDST....SNYY TFWYRRTPGNTMTLIYR
SR1D8  TRDV1-1N MVLSSLPWVFLAFIFCGFGA AQKVTQVQRAMSSQLGEAVTLSCQYE TSLS..... WYD IFWYKQLPSGEMTFLIH
5R1D3  TRDV1-1 MVLSSLPWVFLAFIFCGFGA AOKVTOVORAMSSOLGEAVTLSCOYE TSLS..... WYD IFWYKOLPGGEMTFLIH

Fig. 3 IMGT Protein display of the TRA (a) and TRD (b) cDNA clones. The TRAV and TRAJ genes are listed respectively at the left and the right of
the figure. Leader region (L-Region), complementary determining regions (CDR-IMGT) and framework regions (FR-IMGT) are also indicated,
according to the IMGT unique numbering for V-REGION [25]. The TRAV allele amino acid changes, if any are green boxed. The name of the clones are
also reported. The TRDV and TRDJ genes are listed respectively at the left and the right of the figure. In (b), for TRDV2, TRDV1-1 N and TRDV1-1, the
CDR-IMGT lengths are of [83.13], [7.3.20] and [7.3.21], respectively. 5R1D15 clone (TRDV2) lacks the TRDD gene. 5R1D3 clone (TRDV1-1) has a new TRDD
gene (TRDD7S1) with respect to the available genomic sequence. The name of the clones are also reported

RGFTADLNKGEASFHLKKPSAQEEDSAVYYC
RGFTADLNKGEASFHLKKHSAQEEDSAVYYC

VGGYQLT FGKGTKLLVIP
... .NYKYV FGAGTSLOVLA

TRAJ29
11) TRAJ4L

| KGFEAEFRSSEKSFHLRKTSAHWKDSAKYFC
KGFEARFRSSEKSFHLRKTSAHWKDSAKYEC
CFEAEFRRSEKSFHLRKTSAHWKDSGKYFC 2

CFEAEFRRSEKSFHLRKTSAHWKDSGKYFC

| KGFEAEFRESEKSFHLRKTSAHWKDSRKYFC

FGSGIRLPVRA
FGTGTQVLVKP
FGTGTRLIVKP
FGTGTTLQVTP
FSQGTELSVKP

10]) TRAJ12

1 TRAJ32
TRAJ44
TRAJL3
TRAJI23

- .GFQATLVTSDSSFHLQKTSMQASDSAVYYC
GFOATLVTSDSSFHLQKTSMQASDSAVYYC
GFOATLVTSDSSFHLQKTSMOASDSAVYYC
GFOATLVTSDSSFHLQKTSMQASDSAVYYC
GFOATLVTSDSSFHLQKTSMOASDSAVYYC
GFQATLVTSDSSFHLOKBSMOASDSAVYYC
GFOATLVTRDSSFHLQKTSMOASDSAVYYC
croaTLvTEpssruLoKBsHoasDsAvYYC
GFOATLVTSDSSFHLQKTSMOASDSAVYYC
GFOATLVTSDSSFHLQKTSVQASNSAVYYC
SKA. . GFOATLVTSDSSFHLQKPSLQASNSAVYYC
GSKA. . GFOATLVTRDSSFHLQKTSMOASDSAVYYC ALDDG.

FGAGTSLOVLA
LGKGTRLLVKP
FGAGTTVIVRA
FGRGTSLIVIP
V FGQGTSLTINP
FGOGTTLTVHP
FGKGTRLAVIP
FGKGTKLLVIP
FGKGTRLAVIP
FGKGTQLTVHL
FGRGTRLVVHP
WGSGTKLIIKP

TRAJ4L
TRAJ25
TRAJ20
TRAJIS0
TRAJIS4
TRAJI52
TRAJI30
TRAJ29
TRAJ30
TRAJSE
TRAJE

TRAJI34

GOEA. .YKQQ NAT....NSRYSVNFQKEAKSFRLRISDSQLEDAAKYFC ALNY

FGTGTRLTVKP  [6.8.8] TRAJ44

GQEA..YKQQ NAT....NSRYSVNFQKEAKSFRLRISDSQLEDAAKYFC AYSGLAVG. FGSGTTLTVKP [6.8.15] TRAJ48
RQDS. . EGRYSLNFQKANKSIKLAISASQLEDSAVYFC ALSELPD -YGNRFT FGKGTRVLVTP [6.8.13] TRAJ7
RQDS. . EGRYSLNFQKANKSIKLAISASQLEDSAVYFC ALSEEN' .GAGKLT FGDGTVLTVKP 13] TRAJ27
ALYS.. .ERLKATLLKKGSSLHIAAPKPEDSATYLC AVKIEG .AYNDLR FGTGTRLTVKP [6. TRAJ44
ALYS.. .ERLKATLLKKGSSLHIAAPKPEDSATYLC AREGSS .NTGRLI FGQGTMLQVKP [6. TRAJ37
ALYS.. -ERLKATLLKKGSSLHIAAPKPEDSATYLC .AGNKLT FGGGTRMLVKP [6. TRAJ17
LLYS. -ERLKATLLKKGSSLHITAPKPENSPAYLC ...NDLR FGTGTRLTVKP [6. ] TRAJ44
ERLKATLLKKGSSLHIAAPKPEDSATYLC .NTGRLI FGQGTMLQVKP 2] TRAJ38
RLKATLLKKGSSLHIAAPKPEDSATYLC GNKLN FGAGTRLSVQP TRAJ3
RLKATLLKKGSSLHIAAPKPEDSATYLC .NRQLL FGKGTRLAVIP TRAJ30
+ERLKATLLKKGSSLHIAAPKPEDSATYLC SNTGRLI FGQGTMLQVKP TRAJ38
.ERLKATLLKKGSSLHIAAPKPEDSATYLC . SGNKLN FGAGTRLSVQP TRAJ3
. .ERLKATLLKKGSSLHIAAPKPEDSATYLC GSSWQLT FGSGTQLTVVP TRAJ22
LLYS.. -ERLKATLLKKGSSLHIAAPKPEDSATYLC AVEDN. . .TDKLI FGAGSRLQVFP 10] TRAJ3S
AMKD. . DFEATYHKESKSFHLEKASVQDSDSAVYYC ALSDPL SAGQKLV FGQGTSLTINP [6. TRAJS4
AMKD. . DFEATYHKESKSFHLEKASVQDSDSAVYYC ALSGPS .NTGRLI FGQGTMLQVKP [ TRAJ38
AMKD. . BFEATYHKESKSFHLEKASVODSDSAVYYC ALRGGT. GSSWQLS FGSGTQLTVVP [6.8.14] TRAJ22
QS.......5 SGONAKN.GRYSVNFQKRQKFISLTISALLVEDSANYFC ALRGSRG......SGYGKVT FGKGTMLLVSP [7.3.14] TRAJ1l
LIRS..NERE KLS..... GRLRVTLDNSIKGSSLSITASQAADTATYLC ATDIRG.........NYQLI WGSGTKLIIKP [6.8.11] TRAJ34
IRSN...KNK KEH..... QRWSVLLNDKAKRLSLHISDTQPGDSAVYFC AARVNN........YAQSLT FGGGTRLSVLP [6.7.12] TRAJ26

TRDD - TRDJ genes

EG. TYGPGFE . DNLQGETDFLNNQAVLNTLEASERDEGSYYC ASTILRRDP....... QPLL FGKGTYLNVEPK  // TRDJ4
or. SDONAKN . GRYSVNFOERHKFISLTTSALLVEDSANYFC ALRERVVEVVLFNTRNKPLL FGKGTYLNVEPK TRDD1S1 TRDJ4
[T S SGONAKN.GRYSVNFOERHKFISLTISGLLVEDSANYFC ALWEVHGRPTRVESDGGKPLLFGKGTYLNVEPK TRDD7S1 TRDJ4

TRAV genes (TRAV16, TRAV8-1, TRAV18-1, TRAV38-1,
TRAV14, TRAV20-1D, TRAV9, TRAV17) were assigned
unambiguously to genes annotated in the genomic se-
quence (Fig. 2), while 12 could be assigned to new genes,
belonging to five different subgroups. One gene belongs to
a new subgroup, TRAV13 (TRAV13S1), not yet identified
in the dolphin genomic sequence. One gene belongs to
subgroup TRDV1 (TRDV1S2), as shown by its CDR1- and
CDR2-IMGT lengths [7.3.], and demonstrates that dolphin
TRDV genes can, as in other species, participate to the syn-
thesis of TRA chains by rearranging to a TRAJ gene (here,
TRAJ11) [16]. Among the other new genes, six belong to
subgroup TRAV45 (TRAV18S2, TRAV18S3, TRAV18S4,
TRAV18S5, TRAV18S6, TRAV18S7), three belong to sub-
group TRAV20 (TRAV20S2, TRAV20S3, TRAV20S4) and
one to subgroup 42 (TRAVS8S2). As these last subgroups
have several members, an IMGT approved provisional no-
menclature was assigned (with the letter S), allowing these
genes to be entered in IMGT/GENE-DB and IMGT" tools
(IMGT/V-QUEST and IMGT/HighV-QUEST) [15] while
waiting for the identification and location of these genes in
the reference genomic sequence. Three 5° RACE

experiments on total RNA isolated from the periph-
eral blood of two unrelated adult animals (identified
as M and L) (Tables 1 and 2) were carried out to investi-
gate the dolphin TRD chain repertoire; only one of these
three PCR amplifications produced 3 in-frame, 1 out-of-
frame and 1 sterile germline, clonotypes from the animal
identified as M (Fig. 3b).

Potential TRGV domain repertoire of productive and
unproductive trancripts

Analyzing the TRG in-frame transcripts it is noteworthy
that 5 TRG clonotypes were found identical in two or
even three different individuals L and C (5RV1L2*/C2/C5),
M, C and K (RTVIM1/C1/K2/K3), K and M (RTV1K7/
5RVIMI), and M and C (RTV2M4/C7 and RTV2M5/C8)
(Additional file 10). This observation was rather intriguing
as they represented together 14/39 in-frame sequences
whereas in contrast each out-of-frame clonotype was found
in a single individual. These shared clonotypes result from
V1-]2 rearrangements in L and C (CDR-IMGT lengths
[8.7.13]) and in M, C and K (CDR-IMGT lengths [8.7.14]),
from V1-J3 rearrangements in K and M (CDR-IMGT
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A
CLONE NAME TRGV - CDR3 SEQUENCE - Productive CDR3
-J ntV N REGION ntJ Rearrangement length
C104 F118 nt/AA
SRVILI vi-12 1 TGTGCCCTCTGGGAAGT . c  ..... ACACATGGCAAGAGCGTCAAAGTGTTT 5 ALWEV// THGKSVKV 39/13
SRVIL2*/C2/C5 3 TGTGCCCTCTGGGAA. . . a GGCTAACACATGGCAAGAGCGTCAAAGTGTTT 0 ALWE //RLTHGKSVKV 42/14
5RVIL3 8 TGTGCCCICT. .. ..... ttacaccgg . ..TAACACATGGCAAGAGCGTCAAAGTGTTT 3 AL/FTP/ VTHGKSSVKV 42/14
RTVIMI/C1/K2 11 TGTGCCC. .. unn... gagacac  .GCTAACACATGGCAAGAGCGTCAAAGTGTTT 1 A /RTD/ LTHGKSVKV 39/13
RTVIC3*/C4 8 ttacacc . GCTAACACATGGCAAGAGCGTCAAAGTGTTT 1 AL//FTP// LTHGKSVKV 42/14
RTVIK1/K4/K6 3 ca .. ..AACACATGGCAAGAGCGTCAAAGTGTTT 4 ALWE /Q// THGKSVKV 39/13
RTVIK3 11 WG o 0000000 o0 gagacac .GCTATCACATGGCAAGAGCGTCAAAGTGTTT 1 A //RDT// LTHGKSVKV 39/13
RTVIKS5 4 TGTGCCCTCTGGGA. . . .ggatgacatacga. .......... GGCAAGAGCGTCAAAGTGTTT 11 ALWE/DDIR/ GKSVKV 42/14
RTVIC6 Vi-J1 8 TGTGCCCTGT........ cctegg .. .GGTCAGGTTGGATCAAGATATTT 3 AL // SS// GSGWIKI 33/11
RIVIK7 Vi-13 0 TGTGCCCTCTGGGAGGTG caactatcggggteg  ....... TACATAAAAATTTIC 7  ALWEV// QLSGS/ YIKI 42/14
SRVIMI 0 TGTGCCCTCTGGGAAGTG caactatcggggteg . .TACATAAAAATTTIC 7  ALWEV// QLSGS/ YIKI 42/14
RTVIKS8/KI1/K12 4 TGTGCCCTCTGGGA. . . . ggga ... TACATAAAAATTTTC 7 ALWE / G/ YIKI 27/9
RTVI1K9 11 TGTGCCC. e e vvvvnnn. cgte GAGTTATTACATAAAAATTTTC 0 A /I PS// SYYIKI 27/9
RTV2M4/C7 V2-13 2 TGTGCCTGGTGGGTT. . cttaaaggagga .AGTTATTACATAAAAATTTTC 1 AWWV/LKGG// SYYIKI 42/14
5RV2L7 7 TGTGCCTGGT. . . . ... acgaagtgg = 0 .............. AAATTTTC 14 AW //YEV // EI 21/7
RTV2M5/C8 1 TGTGCCTGGTGGGTTT. cctctagtte GAGTTATTACATAAAAATTTTC 0 AWWV//SSSS// SYYIKI 42/14
RTV2CI12 8 TGTGCCTGG. ....... gaatca ....TATTACATAAARATTTTC 4 AW //ES// YYIKI 27/9
RTV2M6 3 TGTGCCTGGTGGGT. . . aaggagtgggcccacg ...TACATAAAAATTTTC 7 AWWV//RSGPT// YYIKI 39/13
RTV2M9 3 TGTGCCTGGTGGGT. . . cgggaag ....TATTACATAAAAATTTIC 4 AWWV/GK// YYIKI 33/11
RTV2K13 3 TGTGCCTGGTGGGT. . . cat ... TTACATAAAAATTTIC 6 AWWV/I // YIKI 27/9
RTV2KI15 4 TGTGCCTGGTGGG. . . . acce GAGTTATTACATAAAAATTTTC 0 AWW /DP / SYYIKI 33/11
RTV2K21 1 TGTGCCTGGTGGGTTT . cegttg ..., ACATAAAAATTTTC 8 AWWV/SVD/  YKI 30/10
SRV2M4 V2-J1 6 TGTGCCTGGTG. . . . .. ctcat ATAGGTCAGGTTGGATCAAGATATTT 0 AWC // S // YRSGWIKI 36/12
RTV2M10 8 TGTGCCTGG. - .« ... cggaacttaatgccgt ~ ATAGGTCAGGTTGGATCAAGATATTT 0  AW//RNLMP//YRSGWIKI 45/15
SRV2M7 1 TGTGCCTGGTGGGTTT . ccgaaggge ATAGGTCAGGTTGGATCAAGATATTT 0  AWWV/SEG/HRSGWIKI 45/15
RTV2K20 12 TGTGC.....covnn.. agcccttt ATAGGTCAGGTTGGATCAAGATATTT 0 A/ AL/ YRSGWIKI 33/11
RTV2MI1 V2-12 0 TGTGCCTGGTGGGTTTA c . .CTAACACATGGCAAGAGCGTCAAAGTGTTT 2 AWWVY//L/THGKSVKV 42/14
B
CLONE TRGV - CDR3 SEQUENCE - Unproductive CDR3
NAME -J nt N REGION nt Rearrangement length
VvV  [C104 J nt
RTVIM3 V1-12 0 TGTGCCCTCTGGGAAGTG ctat ....... ACATGGCAAGAGCGTCAAAGTGTTT 7 ALWEV//LYMARASKC. 41
SRV2L8 V2-13 0 TGTGCCTGGTGGGTTTA tgtac ...... TTACATAAAAATTTTC 6 AWWVY//VLT*KF 32
SRV2L4 17  oocooccocoocooaao cctgg ... .TATTACATAAARAATTTTC 4 //IPGIT*KF 20
5RV2L5 11 TGTGCC. . gactatca .AGTTATTACATAAAAATTTTC 1 A//DYQVIT*KF 29
5RV2L9 16 e A aatctgttt i 22 //KSV(GDG) 10
RTV2C9 8 TGTGCCTGG. . . .. ... cggtcgggttaagacceecttegg. .. ... ... CATAAAAATTTTC 9 AW//RSG*DPFGIKIF 39
RTV2C11 2 TGTGCCTGGTGGGTT. . aagg GAGTTATTACATAAAAATTTTC 0 AWWV/KGVIT*KF 35
RTV2M7 0 TGTGCCTGGTGGGTTTA (€7 N 19 AWWV¥/ 17
5RV2M6 2 TGTGCCTGGTGGGTT. . gaatgtaa .AGTTATTACATAAAAATTTTC 1 AWWV//ECKVIT*KF 38
SRV2M2 0 TGTGCCTGGTGGGTTTA ct GAGTTATTACATAAAAATTTTC 0 AWWVY/*VIT*KF 35
SRV2M3 7 TGTGCCTGGT . . . . . . . acgac ... ATTACATARAAATTTTC 5  AW/YDIT*KF 27
RTV2K14 > O - 4 AWWV//RVLHKNEF. 31
.. ggg ....TATTACATAAAAATTTTC
5RV2L10 V2-J1 3 TGTGCCTGGTGGGT... ccttatgccgggattt ATAGGTCAGGTTGGATCAAGATATTT 0 AWWV//LMPGFIGQVGSY. 51
SRV2L11 4 TGTGCCTGGTGGG. . . . gcagctcctat  ATAGGTCAGGTTGGATCGAGATATTT 0 AWW//GSSYIGQVGSRY. 44
RTV2C13 0 TGTGCCTGGTGGGTTTA tgtcggg . TAGGTCAGGTTGGATCAAGATATTT 1 AWWVY//VG*VRLDQDI 43
RTV2C10 0 TGTGCCTGGTGGGTTTA tagaattttctt ATAGGTCAGGTTGGATCAAGATATTT 0 AWWVY//RIFL*VRLDQDI 49
SRV2MS 0 TGTGCCTGGTGGGTTTA cggcgacataaaaattg. TAGGTCAGGTTGGATCAAGATATTT 1 AWWVY//GDIKIVGQVGY. 53
RTV2K16 1 TGTGCCTGGTGGGTTT . ttgat ATAGGTCAGGTTGGATCAAGATATTT 0  AWWV/FDIGQVGSRY. 41
g%ﬁg; 4 TGTGCCTGGTGGG. . . . gcttt ATAGGTCAGGTTGGATCAAGATATTT 0 :mggggﬁ%gm 38
2 TGTGCCTGGTGGGTT. . aaggg ATAGGTCAGGTTGGATCAAGATATTT 0 40

Fig. 4 CDR3-IMGT nucleotide sequences retrieved from the cDNA clones with productive (a) and unproductive (b) rearrangements. Nucleotide
sequences are shown from codon 104 (2nd-CYS) to codon 118 (J-PHE) (a and b). N-nucleotides added by the deoxynucleotidyltransferase terminal (DNTT,
TdT) are indicated in lower cases. Numbers in the left and right columns indicate the number of nucleotides that are trimmed from the 3V-REGION and 5
J-REGION, respectively; the germline region of the TRGV and TRGJ genes coincides with 0 in the nt V and nt J columns, respectively. In A, clonotypes with
the same CDR3-IMGT nucleotide sequence deriving from two or more animals (letters M, L, K and C) are underlined. A shared clonotype (AA) between
individuals has per definition a given V and J gene and allele and a given AA sequence for the junction. Three individuals (M, K and C) share the same
CDR3 (AA) sequence with the V1-J2 rearrangement (RTV1M1/C1/K2/K3) however the junction in K3 differs from the junction in the other shared clonotypes
by a nucleotide difference in the 5J-REGION which may represent an allele of the TRGJ2 gene. Similarly, for the K'and M shared clonotypes with a V1-J3
rearrangement (RTV1K7/5RV1M1), the junction in M1 differs from the junction in K7 by a nucleotide in the 3'V-REGION, which may represent an allele of
the TRGV1 gene. This has been described as “convergent recombination” in which a given “public” TR amino acid sequence may be encoded by different
nucleotide sequences both within the same and in different individuals [28]. In B, unproductive rearrangements (non-redundant out-of-frame clonotypes
column of Table 2) for the presence of a stop codon (¥) and for frameshifts in the CDR3, are indicated

lengths [8.7.14]) and from V2-J3 rearrangements in M and
C (CDR-IMGT lengths [8.6.14] (Fig. 4 and Additional file
10). This description of shared T cell clonoypes correspond
to what is known in the literature as “public T cell re-
sponse” in which T cells bearing identical TR may respond
to the same antigenic epitope in different individuals [28].

Although the number of the germline TRG genes is low,
which implies a reduced potential in the V-] recombination,
a sufficient diversity and variability of the TR gamma tran-
scripts seems to be guaranteed in the dolphin by the clas-
sical process of CDR3 diversity formation during somatic
rearrangement [16]. Indeed, the creation of the CDR3
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diversity results from the trimming of the 3"V-REGION
(up to 12 nucleotides (nt) for the in-frame junctions, up to
17 for the out-of-frame junctions), from the trimming of
the 5J-REGION (up to 14 nt for the in-frame junctions, up
to 22 for the out-of-frame junctions), and from the addition
at random of the N nucleotides creating the N-REGION
(up to 16 nt for the in-frame junctions, up to 23 for the
out-of-frame junctions) (Fig. 4). This junction diversity is
due to the activity of the terminal deoxynucleotidyl trans-
ferase (TdT) encoded by DNTT. The gene (NCBI ID:
101323636) has been identified in the bottle nosed dolphin
genome and its amino acid sequence is 84 % identical to
the human DNTT. The graphical representation of the
number of in-frame versus out-of-frame sequences ob-
tained for the 6 possible TRG rearrangements V1-J1, V1-J2,
V1-J3, V2-J1, V2-J2 and V2-J3 display striking differences
(Additional file 11). Both tests (Chi-squared p-value
confirmed with Fisher’s p-value) reject the null hypoth-
esis for V1-J2 and V2-J1 (Additional file 12). This result
confirms what was noticed at first sight and it follows
that V1-J2 gene rearrangements were dominant among
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the in-frame transcripts and were rare among the out-
of-frame transcripts.

To investigate the high frequency of the out-of-frame
rearranged V2-J3 cDNA, genomic PCR was carried out
on DNA from blood of the animal identified by L. This
choice was motivated both by the ratio of 1 in-frame
(5RV2L7) on 4 out-of-frame (5RV2LS8, L4, L5 and L9)
clonotypes with the rearranged V2-J3 and by the highest
number clones (5RV1L1, L2 and L3) with the rearranged
V1-J2 (Fig. 4a). The frequency of the out-of-frame V2-J3
genomic rearrangements (Fig. 5a) is in agreement with
that of all the respective rearranged cDNA clonotypes
(Fig. 4); stop codons in the CDR3 seem to be generated
in the unproductive V2-J3 rearrangements during the
somatic recombination. Furthermore, genomic V1-J2
clonotypes, obtained by PCR performed on the same
animal, demonstrate that they are all productive with
two cases of sharing of the CDR3, i.e. V1J2L3/6/10/
19 and V1J2L9/18 with 5RV1L2/C2/C5 and RTV1K1/
K4/K6 ¢DNA clonotypes, respectively (Fig. 5c¢ and
Additional file 11).

A
CLONE NAME | Rearranged | -nt . -nt Amino acid (AA) CDR3
TRGV-J v Nucleotide (nt) CDR3-IMGT sequence J CDR3-IMGT length
C104 F118
sequence nt/AA
V2J3L7 v2-1J3 5 TGTGCCTGGTGGG. . . . . ccaacta Gttt i i e 21 A//WWAN* 21
V2J3L21 2 TGTGCCTGGTGGGTTT. . tgggg . .GTTATTACATAAARATTTTC 2 A//WWVLGVIT*K 41
V2J3L35 4 TGTGCCTGGTGGGT. . . . cctgttag 00000 ...... TTACATARAAATTTTC 6 A//WWVLLVT*K 38
V2J3L36 4 TGTGCCTGGTGGGT. . . . gcta e TC 20 A//WWVLS 20
V2J3L39 0 TGTGCCTGGTGGGTTTAT acgacagtcctgee  ..... ATTACATAAARATTTTC 5 A/WWVYTTVLPLHKN 49
V2I3L6 1 TGTGCCTGGTGGGTTTA. acctc . .GTTATTACATAARAATTTTC 2 A//WWV*PRYYIKI 42
V2J3L12 3 TGTGCCTGGTGGGTT. . . atgggtet  L............... ATTTTC 16 A//WWVMGL 29
V2I3L19 10 TGTGCCTG. v e v evn. te L.l TACATARAAATTTTC 7 A//CLST*K 25
V23128 11 TGTGCCT. . v v vevnnn ctagaggtgggatcaaa GAGTTATTACATAAAAATTTTC 0 A//ISRGGIKELLHKN 46
V2I3L41 0 TGTGCCTGGTGGGTTTAT gtcgaa GAGTTATTACATAAARATTTTC 0 A//WWVYVEELLHKN 46
V2J3L44 3 TGTGCCTGGTGGGTT. . . gtttect .AGTTATTACATAAAAATTTTC | A//WWVVS*LLHKN 43
V2J3L45 6 TGTGCCTGGTGG. . . ... cccacaacctet 0 ........ CATAAAAATTTTC 9 A//WWPTTSHKN 37
V2I3L49 2 TGTGCCTGGTGGGTTT. . GAGTTATTACATAAAAATTTTC 0 A//WWV*VIT*K 38
V2J3L48 1 TGTGCCTGGTGGGTTTA. tggg GAGTTATTACATAAARATTTTC  ( PGGFMGSY YIKI 43
V2I3L54 9 TGTGCCTGG . « v v v v tggecte GAGTTATTACATAAAAATTTTC 0 A//WWPRVIT*K 38
V2I3L56 5 TGTGCCTGGTGGG. . . . . gggtgtcgagacge . .GTTATTACATAAAAATTTTC 2 A//WWGVSRRVIT*K 47
V2I3L46 3 TGTGCCTGGTGGGTT. . . ccga .AGTTATTACATAAAAATTTTC | A//WWVPKLLHKN 40
V213147 5 TGTGCCTGGTGGG. . . . . ga GAGTTATTACATAAAAATTTTC 0 A//WWGELLHKN 37
B
V2J3L3 v2-13 3 TGTGCCTGGTGGGTT. . . aaagtt .AGTTATTACATAAAAATTTTC 1  A/WWVKVSYYIKI 42/12
V2J3L15 5 TGTGCCTGGTGGG. . . . . gggteca ... ATTACATARAAATTTTC 5  A/WWGVNYIKI 36/10
V2I3L50 0 TGTGCCTGGTGGGTTTAT gtgaaatc GAGTTATTACATAAAAATTTTIC 0 A//WWVYVKSSYYIKI 48/14
V2J3L51 0 TGTGCCTGGTGGGTTTAT gtcctagggaa .. .TTATTACATAAARATTTTC 3 A//WWVYVLGNY YIKI 48/14
V2J3L53 1 TGTGCCTGGTGGGTTTAT gaaggg ....TATTACATAAARATTTTC 4 A/WWVYEGYYIKI 42/12
CLONE NAME |[Rearranged | -nt . -nt | Amino acid (AA) CDR31
TRGV-J v 104 Nucleotide (nt) CDR3-IMGT Sequence J CDR3-IMGT Length
Sequence nt
V1J2L5/13/22 Vi-12 2 TGTGCCCTCTGGGRAG. . cctett .. .TAACACATGGCAAGAGCGTCA 3 ALWE//ASVTHGKSV 43/13
V1J2L8/2/1/7 5 TGTGCCCTCTGGG. . . . . tcctgg GGCTAACACATGGCAAGAGCGTCA 0 ALW//VLGLTHGKSV 43/13
V1J2L.3/6/10/19 3 TGTGCCCTCTGGGAA. . . a GGCTAACACATGGCAAGAGCGTCA 0 ALWE//RLTHGKSV 40/12
V1J2L4/20 5 TGTGCCCTCTGGG. . . .. cgatce GGCTAACACATGGCAAGAGCGTCA 0 ALW//AIRLTHGKSV 43/13
V1J21.9/18 3 TGTGCCCTCTGGGAA. . . ca ....AACACATGGCAAGAGCGTCA 4 ALWE/QTHGKSV 37/11
VI1J2L16 0 TGTGCCCTCTGGGAAGTG accccecga . .CTAACACATGGCAAGAGCGTCA 2 ALWE//VTPRLTHGKSV 49/15
V1J2L17/28 2 TGTGCCCTCTGGGAAG. . ccge .GCTAACACATGGCAAGAGCGTCA 1| ALWE//AALTHGKSV 43/13
V1J2L31 4 TGTGCCCTCTGGGG. . . . cggce GGCTAACACATGGCAAGAGCGTCA 0 ALW//GGRLTHGKSW 43/13
V1J2L38 2 TGTGCCCTCTGGGAAG. . cctetg .. .TAACACATGGCAAGAGCGTCA 3 ALWE//ASVTHGKSV 43/13

Fig. 5 CDR3 nucleotide sequences retrieved from genomic rearranged clones. Nucleotide sequences are shown from codon 104 (2nd-CYS) to
codon 118 (J-PHE) (a and b) and from codon 104 (2nd-CYS) to codon 115 (c). They are grouped on the basis of their rearrangement (a) and (b)

TRGV2-TRGJ3 or (c) TRGV1-TRGJ2. N-nucleotides added by TdT are indicated in lower cases. Numbers in the left and right columns indicate the number
of nucleotides that are trimmed from the 3'V-REGION and 5'J-REGION, respectively. The germline region of the TRGV and TRGJ genes coincides with O
in the nt V and nt J columns, respectively. Clones with the same CDR3-IMGT nucleotide sequence deriving from two or more animals (L, K and C) are
underlined (see also Fig. 4). In (@), unproductive rearrangements for the presence of a stop codon (*) and for frameshifts in the CDR3, are indicated
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Computational analyses predict the pairing of the TRGV1-J2
and of the TRDV1-D1-J4 variable domains

To calculate the most likely computationally inferred
interactions between the putative yd pairing, we analysed
the amino acid sequences of the three types of rearranged
TRD ¢DNAs (originated by TRD V1-1 N-DI1S1-J4
(5R1D8), V1-1-D7S1-J4 (5R1D3) and V2-J4 (5R1D15)
rearrangements, respectively) found in the peripheral
blood of the single animal identified in our study with the
letter M (Table 2, Fig. 3b), and of three relevant TRG
c¢DNAs (originated by TRG V1-J2, V1-]J3 and V2-]3 rear-
rangements) among the six found in the peripheral blood
of the same animal (clones identified by the letter M in
Fig. 4a). The comparative inferred interactions of the
TRGV1/TRDV1 and TRGV1/TRDV2 V domains, ob-
tained using the AA sequences of the cDNA RTVIM1
(TRGV1-J2) and 5R1D8 (TRDV1-1 N-J4) clonotypes and
the sequences of the 5RVIM1 (TRGV1-J3) and 5R1D15
(TRDV2-J4) clonotypes (Fig. 6, Additional file 13), re-
spectively, were computed using as templates the human
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y8 T cell receptor chains (PDB and IMGT/3Dstructure-
DB code: 1hxm) [29, 30]. We point out that, according to
visualization of the RTV1IM1/5R1D8 complex shown in
Additional file 14A, the aspartic acid in the CDR3 position
107 (see IMGT Collier de Perles of the RTV1MI clone) of
the V- gamma domain, deriving from the addition of
gagacac nucleotides during the TRG V1-J2 recombination
process, is predicted to be significantly involved in the for-
mation of three possible salt bridge(s) and of two of the
seven calculated hydrogen bonds with the arginine in pos-
ition 107 of the 5R1D8 clonotype (V-delta domain) (red
arrows in Fig. 6a). The arginine in position 107 derives
from the TRDV1-1 N germline sequence in the CDR3 of
the TRD VI1-J4 rearrangement (Protein interfaces,
surfaces and assemblies’ service PISA at the European
Bioinformatics Institute (http://www.ebi.ac.uk/pdbe/pro-
t_int/pistarthtml) [31]. The computationally inferred
interaction between the glutamic acid in position 44 in the
FR2 of the TRG V1-J3 rearranged cDNA 5RVIM1 clono-
type (V-gamma domain) and the arginine in position 44

A RTVIM1[8.7.13] (V-gamma)

5R1D15

e o

5R1D8 [7.3.20] (V-delta)

Fig. 6 Computationally inferred interaction between RTVIM1 V-gamma domain (TRGV1 - J2) and 5R1D8 V-delta domain (TRDV1-1 N - J4) (a) and
between 5RVIM1 V-gamma domain (TRGV1 - J3) and 5R1D15 V-delta domain (TRDV2 — J4) (b) cDNA clonotypes. In RTVIM1 and 5RVIM1 V-gamma
domain CDR-IMGT are blue-green-green; in 5R1D8 and 5R1D15 V-delta domain CDR-IMGT are red-orange-purple. IMGT Collier de Perles of RTVIM1/
5R1D8 and 5RVIM1/5R1D15 clones are shown [25, 65]. The protein complex interface were computed by the online tool PDBePISA at the EBI server.
(http://www.ebi.ac.uk/msd-srv/prot_int/) and visualized by UCSF Chimera tool (http://www.cgl.ucsf.edu/chimera/) (Additional file 14)

TRG V1-J2 - TRDV1-J4
Clonotypes RTVIM1 Lenght (A) 5R1D8

LYS 116[ O ] 3.06 TYR 42[OH]
ASP 107[ OD2] 3.79 ARG 107[NH1]
ASP 107[ OD1] 3.34 ARG 107[NH2]

Hydrogen bonds| TYR 42[OH] 3.28 LEU116[N ]
SER 120[ OG | 2.60 GLU 49[ OF1]

LYS 113[ NZ | 3.81 SER 66[ OG |

LYS 116[ NZ | 3.48 LYS 114[ O ]
ASP 107[ OD2] 3.79 ARG 107[NH1]
Saltbridges | ASP 107[ OD2] 3.71 ARG 107[NH2]
ASP 107[ OD1] 3.34 ARG 107[NH2]

TRG V1-J3 - TRD V2-J4

Clonotypes 5RVIM1 | Lenght (A) 5R1D15

LYS 116[ O ] 3.26 TYR 42[ OH ]

TYR114[O0 ] 3.60 ARG 55[ NE]

SER 113[0G] 3.74 THR 66[ 0G1]

Hydrogen bonds| TYR 42[OH] 3.13 LEU 116[ N ]

TYR 40[OH] 3.02 GLN 114[OE1]

LYS 116[ NZ ] 3.19 GLN 114[ 0 ]

TRP107[ NE1] 3.24 GLN 114[ O ]

Salt bridge GLU 44[ OE2] 3.93 ARG 44[ NH2]



http://www.ebi.ac.uk/pdbe/prot_int/pistart.html
http://www.ebi.ac.uk/pdbe/prot_int/pistart.html
http://www.ebi.ac.uk/msd-srv/prot_int/
http://www.cgl.ucsf.edu/chimera/
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in the FR2 of the TRD V2-J4 rearranged cDNA 5R1D15
clonotype (V-delta domain) is noteworthy because they
are both involved in a possible salt bridge (red arrows in
Fig. 6b). The Gln Q114 of the 5R1D15 clonotype is just as
important because it is involved in three possible hydro-
gen bonds with Tyr Y40, Trp W107 and Lys K116 of the
5RVIMI clone, respectively. In conclusion, we suggest
that the RTV1IM1/5R1D8 pairing is the most likely to
form and it is the most stable (because of its ability to
maintain the V-gamma/V-delta domain interactions bet-
ter) (Fig. 6 and Additional file 13). This consideration,
seems to be in compliance with the fact that the TRG V1-
J2 rearrangement, found both in the peripheral blood and
in the skin, is not only the most frequent among the six
possible rearrangements, but it is shared among the or-
ganisms living in the same controlled environment (see
animals identified by letters K, L and M) as well as in
those living in marine environment (see animal identified
by letter C) (Fig. 4).

Discussion
In this study we report an extensive analysis of the genomic
organization and expression of the TRG and TRA/TRD
genes in dolphin. According to comparative analyses, dol-
phin TRG locus is the simplest and the smallest among the
mammalian TRG loci identified to date [19, 20] and its
organization is reminiscent of the structure of a typical sin-
gle cassette of artiodactyls [9, 15] with a small number of
genes, i.e. two TRGYV, three TRGJ and one TRGC (Fig. 1).
The analysis of dolphin TRA/TRD locus confirmed
that TRD genes are clustered within the TRA locus and
that genes belonging to the TRDV1 subgroup are dis-
tributed among the TRAV genes as it is commonly ex-
pected in artiodactyls TRA/TRD locus [13, 14, 26, 32]. A
total of 16 TRAV and 5 TRDV genes have been identi-
fied (Fig. 2). By the criterion that gene sequences having
75 % or greater nucleotide identity belong to the same
subgroup, the TRAV and the TRDV genes belong to 13
and to three subgroups, respectively (Additional file 7).
The sheep TRDV1 subgroup has been estimated to con-
tain at least 40 genes [12], while only 25 TRDV1 genes
have been identified in the genomic assembly [14]. The
phylogenetic analysis assigns the membership of the dol-
phin TRDV1 genes due to the monophyletic groupings
marked by 25 sheep, 6 dromedary and 3 dolphin members
in contrast with the single human one (Additional file 7B).
Dolphin TR alpha chain expression analysis allowed us
to identify new TRAV genes, with respect to the available
genomic sequence. Furthermore a bias towards rearrange-
ments containing TRA genes belonging to the TRAV18
(12/40 ¢DNA) and TRAV20 (11/40 cDNA) gene sub-
groups, was observed (Fig. 3a). On the contrary, the usage
of the 61 TRAJ genes is generally random with a slight
increase in usage of TRAJ (Fig. 2) between 54 and 22 (31 of
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50 functional rearrangements) (Additional file 9); this
finding being consistent with the widely accepted view
that TRAV-TRAJ recombination proceeds in a coordinated,
sequential manner from proximal to progressively more
distal TRAV and TRAJ genes [33, 34].

Dolphin TR gamma chain expression analysis demon-
strated that the two TRGV and three TRGJ were used in
every possible combination, although a bias towards
some transcripts (TRGV1-TRGJ2 and TRGV2-TRGJ3)
was noted. Furthermore, about half the transcripts using
TRGV2 were unproductive due to the presence of stop
codons in CDR3. The percentage values of the product-
ive/unproductive rearrangements are similar for both
¢DNA (Fig. 4) and genomic clones (Fig. 5), in contrast
with what is usually obseved (percentage of unproductive
rearrangements lower in cDNA, due to nonsense-mediated
decay of RNA).

In a previous work [35], it was reported that biased V-]
gene rearrangement contributes to the regulation of the
mature TRG repertoire. The biases in a given TR repertoire
can stem from properties of the gene rearrangement
process, as well as from thymic selection and the expansion
of T cell clones. In the present work, we can make the fol-
lowing considerations: i) it seems to be a double preferenti-
ality and that of the gene TRGV1 with respect to the gene
TRGV2 as well as of the TRG V1-J2 rearrangement with
respect to the five others (Fig. 4), the latter being supported
given the comparison between the frequency of the in-
frame and out-of-frame rearrangements both in cDNA and
in genomic DNA (Additional file 11); ii) the fact that unre-
lated subjects show not only a biased usage of V-] genes,
but also a biased number of nucleotides inserted/deleted at
junction regions (Fig. 4 and Fig. 5c), could be explained by
the presence of common antigens which can stimulate and
expand T cells with a particular type of gamma chain, sug-
gesting the existence of a basic “public” repertoire of a given
TR in a range of public T cell responses; iii) finally we
propose that the occurrence of clonotypes shared by differ-
ent individuals who live both in marine and in artificial
marine “habitat”, described as “convergent recombination”
[28], could be strictly related to the biased V-] recombina-
tional event.

The mechanisms that determine biases in genes use re-
main unclear. In a recent paper [36] a physical model of
chromatin conformation at the TRB D-J genomic locus ex-
plains more than 80 % of the biases in TRBJ use that was
measured in murine T cells. As a consequence of these
structural and other biases, TR sequences are produced
with different a priori frequencies, thus affecting their prob-
ability of becoming public TR that are shared among indi-
viduals. In dolphin, we could explain the abundance of
TRGV1-J2 repertoire among individuals hypothizing that
this combination could be produced by the rearrangement
process with different a priori probabilities because an
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expanded role of chromatin conformation in TRGV-] re-
arrangement, which controls both the gene accessibility
and the precise determination of gene use.

An evolutionary correlation between the dolphin TRGV1
and the human TRGV9 (Additional file 4A) genes and the
dolphin TRGJ2 and the human TRGJP (Additional file 15)
genes seems to exist, as in these two species the same
mechanism pushes to an accurate determination of the |
gene usage. In fact, dolphin TRGJ2 this work) and human
TRGJP, are the most frequently used ] genes in the periph-
eral YO T cells [16] and occupy an intermediate position
with respect to the other two ] genes. At present we have
knowledge of the position of the genes on the physical map
for human (IMGT), dromedary [23], dolphin (this work)
and sheep [9] (Additional file 1) and cattle [10] TRG loci.

It is admitted that the expressed y/8 T cell repertoire
partly depends upon preferentially rearranged TRGV-]
gene combinations, indeed in human the gamma delta
TCR repertoire is accompanied by selection for public
gamma chain sequences such that many unrelated indi-
viduals overlap extensive in their circulating repertoire
[37]. As a conseguence, the high frequency of TRGV1-
J2/TRDV1-D1-J4 productive rearrangements in dolphins
may represent a situation of oligoclonality comparable
to that found in human with TRGV9-JP/TRDV2-D-] T
cells, and in primates.

The similarity in dolphin and human of a basic public
Y8 repertoire, seems to be correlated with other recent
findings. McGowen discovered several genes, potentially
under positive selection in the dolphin lineage, associated
with the nervous system, including those related to human
intellectual disabilities, synaptic plasticity and sleep [38].
Moreover bottlenose dolphins are the only animals with
man and apes, to be able to recognize themselves when
confronted with a mirror [39], and have demonstrated the
numerical skills [40]. While here, in the present work, the
functional convergence of y0 domains is suggested among
mammals, recently it was proposed similarity of dual-
function TRA and TRD genes in jawed vertebrates and in
the VLRA and VLRC genes in jawless vertebrates and their
differential expression in two major T cell lineages [41-43].
Therefore comparative immunobiology of different verte-
brate lineages may reveal heretofore unrealized features.

Conclusions

The present study identifies the genomic organization
and the gene content of the TRG and the TRA/TRD loci
in the high quality draft sequence of the bottlenose dol-
phin (Tursiops truncatus) genome. The genomic structure
of the smallest TRG locus thus described in mammals, in-
cludes two TRGV, three TRGV and only one TRGC genes.
Through phylogenetic and expression analyses, 8 TRAV
were assigned unambiguously to genes annotated in the
TRA/TRD locus genomic sequence, while 12 TRAV could
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be assigned to new genes, belonging to five different sub-
groups. The presence of several variable genes belonging
to the TRDV1 subgroup, makes the TRA/TRD dolphin
locus more similar to the TRA/TRD locus of artiodactyls
than to the human locus.

By comparing multiple different individuals, we provide
evidence of an unusual ratio of productive/unproductive
TRG transcripts and of a bias towards TRGV1-TRGJ2 rear-
rangements, which were dominant among the in-frame
transcripts and were rare among the out-of-frame tran-
scripts. Moreover, the cDNA analysis revealed sharing of
in-frame TRG sequences within the same and in different
individuals living in a controlled environment as well as in
marine environment, suggesting expansion of “public” TCR
by a common antigen. The selection for public gamma
chain and the high frequency of TRGV1-J2/TRDV1-D1-J4
productive rearrangements in dolphins may represent a
situation comparable to that found in human with TRGV9-
JP/TRDV2-D-J T cells.

Methods

Genome and sequence analysis

The bottlenose dolphin (Tursiops truncatus) genome is be-
ing sequenced at ~2X coverage (BioProject: PRINA20367)
by the Human Genome Sequencing Center at the Baylor
College of Medicine and the Broad Institute using a whole
genome shotgun sequencing strategy [17]. In 2008,
Ensembl released the first low-coverage 2.59x assembly of
the dolphin (turTrul). We employed these genome assem-
blies using BLAST algorithm to identify the TRG and TRA/
TRD loci in this species.

For the TRG locus, two overlapping scaffolds were re-
trieved (GEDI ID: JH473572.1; BCM-HGSC ID: contig
425448-578749), respectively of 96017 and 284974 bp
(gaps included). A sequence of 188414 bp was analysed.
Amphiphysin (AMPH) and related to steroidogenic acute
regulatory protein D3-N-terminal like (STARD3NL), flank-
ing TRG locus at 5" and 3’ ends, respectively, were in-
cluded in the analysis. They were predicted to be functional
in dolphin (GenBank ID: XM_004317564.1; Ensembl ID:
ENSTTRT00000004099). The TRG genes were identified
using both our dolphin ¢cDNA collection (this work) and
the corresponding human (GEDI ID: AF159056) and sheep
(GEDI ID: DQ992075.1, DQ992074.1) genomic sequences.
Locations of the TRG genes are provided in Fig. 1b.

For the TRA/TRD locus, we retrieved a sequence of
482052 bp from two GenBank scaffolds, JH484271.1 and
JH481615.1, and five EMBL-EBI scaffolds, Ens_742,
Ens 97, Ens 89, Ens_123 and Ens 112178. Scaffold
Ens_97 and Ens_123 overlap for about 16,7 Kb, includ-
ing TRA14/DV4, TRA9, TRA16 and TRA17 genes, while
scaffold Ens_89 and JH484271.1 overlap for about 10
Kb, a region that includes two genes, TRAV1S1 and
TRAV38.1. The TRA/TRD genes were identified using
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the corresponding human (GEDI ID: AE000521.1) gen-
omic sequences. Sequences of all TRA/TRD genes are in
Additional file 5. Computational analysis of the dolphin
TR loci was conducted using the following programs:
RepeatMasker for the identification of genome-wide
repeats and low complexity regions [44] (RepeatMas-
kerathttp://www.repeatmasker.org) and Pipmaker [45]
(http://www.pipmaker.bx.psu.edu/pipmaker/) for the
alignment of the dolphin sequence with the human
counterpart. ClustalW (http://www.ebi.ac.uk/Tools/msa/
clustalw2/) and IMGT/V-QUEST (http://www.imgt.org/
IMGT_vquest/share/textes/) tools allowed the identifica-
tion and characterization of the TR genes.

Phylogenetic analyses

The TRGV, TRGJ, TRAV and TRDV genes used for the
phylogenetic analyses were retrieved from IMGT/LIGM-
DB and GenBank databases with the following accession
numbers: AF159056 (human TRG locus), DQ992075
(sheep TRGI1 locus), DQ992074 (sheep TRG2 locus),
JN165102 (dromedary TRGV1), JN172913 (dromedary
TRGV1), AE000521.1 (human TRA/TRD locus); sheep
TRA/TRD accession numbers [14] and FN298219-
FN298227 (dromedary TRD genes) [46]. Multiple align-
ments of the sequences under analysis were carried out
with the MUSCLE program [47]. Phylogenetic analyses
were performed using MEGA version 6.06 [48] and the
bootstrap consensus tree inferred from 1000 replications
using the Neighbor-Joining method [49, 50].

Animals (source of tissue)

Blood samples were provided by Zoomarine Italia S.p.A.
(Rome, Italy) and were collected from three dolphins,
two males (Marco and King) and one female (Leah). The
three individuals were born and kept under human care
and are unrelated. In particular, Marco was born in the
dolphinarium in Bruges (Belgium) and Tex, Marco’s father,
is from the United States (Texas, Gulf of Mexico). King
was born in the dolphinarium in Albufeira (Portugal), and
Sam, King’s father had Cuban origins. Leah was born in the
dolphinarium in Benidorm (Spain) and Eduardo, Leah’s
father has Cuban origins. The identifying letters are M,
K and L, respectively. The Bank for the Tissues of
Mediterranean Marine Mammals (Padua, Italy) provided
us a sample of skin (epidermis plus dermis) belonging to a
wild dolphin, that was found beached in the Northern
Adriatic Sea; for this animal the identified letter is C.

5' RACE and RT-PCR

Four types of 5" RACE and three types of RT-PCR (total
of six and six experiments, respectively) on total RNA
from the peripheral blood of three unrelated adult ani-
mals (identified as M, K and L) and from the skin of ani-
mal (identified as C) (Table 1 and 2) were carried out to
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investigate the dolphin TRG, TRA and TRD chains rep-
ertoire. Two 5'RACE experiments from the peripheral
blood of the animals (identified as M and L) and three
types of RT-PCR, two from blood (K and M) and one
from skin (C), were carried out to investigate the dolphin
TRG chain repertoire. A single 5’'RACE experiment from
the peripheral blood of the animal identified as L was car-
ried out to investigate the dolphin TRA chain repertoire.
Three 5'RACE experiments from the peripheral blood of
the animals (identified as M and L) were carried out to in-
vestigate the dolphin TRD chain repertoire.

Total RNA was isolated from peripheral blood leukocytes
(PBL) or skin using the Trizol method according to the
manufacturer’s protocol (Invitrogen, Carlsbad, CA), and in-
tegrity of RNA was verified on a 1 % agarose gel. About
5 pg of total RNA were reverse transcribed with Superscript
II (Invitrogen, Carlsbad, CA) by using specific primers
(Table 1), designed on the sequences of the first exon for
each dolphin TR constant gene sequence (TC3L for gamma
chain, TAICIL for alpha chain and TD2CL for delta chain).
After linking a poly-C tail at the 5'end of the cDNAss, the
c¢DNAds was performed with Platinum Taq Polymerase
(Invitrogen) by using specific primers as lower primers,
TCIL1 for gamma chain, TA1C2L for alpha chain and
TDI1C2L for delta chain (Table 1) and an anchor oligo-
nucleotide as upper primer (AAP) provided from the sup-
plier (Invitrogen). PCR conditions were the following: one
cycle at 94 °C for 1 min; 35 cycles at 94 °C for 30 s, 58 °C
for 45 s, 72 °C for 1 min; a final cycle of 30 min at 72 °C.
The products were then amplified in a subsequent nested
PCR experiment by using specific lower primers, TC1L2
for gamma chain, TA1C3L for alpha chain and TD1CL1 for
delta chain (Table 1) and AUAP oligonucleotide as upper
primer, provided from the supplier (Invitrogen). Nested
PCR conditions were the following: one cycle at 94 °C for
1 min; 30 cycles at 94 °C for 30 s, 58 °C for 35 s, 72 °C for
30 s; a final cycle of 30 min at 72 “C.RT-PCR experiments
were carried out amplifing rearranged transcripts contain-
ing TRGV1 and TRGV2 genes. Upper primers containing
TRGV1 (TVILU) and TRGV2 (TV7LU) sequences, and
lower primer containing the I exon of TRGC (TC1L2) se-
quence were used on sscDNA (Table 1 and 2). RT-PCR
conditions were: one cycle at 94 °C for 2,30 min; 35 cycles
at 94 °C for 30 s, 58 °C for 40 s, 72 °C for 40 s; a final cycle
of 30 min at 72 °C. The RT-PCR and RACE products were
then gel-purified and cloned using StrataClone PCR
Cloning Kit (Statagene). Random selected positive clones for
each cloning were sequenced by a commercial service.
¢DNA sequence data were processed and analyzed using the
Blast program (http://www.blast.ncbinlm.nih.gov/Blast.cgi),
Clustal W2 (http://www.ebi.ac.uk/Tools/msa/clustalw2/) and
IMGT_ tools (IMGT/V-QUEST) [51, 52] with integrated
IMGT/JunctionAnalysis tools [53, 54] and the IMGT unique
numbering for V domain [25] (http://www.imgt.org/).
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Genomic DNA isolation and PCR

Genomic DNA was extracted from whole blood of a female
subject (animal identifiant letter L), with a salting-out
method [55] with two modifications. First, whole blood was
mixed with erythrocyte lysis buffer (155 mM NH,C],
10 mM KHCO; 1 mM EDTA, pH 7.4) before the
harvested white cell pellet was mixed with nucleus lysis
buffer as described [55]. Second, incubation with proteinase
K was carried out for 2 h at 56 °C, instead of overnight at
37 °C. The quality of the genomic DNA was evaluated by
agarose gel electrophoresis and concentration determined
by 260 nm absorbance measurements. Genomic PCR was
performed with 50 ng to 100 ng of genomic DNA as tem-
plate using specific upper primers (TV1L1 and TV7LU)
designed on the two TRGV (TRGV1 and TRGV2) gene se-
quences in combination with two lower primers (J2GL and
J5BR) designed on the two TRGJ (TRGJ2 and TRG]J3) gene
sequences (Table 1). Two genomic PCR were performed to
amplify TRGV1-TRGJ2 and TRGV2-TRGJ3 rearrangement
combinations, respectively. High-fidelity polymerase was
used to minimize possible PCR errors. PCR were per-
formed following the manifacture’s instruction for the
DNA polymerase (Platinum®Taq DNA Polymerase, Life
Technologies). V1-J2 genomic PCR conditions were
the following: one cycle at 94 °C for 3 min; 35 cycles at
94 °C for 30 s, 62 °C for 30 s, 72 °C for 30 s; a final
cycle of 30 min at 72 °C. V2-J3 genomic PCR condi-
tions were the following: one cycle at 94 °C for 3 min;
35 cycles at 94 °C for 30 s, 60 °C for 30 s, 72 °C for
30 s; a final cycle of 30 min at 72 °C. The obtained
fragments were agarose gel purified, cloned using Stra-
taClone PCR Cloning Kit (Stratagene) and sequenced
by a commercial service. Two genomic PCR were per-
formed to amplify TRDV4 gene using a pair of primers de-
signed based on the relative V-exon sequence (Table 1).
PCR was performed following the manufacture’s instruction
for the MyTaq™ HS DNA Polymerase, (Bioline). The follow-
ing settings were used: 94 °C for 2 min, followed by 30 cy-
cles each comprising a denaturation step at 94 °C for 30 s,
an annealing step of 30 s at 55 °C (according to the melting
temperature of the primers), an extension step at 72 °C for
30 s, and a final extension period of 7 min at 72 °C.

Statistical analysis

Statistical analyses were performed using 2 x 2 contin-
gency tables. All the p-values shown in the Results
were obtained using the Chi-squared test, considering
as statistically significant a p- value <0.05. Fisher’s
Exact test was used to confirm the significance of the
Chi-squared test when the counts of observed samples
had values <5. When performing multiple compari-
sons among in-frame and out-of-frame TRG cDNA
(Additional file 12), the Chi-squared test p-values were
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adjusted using Benjamini—Hochberg false discovery
rate [56]. All the analyses were performed using the R
software environment for statistical computing
(https://www.r-project.org/).

Global alignments in protein secondary structure
prediction and 3D visualization

Global alignment of the target and template sequences was
performed with ClustalW (http://www.ebi.ac.uk/clustalw/
index.html) [57]. Furthermore, when necessary, alignment
was manually adjusted after predicting the secondary struc-
ture of the target and aligned to that of the template as
derived with the DSSP program [58]. The secondary struc-
ture prediction was computed with SECPRED (http://
gpcr.biocomp.unibo.it/cgi/predictors/s/pred_seccgi.cgi) and
PSIPRED [59] and the target/template alignments were
computed with YAP (http://gpcr.biocomp.unibo.it/cgi/pre-
dictors/alignss/alignss.cgi), that allows to align both primary
and secondary structure at the same time. The template
was selected from the Protein Data Bank (PDB) on the
basis of sequence/function similarity with the target se-
quence and was the human y§ T cell receptor solved
with an atomic solution of 3A°(PDB code and IMGT/
3Dstructure-DB: 1hxm) [29, 30]. Target/ template align-
ments were then fed into Modeller version 9.8 [60]. For a
given alignment, 50 3D models were routinely built and,
then, evaluated and validated with the PROCHECK [61]
and PROSA2003 [62] suites of programs. Models with the
best stereochemical and energetics features were retained.
3D visualization (Additional file 14) of the RTVIMI1/
5R1D8 and of 5RVIM1/5R1D15 clones was computed,
adopting as template the human yd T cell receptor. The
solvent accessibility was computed with DSSP program
[58]. The protein complex interface were computed by the
online tool PDBePISA at the EBI server (http://
www.ebi.ac.uk/msd-srv/prot_int/) and visualized by
UCSF Chimera tool (http://www.cgl.ucsf.edu/chimera/).
The IMGT Collier de Perles of RTV1IMI1, 5R1DS8, 5RV1IM1
and 5R1D15 cDNA clonotypes were obtained using the
IMGT/Collier-de-Perles tool (http://www.imgt.org) [63],
starting from amino acid sequences.

Additional files

Additional file 1: Schematic representation of the genomic
organization of human, sheep, dromedary and dolphin TRG loci. The
diagram shows the position of all V, J, and C TRG genes according to
IMGT nomenclature (http://www.imgt.org). Boxes representing genes are
not to scale. Exons are not shown. (PPT 146 kb)

Additional file 2: Nucleotide sequences of the dolphin TRGV (A), TRGJ
(B) and TRGC (C) genes, as deduced from the genome assembly
Ttru_14. (DOC 19 kb)

Additional file 3: Dotplot matrix of dolphin/sheep (A) and of dolphin/
human (B) TRG loci genomic comparison. Using the PipMaker program
dolphin TRG has been plotted against sheep TRG1 (A) and dolphin TRG locus
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has been plotted against human (B). The transcriptional orientation of each
gene is indicated by arrows and arrowheads. Dolphin TRGV1 and TRGV2
genes were classified as orthologues to their corresponding human TRGV9
gene and sheep TRGV11-1 (a pseudogene) and human TRGV11 (an ORF) and
sheep TRGV7 gene, respectively (red boxes). The correspondence is due to the
highest nucleotide identity (see also Additional file 4A). (PPT 363 kb)

Additional file 4: The NJ tree inferred from the dolphin, sheep,
dromedary and human TRGV (A) and TRGC (B) gene sequences. The
evolutionary analysis was conducted in MEGA6.06 [48]. The
percentage of replicate trees in which the associated taxa clustered
together in the bootstrap test (1,000 replicates) is shown next to the
branches [49]. The trees are drawn to scale, with branch lengths in
the same units as those of the evolutionary distances used to infer
the phylogenetic trees. The evolutionary distances were computed
using the p-distance method [50] and are in the units of the number of
base differences per site. (PDF 67 kb)

Additional file 5: Description of the TRA/TRD genes in the dolphin
genome assembly. The position of all genes and their classification and
functionality are reported. (DOCX 149 kb)

Additional file 6: Nucleotide (A) and deduced amino acid (B)
sequences of the dolphin TRDV4 gene. TRDV4 indicates the assembly
gene; G1TRDV4 and G2TRDV4 genes refer to two different individual
genomic sequences. The underlined A in G2 TRDV4 may represent an
allele of the TRDV4 gene. (DOCX 18 kb)

Additional file 7: The NJ tree inferred from the dolphin, sheep, and
human TRAV (A) and from the dolphin, sheep, dromedary and human
TRDV (B) gene sequences. The evolutionary analysis was conducted in
MEGAG6.06 [48]. The percentage of replicate trees in which the
associated taxa together in the bootstrap test (1,000 replicates) is
shown next to the branches [49]. The trees are drawn to scale, with
branch lengths in the same units as those of the evolutionary distances
used to infer the phylogenetic trees. The evolutionary distances were
computed using the p-distance method [50] and are in the units of the
number of base differences per site. The functionality of all genes is
also indicated. (A) Subgroups TRAV45 and TRAV42 are officially adopted
for dolphin: these genes are related to the TRAV18 and TRAV8
subgroups, respectively. (B) Dolphin TRDV1, TRDV2 and TRDV4 gene
subgroups are indicated by A, B and C, respectively. (PPT 244 kb)

Additional file 8: Nucleotide and deduced amino acid sequences of
the dolphin TRDJ (A) and TRDD (B) genes. The consensus sequences
of the heptamer and nonamer [64] are provided at the top of the
figure and underlined. The numbering adopted for the gene
classification is reported on the left of each gene. The donor splice
site for each TRDJ is shown. The canonical FGXG amino acid motifs are
underlined. (DOC 16 kb)

Additional file 9: Nucleotide and deduced amino acid sequences of
the dolphin TRAJ genes. The consensus sequence of the heptamer
and nonamer [64] are provided at the top of the figure and are
underlined. The numbering adopted for the gene classification, is
reported on the left of each gene. The donor splice site for each
TRAJ is shown. The canonical FGXG amino acid motifs are
underlined. (DOCX 53 kb)

Additional file 10: IMGT Protein display of the TRG cDNA clones. The
TRGV and TRGJ genes are listed respectively at the left and the right of
the figure. Leader region (L-Region), complementarity determining
regions (CDR-IMGT) and framework regions (FR-IMGT) are also indicated,
according to the IMGT unique numbering for V-REGION [25]. The name
of the clones are also reported. Shared sequences both within the same
and in different individuals are in bold. The TRGV allele amino acid
changes, if any, are green boxed. (DOC 60 kb)

Additional file 11: Percentages of in-frame and out-of-frame rearranged
TRG V-J cDNA (A) and percentages of in-frame and out-of-frame rearranged
TRG V-J genomic DNA (B). L is animal identifiant letter. Blue areas of the bars
indicate in-frame while the red areas of the bars indicate out-of-frame TRG
V-J rearrangements (Fig. 4 and Additional file 10). (PPTX 37 kb)

Additional file 12: Summary of the results of the statistical test:
Chi-squared p-value is confirmed with Fisher's p-value. We assume as

‘null hypothesis’ that in-frame and out-of-frame cDNAs are produced
with the same probability and that there is no significant difference
among in-frame and out-of frame occurrences. Thus, the null hypothesis is
that the rate of in-frame and out-of frame cDNAs is proportional to the totals
(or, to better say, to the remaining counts), for each category. The hypothesis
has been tested using Chi-squared p-value and (due to the low counts)
confirmed with Fisher's p-value. (DOC 31 kb)

Additional file 13: Overview of the analysis of the putative gd domains
conducted with the software PDBePISA (M&M) (http//www.ebi.ac.uk/pdbe/
pisa/). For each paired domain, 20 models were generated and after validation
a representative was chosen. The columns represent, respectively: the number
of H bond, the name and the position of the amino acid and of the atom
involved in the H bond for delta domain; the 3x indicates that the amino acid
is found in the CDR3 (IMGT_Collier de Perles) [65]. The length of the hydrogen
bond expressed in angstrom, the name and position of amino acids,
numeration and the atom involved in the hydrogen bond of the gamma
domain, follow respectively. The 3x at the end, indicates that the amino acid
is found in the CDR3 of the gamma domain. The positions highlighted in
yellow indicate the salt bridge (s). (PPTX 83 kb)

Additional file 14: Visualization of computationally inferred interaction
between V-gamma and V-delta domain cDNA clonotypes. In RTVIM1 and
S5RVIM1T V-gamma domain CDR-IMGT are blue-green-green (FR in
orange); in 5R1D8 and 5R1D15 V-delta domain CDR-IMGT are red-pink-
violet (FR in yellow). The protein complex interface were computed by
the online tool PDBePISA at the EBI server. (http://www.ebi.ac.uk/msd-srv/
prot_int/) and visualized by UCSF Chimera tool (http://www.cgl.ucsf.edu/
chimera/). (PPTX 762 kb)

Additional file 15: The NJ tree inferred from the dolphin, sheep,
dromedary and human TRGJ gene sequences. The evolutionary analysis
was conducted in MEGA6.06 [48]. The percentage of replicate trees in
which the associated taxa clustered together in the bootstrap test (1,000
replicates) is shown next to the branches [49]. The tree is drawn to scale,
with branch lengths in the same units as those of the evolutionary
distances used to infer the phylogenetic trees. The evolutionary distances
were computed using the p-distance method [50] and are in the units of
the number of base differences per site. The functionality of all genes is
also indicated. In the three, a clear cut subdivision of J sequences into
two main sets is evident: set | (C-proximal) and set Il (C-distal); genes of
set Ill, have in the physical map an intermediate position with respect to
J genes of the other two sets (Additional file 1). (PPT 159 kb)

Abbreviations

CDR, complementarity determining region; FR, framework region; IG,
immunoglobulins; T cell receptor gamma locus; TR, T cell receptor; TRA/TRD
locus, T cell receptor alpha/delta locus; TRG locus, TRGC, T cell receptor
gamma constant; TRGJ, T cell receptor gamma joining; TRGV, T cell receptor
gamma variable. All TR genes (functional, ORF, pseudogenes) reported here
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their designations are in accord with the IMGT nomenclature for human
(IMGT®, the international ImMunoGeneTics information system®, http://
www.imgt.org)
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